
Boise State University
ScholarWorks

Mathematics Faculty Publications and Presentations Department of Mathematics

1-1-1997

Combinatorics of Open Covers (III): Games,
Cp(X)
Marion Scheepers
Boise State University

This document was originally published by Polska Akademia Nauk * Instytut Matematyczny (Institute of Mathematics · Polish Academy of Sciences) in
Fundamenta Mathematicae. Copyright restrictions may apply. http://matwbn.icm.edu.pl/

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/math_facpubs
https://scholarworks.boisestate.edu/math
http://matwbn.icm.edu.pl/


FUNDAMENTA
MATHEMATICAE

152 (1997)

Combinatorics of open covers (III): games, Cp(X)

by

Marion S c h e e p e r s (Boise, Id.)

Abstract. Some of the covering properties of spaces as defined in Parts I and II are
here characterized by games. These results, applied to function spaces Cp(X) of countable
tightness, give new characterizations of countable fan tightness and countable strong fan
tightness. In particular, each of these properties is characterized by a Ramseyan theorem.

Let N denote the set of positive integers. As in [11] and [20] the follow-
ing two selection hypotheses and their associated games will be our main
concern: Let A and B be collections of subsets of an infinite set S. Then
S1(A,B) denotes the hypothesis that for every sequence (On : n ∈ N) of el-
ements of A there is a sequence (Tn : n ∈ N) such that for each n, Tn ∈ On,
and {Tn : n ∈ N} is an element of B. The associated game is denoted by
G1(A,B), and is played as follows: The players, One and Two, play an in-
ning per positive integer. In the nth inning One first selects a set On ∈ A,
after which Two selects an element Tn ∈ On. A play (O1, T1, O2, T2, . . .) is
won by Two if {Tn : n ∈ N} is in B; otherwise One wins. If One has no
winning strategy in the game G1(A,B), then the families A and B satisfy
hypothesis S1(A,B). In this sense the game is a sufficient test whether A
and B satisfy S1(A,B); the main interest in such games stems from the fact
that often they are a necessary test for the validity of the selection hypoth-
esis. When they are, they are a powerful tool to prove theorems about the
combinatorial structure of A and B.

The symbol Sfin(A,B) denotes the second selection hypothesis of interest
to us: for every sequence (On : n ∈ N) of elements of A there is a sequence
(Tn : n ∈ N) such that for each n, Tn is a finite subset of On, and

⋃∞
n=1 Tn

is an element of B. The associated game is denoted by Gfin(A,B), and is
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played as follows: Two players, One and Two, play an inning per positive
integer. In the nth inning One first selects a set On ∈ A, after which Two
selects a finite subset Tn of On. A play (O1, T1, O2, T2, . . .) is won by Two if⋃∞
n=1 Tn is in B; otherwise One wins. If One has no winning strategy in the

game Gfin(A,B), then the families A and B satisfy hypothesis Sfin(A,B).
For the duration of this paper X is an infinite Tikhonov space and O

denotes the collection of all open covers of X. The open cover U of X is an
ω-cover if X is not a member of it and every finite subset of X is contained
in an element of U . The symbol Ω denotes the collection of all ω-covers of X.

In the first two sections of the paper we study the two selection hy-
potheses and their associated games for the case when A and B are both
Ω. We show that the nonexistence of a winning strategy for One in the
associated game is a necessary (and sufficient) condition for the validity of
the corresponding selection hypothesis (Theorems 2 and 5).

In the third section we turn our attention to spaces of countable tight-
ness and Cp(X): RX denotes the Cartesian product of X copies of the real
line R, endowed with the Tikhonov product topology. The subset of con-
tinuous functions from X to R with the topology it inherits from RX is
denoted by Cp(X); this is the topology of pointwise convergence. Theorems
of Arkhangel’skĭı, Arkhangel’skĭı and Pytkeev, Gerlits and Nagy, and Sakai
expose a duality between the closure properties of Cp(X) and the combina-
torics of open covers of X. We use the results from the first two sections to
give Ramsey-theoretic characterizations of “classical” closure properties of
Cp(X), as well as a number of other characterizations normally associated
with ultrafilters on the set of positive integers (Theorem 11 in Section 4
and Theorem 13 in Section 5). Directly after each of these two theorems we
discuss to what extent they are theorems about the special spaces Cp(X),
and give two companion results (Theorems 11B and Theorem 13B), which
give a connection with two cardinal numbers associated with combinatorics
of the real line.

1. Games and S1(Ω,Ω). Fritz Rothberger introduced the property
S1(O,O) in [18], Fred Galvin introduced the game G1(O,O) in [7] and
Janusz Pawlikowski proved in [17]:

Theorem 1 (Pawlikowski). X has property S1(O,O) if , and only if ,
One does not have a winning strategy in the game G1(O,O).

Masaki Sakai introduced the property S1(Ω,Ω) in [19]. The next theorem
can be used to give unified proofs of some of the results of [11] and [20]. Here
we shall use it in our analysis of Cp(X).

Theorem 2. X has property S1(Ω,Ω) if , and only if , One does not
have a winning strategy in G1(Ω,Ω).
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The significant implication is that if X has property S1(Ω,Ω), then One
does not have a winning strategy in the corresponding game. The following
fact from [19] is key to our proof of this:

Theorem 3. X has property S1(Ω,Ω) if , and only if , every finite power
of X has property S1(O,O).

Towards proving Theorem 2, let X be a space with property S1(Ω,Ω).
We may assume that for m 6= n, Xm and Xn are disjoint. For each n, Xn

has property S1(O,O), whence so does Y :=
∑∞
n=1X

n.
Let F be a strategy for One of G1(Ω,Ω) on X and define a strategy G

for One of G1(O,O) on Y as follows: With F (X) = (Un : n ∈ N) One’s
first move in G1(Ω,Ω) on X, define One’s first move in G1(O,O) on Y by
G(Y ) = (Unm : m,n ∈ N). Two responds with a set Un(1)

m(1) from G(Y ). Then
Um(1) is a response of Two to F (X). Apply F to find F (Um(1)) = (Um(1),m :

m ∈ N), an ω-cover of X. Then define G(Un(1)
m(1)) = (Unm(1),m : n,m ∈ N).

Two responds with U
n(2)
m(1),m(2) from G(Un(1)

m(1)); Um(1),m(2) is a response of
Two to F (Um(1)). First compute F (Um(1), Um(1),m(2)) = (Um(1),m(2),m :

m ∈ N) and then define G(Un(1)
m(1), U

n(2)
m(1),m(2)) = (Unm(1),m(2),m : n,m ∈ N),

and so on.
As Y has property S1(O,O), choose a G-play lost by One of G1(O,O).

It is of the form G(Y ), Un(1)
m(1), G(Un(1)

m(1)), U
n(2)
m(1),m(2), . . . , where

F (X), Um(1), F (Um(1)), Um(1),m(2), . . .

is an F -play of G1(Ω,Ω). Since Un(1)
m(1), U

n(2)
m(1),m(2), . . . is an open cover of Y ,

the sequence Um(1), Um(1),m(2), . . . is an ω-cover of X, and F is defeated.

2. Sfin(Ω,Ω) and games. Witold Hurewicz showed in [10] that Sfin(O,O)
is equivalent to a property which was introduced in [16] by Karl Menger. To
distinguish it from another covering property also introduced by Hurewicz,
Sfin(O,O) is called Menger’s property . In that same paper Hurewicz implic-
itly studied the game Gfin(O,O). Rastislav Telgársky later made this game
explicit in [23]. Hurewicz proved in Theorem 10 of [10]:

Theorem 4 (Hurewicz). The space X has property Sfin(O,O) if , and
only if , One does not have a winning strategy in Gfin(O,O).

In Theorem 3.9 of [11] it was shown that a topological space has property
Sfin(Ω,Ω) if, and only if, every finite power of X has the Menger property.
Using this fact, the method of Theorem 2 and Hurewicz’s Theorem, one
proves:
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Theorem 5. A space X has property Sfin(Ω,Ω) if , and only if , One
has no winning strategy in Gfin(Ω,Ω).

By results of [11] and of [20], Sfin(Ω,Ω) is also characterized by a parti-
tion relation reminiscent of the one introduced in [3] (Theorem 2.3(iii)) for
P-point ultrafilters on the set of positive integers. This and several other
characterizations of the property Sfin(Ω,Ω) have been proved by ad hoc
methods. The game Gfin(Ω,Ω) can be used to give a fairly unified treat-
ment of the theory of Sfin(Ω,Ω). As with G1(Ω,Ω), we shall here use it to
analyse Cp(X).

3. Countable tightness. We use the following notation for a free ideal
J of subsets of a set S:

J∗ = {S \X : X ∈ J}, J+ = {X ⊆ S : X 6∈ J}.
Then J∗ is said to be the dual of J , and is a filter. Moreover, J+ is {X ⊆ S :
(∀Y ∈ J∗)(X ∩Y 6= ∅)}. It is also customary to define these two notions for
free filters in the obvious way.

If a space is not first countable then convergence of sequences does not
describe its closure operator. The following notion is central to the several
weakened forms of the sequential description of closures that have been
considered: Since the main difficulties arise at points which are not isolated,
we define this notion only for such points. For a space Y and for a nonisolated
point y ∈ Y , the symbol Ωy denotes the set {A ⊂ Y : y 6∈ A and y ∈ A}.

If Y is a T1-space, then for A ∈ Ωy those subsets of A which are not in
Ωy is a free ideal on A, denoted by Iy,A. Then we have I+

y,A = {B ∈ Ωy :
B ⊆ A}. The dual I∗y,A in A of this ideal is also denoted by Fy,A and is the
trace on A of subsets of Y having y in their interior.

A space has countable tightness if for any subset A and any x ∈ A, there
is a countable B ⊆ A with x ∈ B. If Y has countable tightness we may
at a nonisolated point y restrict our attention to the countable sets in Ωy.
There is a standard way to obtain from a free ideal J on a countable set S
a countably tight space: Let ∞ be a point not in S, and define a topology
τJ on Y := S ∪ {∞} as follows: Every point of S will be isolated, while the
open neighborhoods of∞ are sets of the form {∞}∪S \X, X ∈ J . One can
show that (Y, τJ) is a T4-space; since it is countable, it also has countable
tightness. Moreover, Ω∞ is J+ and J∗ is the filter of neighborhoods of ∞
relativized to S.

In view of the preceding remarks, the study of Ωy at nonisolated points of
a countably tight T1-space encompasses the study on countable sets of free
ideals I, their dual filters I∗, and their complements I+. A lot is known about
these objects, especially in the case where the ideal is maximal. It sometimes
happens that combinatorial properties for filters are equivalent to each other
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when considered for “small” filters, but different from each other for maximal
filters, and sometimes it happens that properties that are equivalent to each
other for maximal filters are for general filters not equivalent to each other.
Examples of these phenomena abound in the literature (see for example [3],
[4] and [9]). It is natural to ask for which filters some of these combinatorial
properties are equivalent. We shall show that for appropriate X, Cp(X) is a
rich source of such filters.

If X is uncountable then Cp(X) is not first countable but it could have
countable tightness. The following consequence of a theorem of Arkhan-
gel’skĭı and Pytkeev is a key tool in the study of countably tight function
spaces. (A proof can be found in [2], Theorem II.1.1.)

Theorem 6 (Arkhangel’skĭı–Pytkeev). For a Tikhonov space X, every
finite power of X has the Lindelöf property if , and only if , Cp(X) has count-
able tightness.

Gerlits and Nagy added a further important characterization in terms of
X of the countable tightness of Cp(X) to this list—see [8]:

Theorem 7 (Gerlits–Nagy). For a Tikhonov space X, every finite power
of X has the Lindelöf property if , and only if , every (open) ω-cover of X
contains a countable subset which is an ω-cover.

We now introduce for topological spaces a series of properties which
are usually studied in connection with ultrafilters and relate these to two
important strengthenings of countable tightness. Let Y be a countably tight
T1-space and let y be a nonisolated point of Y .

Y has property K(Ωy, Ωy) if for every first countable compact Hausdorff
space Z, for each A ∈ Ωy, and for every function f : A → Z, if there is an
a ∈ Z such that for every neighborhood U of a the set {t ∈ A : f(t) ∈ U} ∈
Ωy, then there is a B ⊂ A such that B ∈ Ωy and a is the unique limit point
of the set {f(x) : x ∈ B}. An analogue of this property was introduced near
the bottom of page 386 of [13] as a characterization of P-point ultrafilters
on N.

Following the standard combinatorial definition of a P-point ultrafilter
on N we say that Y has property P(Ωy, Ωy) if there is, for each descending
sequence A1 ⊇ . . . ⊇ An ⊇ . . . in Ωy, an A in Ωy such that for each n, A\An
is finite.

Y has property Q(Ωy, Ωy) if for each countable A ∈ Ωy, for each partition
of A into pairwise disjoint finite sets, there is an element of Ωy which is a
subset of A and meets each of the blocks of the partition in a single point.

The following definitions are inspired by Booth’s characterization of P-
point ultrafilters in Theorem 4.7(iv) and of Ramsey ultrafilters in Theorem
4.9(iii) of [5]: Y has property Blinear(Ωy, Ωy) if for every A ∈ Ωy and for
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every linear order R of A there is a B ⊆ A such that B ∈ Ωy, and the order
type of B relative to R is ω or ω∗. The space has property Btree(Ωy, Ωy) if
for each A ∈ Ωy and for each tree order R of A there is a B ∈ Ωy which is
a chain or an antichain of the tree (A,R).

The following two properties feature in [5], Theorem 4.9(v), in [9], Defi-
nition 1.11 and Corollary 1.15 and the definition after Proposition 6.4, and
in [15], Proposition 0.8: Y has property Indfin(Ωy, Ωy) if there is, for every
descending sequence (An : n ∈ N) in Ωy and each bijective enumeration
(am : m ∈ N) of A1, a function H : N → [N]<ℵ0 such that: if m < n then
supH(m) < supH(n) and |H(m)| < |H(n)|; ⋃∞n=1{aj : j ∈ H(n)} ∈ Ωy; for
each n, {aj : j ∈ H(n+1)} ⊆ AsupH(n). The space has property Ind1(Ωy, Ωy)
if for every descending sequence (An : n ∈ N) in Ωy and for every bijective
enumeration (am : m ∈ N) of A1, there is a strictly increasing function
g : N→ N such that {ag(n) : n ∈ N} ∈ Ωy, and for each n, ag(n+1) ∈ Ag(n).

The next two definitions are also inspired by characterizations of P-point
or Ramsey ultrafilters by various authors—for example in [3] and [4]. Y has
property Cfin(Ωy, Ωy) if, for each A ∈ Ωy and for every function f : A→ ω,
either there is a subset B of A such that B ∈ Ωy and f is finite-to-one on
B, or f is constant on B. The following equivalent form of this assertion is
often used: for each A in Ωy and for each partition A =

⋃∞
n=1An such that

no An is in Ωy, there is a B ⊆ A such that B ∈ Ωy and for each n, B ∩An
is finite.

The space has property C1(Ωy, Ωy) if, for each A ∈ Ωy and for every
function f : A → ω, either there is a subset B of A such that B ∈ Ωy and
f is one-to-one on B, or there is a subset B of A such that B ∈ Ωy and f
is constant on B. This statement in turn is equivalent to the following: for
each A in Ωy and for each partition A =

⋃∞
n=1An such that no An is in Ωy,

there is a B ⊆ A such that B ∈ Ωy and for each n, B ∩An has at most one
element.

4. Countable fan tightness. A topological space Y has countable
fan tightness at y if the selection hypothesis Sfin(Ωy, Ωy) holds. The game
Gfin(Ωy, Ωy) is the countable fan tightness game at y. A space has countable
fan tightness if it has countable fan tightness at each element. Countable
fan tightness implies countable tightness, but not conversely. Moreover, for
a T1-space Y of countable tightness and for a nonisolated point y ∈ Y ,
countable fan tightness at y is equivalent to saying that for every countable
A ∈ Ωy the filter Fy,A satisfies the selection property Sfin(F+

y,A,F+
y,A). Ac-

cordingly, let us say that a free filter F on a countable set S is a fan tight
filter if it has the selection property Sfin(F+,F+).

According to A. Mathias a family A of subsets of a countable set A is a
moderately happy family if there is a free filter F on A such that A = F+,
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and for every descending sequence (An : n ∈ N) of elements of A, there is an
element X of A such that for each n, X \An is finite. He calls the dual ideal
F∗ := {A \X : X ∈ F} a moderately happy ideal ([15], Definitions 9.0 and
9.1); S. Grigorieff calls F∗ a P-point ideal ([9], Definition 1.8 and Proposition
1.9) or a weak p-T -ideal ([9], Definition 6.3 and Proposition 6.4). Thus, if
F is a fan tight filter, then F+ is a moderately happy family and F∗ is a
P-point ideal.

Let P and Q be collections of subsets of the set S and let n and k be
in N. The symbol P → dQe22 means that for each element A of P and for
each function f : [A]2 → {0, 1} there is a B ⊆ A, a finite-to-one function
g with domain B and an i ∈ {0, 1} such that B ∈ Q, and for all b and
c in B, f({b, c}) = i whenever g(b) 6= g(c). We say that B is eventually
homogeneous for f . The symbol P → (Q)nk means that for each element A
of P and for each function f : [A]n → {1, . . . , k} there is a B ⊆ A and an
i ∈ {1, . . . , k} such that B ∈ P, and f has the value i on [B]n.

4.1. Countable fan tightness for Cp(X). In view of the work in [11] the
following theorem of Arkhangel’skĭı [1] connects countable fan tightness in
topological function spaces with the combinatorial property Sfin(Ω,Ω) of
open covers:

Theorem 8 (Arkhangel’skĭı). For a Tikhonov space X, every finite power
of X has Menger’s property if , and only if , Cp(X) has countable fan tight-
ness.

It is well known that the set of irrational numbers does not have Menger’s
property, and that Menger’s property is preserved by continuous images. The
fact that addition is a continuous function from R2 to R implies that if X is
a set of real numbers such that X +X is the set of irrational numbers, then
all finite powers of X have the Lindelöf property but X2 does not have the
Menger property. Then Cp(X) has countable tightness, but does not have
countable fan tightness. Such a set of real numbers exists. To see this, let
(xα : α < 2ℵ0) bijectively enumerate the set of irrational numbers. If y is
a real number and Y ⊆ R is a set of cardinality less than 2ℵ0 , then the set
{t : for some u in Y , y − t + u or t + u is rational or t + y is rational} has
cardinality less than 2ℵ0 . Thus, letting xα play the role of y and letting Y
be the already selected z’s and t’s, we can recursively choose zα and tα,
α < 2ℵ0 , such that:

1. x0 + t0 is irrational, and put z0 = x0 − t0;
2. For 0 < β < 2ℵ0 and for all δ less than β each of tβ + zδ, tβ + tδ,
xβ − tβ + zδ and xβ − tβ + tδ is irrational, and put zβ = xβ − tβ .

Then X = {zβ : β < 2ℵ0} ∪ {tγ : γ < 2ℵ0} is the required set.
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We use the operation Coz(f, δ) := {x ∈ X : |f(x)| < δ} which associates
open subsets of X with f ∈ Cp(X) and positive real numbers δ, to translate
back-and-forth between closure properties of Cp(X) and cover properties
of X. We use o to denote the constant function with value 0 from X to R.
Since Cp(X) is a topological vector space, it is homogeneous. Thus deter-
mining if a point belongs to the closure of a set reduces to determining if
o belongs to the closure of a corresponding set. Similarly, when playing the
countable fan tightness game on Cp(X), we may assume that the point at
which it is played is o. We shall use the following lemmas about Ωo heavily:

Lemma 9. If X is an infinite Tikhonov space, then there is a sequence
(gn : n < ω) in Ωo such that for each n, gn is nonnegative and there is
an x such that gn(x) = 1, and for all m and n, if m 6= n, then for all x,
gm(x) · gn(x) = 0.

Lemma 10. Let A and B be elements of Ωo, let C and D be subsets of
Cp(X)\{o}, let h be an element of Cp(X) and let (gn : n < ω) be a sequence
as in Lemma 9. Then:

(1) {|f | : f ∈ C} ∈ Ωo if , and only if , C ∈ Ωo.
(2) {f + g : f ∈ A and g ∈ B} ∈ Ωo.
(3) {|f |+ h : f ∈ A} ∈ Ωh.
(4) If {a ∈ A : (∃c ∈ C)(|c| ≤ |a|)} ∈ Ωo, then C ∈ Ωo.
(5) If {|f |+ |g| : f ∈ C and g ∈ D} ∈ Ωo, then C and D are in Ωo.
(6) If (cn : n < ω) bijectively enumerates C and {|cn|+gn : n < ω} ∈ Ωo,

then C ∈ Ωo.

Theorem 11. Let X be a Tikhonov space such that Cp(X) has countable
tightness. Then the following are equivalent :

(a) Cp(X) has countable fan tightness.
(b) One does not have a winning strategy in the game Gfin(Ωo, Ωo).
(c) Cp(X) has property Indfin(Ωo, Ωo).
(d) Cp(X) has property K(Ωo, Ωo).
(e) Cp(X) has property P(Ωo, Ωo).
(f) Ωo → dΩoe22.
(g) Cp(X) has property Blinear(Ωo, Ωo).
(h) Cp(X) has property Cfin(Ωo, Ωo).

P r o o f. (a)⇒(b). Since Cp(X) has countable fan tightness, X has prop-
erty Sfin(Ω,Ω). Then One has no winning strategy in Gfin(Ω,Ω), played on
X. We use this information to prove (b).

Fix a well-ordering ≺ of the finite subsets of Cp(X). Let σ be a strategy
for One of Gfin(Ωo, Ωo). Since Cp(X) has countable tightness we may assume
that all One’s moves are countable sets. By (1) of Lemma 10 we may assume
that each element of each move of One is nonnegative. Let (gn : n < ω) be
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a sequence as in Lemma 9. Use σ as follows to define a strategy τ for One
of Gfin(Ω,Ω) on X:

Let (fn : n < ω) bijectively enumerate σ(Cp(X)), the first move of One
of Gfin(Ωo, Ωo). For each n the set Un := Coz(fn+gn; 1/2) is an open proper
(because at some x, fn(x)+gn(x) ≥ 1) subset of X. Since {fn+gn : n < ω} is
in Ωo, τ(X) = {Un : n < ω} is a legitimate move of One of Gfin(Ω,Ω) played
on X: For let F be a finite nonempty subset of X. All but finitely many of
the gn’s are zero on F . Choose n so large that at each x ∈ F , fn(x) < 1/2.
Then F ⊆ Un. For S1 ⊆ τ(X) a move of Two of Gfin(Ω,Ω), let T1 be the
≺-least finite subset of σ(Cp(X)) with S1 = {Coz(fj + gj , 1/2) : fj ∈ T1}.
Then T1 is a legitimate move of Two of Gfin(Ωo, Ωo). Let F1 ⊆ ω be the
finite set with T1 = {fn : n ∈ F1}.

To determine τ(S1) look at the response σ(T1) = (fF1,n : n < ω),
enumerated bijectively, of One of Gfin(Ωo, Ωo). Then for each n, UF1,n :=
Coz(fF1,n + gn, (1/2)2) is an open proper subset of X and τ(S1) = (UF1,n :
n < ω) a valid move of One of Gfin(Ω,Ω) on X. Two of this game responds
with a finite subset S2 of τ(S1). Let T2 be the ≺-least finite subset of σ(T1)
such that S2 = {UF1,n : fF1,n ∈ T1}, and let F2 ⊂ ω be the finite set with
T2 = {fF1,n : n ∈ F2}.

To determine τ(S1, S2) look at the response σ(T1, T2) = (fF1,F2,n :
n < ω), enumerated bijectively, of One of Gfin(Ωo, Ωo). For each n,
UF1,F2,n = Coz(fF1,F2,n + gn, (1/2)3) is an open proper subset of X and
τ(S1, S2) = (UF1,F2,n : n < ω) is a valid move of One of Gfin(Ω,Ω).

Continuing like this we define a strategy τ for One of Gfin(Ω,Ω). But τ
is not a winning strategy. Look at a τ -play τ(X), S1, τ(S1), S2, τ(S1, S2), . . .
which was lost by One of Gfin(Ω,Ω). Corresponding to it we have a σ-
play σ(Cp(X)), T1, σ(T1), T2, σ(T1, T2), . . . of Gfin(Ωo, Ωo). The correspon-
dence between these two plays is such that for a sequence F1, . . . , Fn, . . . of
finite subsets of ω we have, for each n, Tn = {fF1,...,Fn−1,m : m ∈ Fn} and
Sn = {Coz(fF1,...,Fn−1,m + gm, (1/2)n) : fF1,...,Fn−1,m ∈ Tn}.

Since
⋃∞
n=1 Sn is an ω-cover of X it follows that o is in

⋃∞
n=1 Tn. But

then One of Gfin(Ωo, Ωo) lost this play despite following the strategy σ.
(b)⇒(c). Let (An : n ∈ N) be a descending sequence from Ωo and

enumerate A1 bijectively as (an : n ∈ N). Define a strategy σ for One in the
game Gfin(Ωo, Ωo) as follows: One’s first move is σ(Cp(X)) = A1. If Two
responds with the finite subset T1 then One computes x1 := 1+sup{j : aj ∈
T1}, and plays σ(T1) = {aj ∈ Ax1 : j > x1}. If Two now responds with a
finite subset T2 ⊂ σ(T1), then One first computes x2 ≥ 1 + sup{j : aj ∈ T2}
so large that |{j : aj ∈ Ax1 and j ≤ x2}| > x1 and ax2 ∈ Ax1 . Then One
plays σ(T1, T2) := {aj ∈ Ax2 : j > x2}. If Two responds with the finite set
T3 ⊂ σ(T1, T2) then One first computes x3 ≥ 1 + sup{j : aj ∈ T3} so large
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that |{j : aj ∈ Ax2 and j ≤ x3}| > x1 +x2, and ax3 ∈ Ax2 . Then One plays
σ(T1, T2, T3) = {aj ∈ Ax3 : j > x3}, and so on.

By (b) there is a σ-play lost by One, say σ(Cp(X)), T1, σ(T1), T2,
σ(T1, T2), T3, . . . Using the associated sequence x1, x2, x3, . . . , define H :
N → [N]<ℵ0 as follows: H(1) = {1, . . . , x1}, H(2) = {j : aj ∈ Ax1 and j ≤
x2}, H(3) = {j : aj ∈ Ax2 and j ≤ x3}, and so on. Observe that for each
n, supH(n) = xn, |H(1)| = x1 and for n > 1, |H(n)| > x1 + . . . + xn−1.
Moreover, for each n, Tn+1 ⊆ {aj : j ∈ H(n + 1)} ⊂ AsupH(n). Since⋃∞
n=1 Tn ∈ Ωo, H is as required.

(c)⇒(d). Let Z be a first countable compact Hausdorff space and let
A ∈ Ωo and a function f : A→ Z be given such that for an element a of Z,
{x ∈ A : f(x) ∈ U} ∈ Ωo for each neighborhood U of a. Choose a sequence
(Vn : n ∈ N) of nonempty open subsets of Z such that: a is an element of
each, V n ⊂ Vm whenever m < n, for each open set U containing a there is an
n with Vn ⊂ U , and {a} =

⋂
n<∞ Vn. Since Cp(X) has countable tightness

we may assume that A is countable.
Define a descending sequence of elements of Ωo as follows: A1 = {x ∈ A :

f(x) ∈ V1}. For each n put An+1 = {x ∈ An : f(x) ∈ Vn+1}. Enumerate A1

bijectively as (an : n ∈ N). By (c) let H : N → [N]<ℵ0 be a function such
that: for each n, {aj : j ∈ H(n + 1)} ⊂ AsupH(n); for m < n, supH(m) <
supH(n) and |H(m)| < |H(n)|; B =

⋃∞
n=1{aj : j ∈ H(n)} ∈ Ωo. Thus for

each n, for all but finitely many points x from B, f(x) ∈ Vn. So a is the
unique limit point of the values of f on B.

(d)⇒(e). Let (An : n ∈ N) be a descending sequence of subsets of X
such that for each n, o is in An \ An. Define a function f from A1 to the
compact Hausdorff space ω2 so that for each x ∈ A1,

f(x)(n− 1) =
{

1 if x ∈ An,
0 otherwise.

Consider the element h of ω2 which is equal to 1 everywhere. Then for
each m > 0 the set {x ∈ A1 : i ≤ m ⇒ f(x)(i) = 1} contains the set
Am, an element of Ωo; it follows that for each neighborhood U of h the set
{x ∈ A1 : f(x) ∈ U} is in Ωo. Apply (c) to find a subset B of A1 such that
h is the unique limit point of {f(x) : x ∈ B}. Then for each n the set B \An
is finite.

(e)⇒(f). Let A be an element of Ωo and let f : [A]2 → {0, 1} be given.
Since we are assuming that Cp(X) has countable tightness we may assume
that A is countable. Enumerate A bijectively as (an : n < ω).

Recursively choose i0, i1, . . . , in, . . . ∈ {0, 1} and a descending sequence
A0 ⊃ A1 ⊃ . . . ⊃ An ⊃ . . . of subsets of A which are in Ωo such that

1. A0 = {an : n > 1 and f({a0, an}) = i0}, and for each n,
2. An+1 = {am ∈ An : m > n+ 2 and f({an+1, am}) = in+1}.
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Then for each n, an+1 6∈ An. Apply P(Ωo, Ωo) to the sequence of An’s to
find a B ∈ Ωo such that B ⊂ A0 and for each n, B \An is finite.

Write B = B0∪B1, where for j ∈ {0, 1} we have Bj = {an ∈ B : in = j}.
For one of the two values of j we have Bj ∈ Ωo; we may assume that
B0 ∈ Ωo.

List B0 as (anj : j < ω) using the earlier enumeration of A. We may
assume that for all k < m, the largest nj with anj 6∈ Ak is less than the
largest ni with ani 6∈ Am. Define, recursively, sequences j1 < . . . < jk < . . .
of positive integers and C0, C1, . . . , Ck, . . . of finite subsets of B so that:
C0 = {an0}, C1 = {an1 , . . . , anj1}, where j1 ≥ 0 is maximal with anj1 6∈
An0 , and Ck+1 = {anjk+1 , . . . , anjk+1

}, where jk+1 > jk is maximal with
anjk+1

6∈ Anjk .
Then the sequence (Ck : k < ω) is a partition of B into disjoint finite

sets, and at least one of
⋃∞
k=1 C2k or

⋃∞
k=1 C2k−1 is in Ωo. Whichever of

these it is, verifies the claimed partition property.
(f)⇒(g). Let A be an element of Ωo and let R be a linear ordering of A.

Since Cp(X) has countable tightness we may assume that A is countable.
Enumerate A bijectively as (an : n < ω). Then define φ : [A]2 → {0, 1} so
that

φ({am, an}) =
{

0 if m < n and amRan,
1 otherwise.

By (c) we find a set B ⊂ A and an i ∈ {0, 1}, and a finite-to-one function
g : B → ω such that B ∈ Ωo and for all b, c ∈ B we have φ({b, c}) = i
whenever g(b) 6= g(c). If i = 1, then it follows that B has order type ω
relative to R; if i = 0, then B has order type ω∗ relative to R.

(g)⇒(h). Let A ∈ Ωo and a function f : A → ω be given. We may
assume that A is countable. For each n put An = {x ∈ A : f(x) = n}. If
there is an n such that An ∈ Ωo, then we are done. Thus we may assume
that no An is in Ωo. We may also assume that each An is infinite.

Define a linear order R on A so that each An has order type ω∗ relative
to R, and if a ∈ Am and b ∈ An, and m < n, then aR b. Apply g to find a
subset B of A which is an element of Ωo, and which has order type ω or ω∗

relative to R. By the definition of R and the fact that no An is in Ωo while
B is, we see that B has order type ω—as such B meets each An in a finite
set, meaning that f is finite-to-one on B.

(h)⇒(a). Let (An : n < ω) be a sequence of elements of Ωo. Choose a
sequence (gn : n < ω) as in Lemma 9. For each n put Bn = {gn + |a| :
a ∈ An}. Then

⋃∞
n=0Bn is an element of Ωo, but no Bn is an element

of Ωo. We may assume that the Bn’s are pairwise disjoint (else replace each
Bn+1 by Bn+1 \ (B0 ∪ . . . ∪Bn)).

Apply h to choose for each n a finite subset Fn ⊂ Bn such that
⋃∞
n=0 Fn

∈ Ωo. For each n choose a finite set Cn ⊂ An such that Fn = {gn + |g| :
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g ∈ Cn}. By (1) of Lemma 10 and the properties of the gn’s,
⋃∞
n=0 Cn is in

Ωo. This is seen as follows: Suppose on the contrary that
⋃∞
n=0 Cn is not

in Ωo, and let U be a neighborhood of o disjoint from
⋃∞
n=0 Cn. We may

assume that G is a finite subset of X and ε is a positive real such that U is
{f ∈ Cp(X) : for each x in G, |f(x)| < ε}. Thus, for each n, for each x ∈ G,
and for each g ∈ Cn, |g(x)| ≥ ε. But each gn is nonnegative, so that for each
g ∈ Cn, gn(x) + |g(x)| ≥ ε. Thus U also witnesses that

⋃∞
n=0 Fn is not in

Ωo, a contradiction.

4.2. Countable fan tightness for T1-spaces. The proofs above show that
if Y has countable tightness, then the following seven implications hold at
any nonisolated y ∈ Y :

1. One has no winning strategy in Gfin(Ωy, Ωy)⇒ Sfin(Ωy, Ωy);
2. Sfin(Ωy, Ωy)⇒ Indfin(Ωy, Ωy);
3. Indfin(Ωy, Ωy)⇒ K(Ωy, Ωy);
4. K(Ωy, Ωy)⇒ P(Ωy, Ωy);
5. P(Ωy, Ωy)⇒ Ωy → dΩye22;
6. Ωy → dΩye22 ⇒ Blinear(Ωy, Ωy);
7. Blinear(Ωy, Ωy)⇒ Cfin(Ωy, Ωy).

One can also show that for countably tight spaces the converses of the
implications in 2, 3 and 4 hold while the implications in 1 (∗), 5 and 7 are
not reversible.

For 5: We give an example of the form (Y, τJ1), where J1 is a free ideal
on N. First, choose a partition (Sn : n ∈ N) of N such that each Sn is
infinite. Define J1 = {A ⊂ N : (∀n)(A ∩ Sn is finite)}. As the sequence
(An : n ∈ N), where for each n, An =

⋃
m≥n Sm, shows, P(Ω∞, Ω∞) fails.

Ramsey’s theorem implies that Ω∞ → (Ω∞)2
2 holds. (This example was

given in Proposition 9 of the Appendix of [9].)
For 7: Let S be Q and let J2 be {A ⊂ Q : A nowhere dense}. Then

every element of Ω∞ is somewhere dense in Q, whence B(Ω∞, Ω∞) fails.
But Cfin(Ω∞, Ω∞) holds. To see this, let A be an element of Ω∞. We may
assume that A is a dense subset of the interval (a, b). Write A =

⋃∞
n=1 Sn,

where no Sn is in Ω∞. Also, let (In : n ∈ N) bijectively enumerate a basis for
the inherited topology of (a, b). Then each S(In) = {m : Sm∩(In\

⋃
j<m Sj)

6= ∅} is infinite. For each n choose an infinite set Bn ⊂ S(In) such that the
Bn’s are pairwise disjoint. Choose an increasing sequence of kn’s such that
for each n, kn ∈ Bn. Then for each n, select a point xkn ∈ Skn ∩ (In \⋃
j<kn

Sj). The set {xkn : n ∈ N} is in Ω∞ and has at most finitely many
points in common with each Sn.

(∗) An example for 1 will be discussed below when we treat countable strong fan
tightness.
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Problem 1. Find a space of countable tightness which illustrates that
the implication in 6 is not reversible.

It is not clear for which spaces Y of countable tightness a property from
the list

{Ωy → dΩye22; Blinear(Ωy, Ωy); Cfin(Ωy, Ωy); Sfin(Ωy, Ωy)}
determines that One has no winning strategy in Gfin(Ωy, Ωy). Some notation
is needed to formulate a partial result in this regard. The minimal cardinality
of a neighborhood base for the point y of Y is denoted by χ(Y, y). For
functions f and g from N to N, f ≺ g denotes that limn→∞(g(n) − f(n))
=∞. Then ≺ defines a partial ordering. The symbol d denotes the cofinality
of this partially ordered set.

Theorem 11B. For an infinite cardinal number κ the following are equiv-
alent :

(1) κ < d.
(2) For each T1-space X of countable tightness and for each y ∈ X such

that χ(X, y) = κ, One has no winning strategy in Gfin(Ωy, Ωy).
(3) For each T1-space X of countable tightness, if y is an element of X

such that χ(X, y) = κ, then X has countable fan tightness at y.
(4) For each T1-space X of countable tightness, if y is an element of X

such that χ(X, y) = κ, then X has property Indfin(Ωy, Ωy) at y.
(5) For each T1-space X of countable tightness, if y is an element of X

such that χ(X, y) = κ, then X has property K(Ωy, Ωy) at y.
(6) For each T1-space X of countable tightness and for each y ∈ X with

χ(X, y) = κ, X has property P(Ωy, Ωy).
(7) For each T1-space X of countable tightness and for each y ∈ X such

that χ(X, y) = κ, Ωy → dΩye22 holds.
(8) For each T1-space X of countable tightness and for each y ∈ X such

that χ(X, y) = κ, X has property Blinear(Ωy, Ωy).
(9) For each T1-space X of countable tightness and for each y ∈ X with

χ(X, y) = κ, X has property Cfin(Ωy, Ωy).

P r o o f. We prove (1)⇒(2) and (9)⇒(1).
(1)⇒(2). Let X be a T1-space of countable tightness and let y ∈ X be a

point with χ(X, y) = κ. Let B be a neighborhood basis of cardinality κ for y.
Let σ be a strategy for One in Gfin(Ωy, Ωy). Since X has countable tightness
we may assume that in each inning σ calls on One to play a countable set.

Define for each finite sequence τ of positive integers a point aτ in X
as follows: (an : n ∈ N) bijectively enumerates One’s first move σ(∅). For
the response {aj : j ≤ n1} of Two, (an1,n : n ∈ N) bijectively enumerates
One’s move σ({aj : j ≤ n1}). For the response {an1,j : j ≤ n2} of Two,
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(an1,n2,n : n ∈ N) bijectively enumerates One’s move σ({aj : j ≤ n1}, {an1,j :
j ≤ n2}), and so on.

Define for each B in B an increasing function fB recursively as follows:

1. fB(1) = min{n : n > 1 and an ∈ B};
2. fB(n + 1) is the least m > fB(n) such that for each finite sequence
τ of length at most fB(n) of positive integers not exceeding fB(n),
there is a j ≤ m such that aτ_j ∈ B.

For a function f from N to N let f1(k) denote f(k), and for m ∈ N let
fm+1(k) denote f(fm(k)).

From the properties of the fB ’s we see that for all n, fB(n) ≤ fnB(1).
For each B define gB so that gB(n) = fnB(1). The family {gB : B ∈ B}
is by cardinality considerations not cofinal in the order ≺. Thus choose an
increasing function g such that g(1) > 2 and for each B the set {n : gB(n) <
g(n)} is infinite. For notational convenience let T1 denote the set {aj : j ≤
g(1)} and for k > 1 let Tk denote the set {ag1(1),...,gk−1(1),j : j ≤ gk(1)}.
Then

σ(∅), T1, σ(T1), T2, σ(T1, T2), . . .

is a play of the game Gfin(Ωy, Ωy) during which One used the strategy σ.
To see that Two won this play, it suffices to see that for each B ∈ B there
is an m with B ∩ Tm nonempty.

Let B ∈ B be given. Since for each n, g(n) < gn(1), the set {n : gB(n) <
gn(1)} is infinite. Let m be the least element of this set. If m is 1, then
fB(1) < g(1) and we see that B ∩ T1 is nonempty. So, assume that m is
larger than 1. Then we have:

gB(m) < gm(1) but gm−1(1) ≤ gB(m− 1) = fm−1
B (1).

Since m − 1 < fm−1
B (1) the sequence (g1(1), . . . , gm−1(1)) is one of the

sequences considered in the definition of fB(fm−2
B (1) + 1). Consequently,

we have a j ≤ fB(fm−2
B (1) + 1) such that ag1(1),...,gm−1(1),j ∈ B. Then

B ∩ Tm 6= ∅, since

fB(fm−2
B (1) + 1) ≤ fB(fm−1

B (1)) = fmB (1) < gm(1).

(9)⇒(1). Let X be a set of real numbers of cardinality κ. Then
χ(Cp(X),o) = |X| = κ. By (9), Cp(X) has property Cfin(Ωo, Ωo). By The-
orem 11, Cp(X) has countable fan tightness. By Arkhangel’skĭı’s theorem
and Theorem 3.9 of [11], X has property Sfin(Ω,Ω). We have shown that
each set of real numbers of cardinality κ has property Sfin(Ω,Ω). But then
by Theorem 4.6 of [11], κ < d.

The position of the universal quantifier in the clauses of Theorem 11B
is important: One cannot show that if at a point y of a space Y one of
the conclusions of a clause of Theorem 11B is true, then χ(Y, y) < d. To
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see this, consider the closed unit interval, denoted by X. Since it has prop-
erty Sfin(Ω,Ω), it follows that Cp(X) has countable fan tightness. By The-
orem 11 each of the conclusions of Theorem 11B holds for Ωo. However,
χ(Cp(X),o) = |X| = 2ℵ0 .

The analogies between the properties of countably fan tight Cp(X) and of
P-point ultrafilters raise the question if the existence of an uncountable setX
of real numbers for which Cp(X) is countably fan tight implies the existence
of a P-point ultrafilter. This is not so: There is always an uncountable set X
of real numbers with property Sfin(Ω,Ω) (even one that is not σ-compact,
by Section 5 of [11]): Thus by Arkhangel’skĭı’s theorem, there is always an
uncountable set of real numbers for which Cp(X) is countably fan tight.
But by Theorem VI.4.8 of [22] it is consistent that there is no P-point ultra-
filter.

5. Countable strong fan tightness. A topological space has countable
strong fan tightness at the point y if S1(Ωy, Ωy) holds. The game G1(Ωy, Ωy)
is also called the strong fan tightness game at y. A space has countable strong
fan tightness if it has this property at each point. Every space which has
countable strong fan tightness has countable fan tightness.

For a T1-space Y of countable tightness and for a nonisolated point
y, strong countable fan tightness at y is equivalent to saying that for ev-
ery countable A ∈ Ωy the filter Fy,A satisfies the selection hypothesis
S1(F+

y,A,F+
y,A). In general, let us say that a free filter F on N is a strong fan

tight filter if it satisfies S1(F+,F+).
According to Mathias a family A of infinite subsets of N is a happy

family if there is a free filter F such that A = F+, and for every descending
sequence (An : n ∈ N) of elements of A there is an X ∈ A such that for each
n, X \ {1, . . . , n} ⊆ An ([15], Definition 0.1). Grigorieff calls the dual ideal
F∗ of F a weak T -ideal ([9], Definition 1.2), a selective ideal (Definition
1.7) or an inductive ideal (Definition 1.11)—see Corollary 1.15 of [9] and
Proposition 0.8 of [15]. Thus, if F is a strong fan tight filter, then F+ is a
happy family and F∗ is an inductive ideal.

In the following section we shall also include a result about the square
bracket partition relation which is defined as follows: Let A and B be families
of subsets of S, and let k, l and m be in N. Then A → [B]nk/≤l denotes the
statement that for each A ∈ A and for each function f : [A]n → {1, . . . , k}
there is a subset B of A in B and a subset J of {1, . . . , k} of cardinality
at most l such that all values of f on [B]n lie in J . The negation of this
statement is denoted by A 6→ [B]nk/≤l. When l is k − 1 it is customary to
leave off all reference to l and to simply write A → [B]nk and A 6→ [B]nk for
these two statements. This partition relation was introduced and extensively
studied for cardinal numbers in [6].
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5.1. Countable strong fan tightness for Cp(X). In [19] Sakai proved:

Theorem 12 (Sakai). For each Tikhonov space X the following are equiv-
alent :

(1) Cp(X) has countable strong fan tightness.
(2) Each finite power of X has Rothberger’s property C′′.
(3) X has property S1(Ω,Ω).

By Sakai’s theorem, Arkhangel’skĭı’s theorem and Theorem 2.3 from
[11] there is a set of real numbers (for example, the Cantor set) which has
property Sfin(Ω,Ω) but not property S1(Ω,Ω). Consequently, there is a set
X of real numbers such that Cp(X) has countable fan tightness, but does
not have countable strong fan tightness. The following characterizations of
countable strong fan tightness give mutatis mutandis characterizations of
property S1(Ω,Ω).

Theorem 13. Let X be a Tikhonov space such that Cp(X) has countable
tightness. Then the following are equivalent :

(a) Cp(X) has countable strong fan tightness.
(b) One does not have a winning strategy in G1(Ωo, Ωo).
(c) Cp(X) has property Ind1(Ωy, Ωy).
(d) Cp(X) has both properties P(Ωo, Ωo) and Q(Ωo, Ωo).
(e) For all n and k in N, Cp(X) satisfies Ωo → (Ωo)nk .
(f) Cp(X) satisfies Btree(Ωo, Ωo).
(g) Cp(X) satisfies C1(Ωo, Ωo).
(h) Cp(X) satisfies Ωo → [Ωo]23.

P r o o f. (a)⇒(b). Fix a sequence (gn : n < ω) as in Lemma 9. Let σ be
a strategy for One. Since Cp(X) has countable tightness, we may assume
that in each inning One chooses a countable set.

We define a strategy τ for One in G1(Ω,Ω) played on X: Look at One’s
first move, σ(Cp(X)), and enumerate it as (f(n) : n < ω). For each n define
U(n) = Coz(|f(n)| + gn, 1/2). Then define τ(X) = {U(n) : n < ω}. This is
an ω-cover of X. Two of G1(Ω,Ω) responds by selecting a U(n1). This is
translated back as the move f(n1) for Two of G1(Ωo, Ωo). Apply σ to find
σ(f(n1)) = (f(n1,m) : m < ω). Then define τ(U(n1)) to be (U(n1,m) : m < ω),
where U(n1,m) = Coz(|f(n1,m)|+ |gm|, (1/2)2). To this Two of the G1(Ω,Ω)-
game responds with a set U(n1,n2), which is translated back as the move
f(n1,n2) for Two of the game G1(Ωo, Ωo), and so on.

By Theorem 2, τ is not a winning strategy for One of G1(Ω,Ω) on X.
Let τ(X), U(n1), τ(U(n1)), U(n1,n2), . . . be a τ -play which is lost by One. Look
at the corresponding σ-play σ(Cp(X)), f(n1), σ(f(n1)), f(n1,n2), . . . Since the
set {U(n1,...,nk) : k ∈ N} is an ω-cover, o is in the closure of the sequence of
f(n1,...,nk)’s. Thus One of G1(Ωo, Ωo) lost this σ-play.
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(b)⇒(c). Let (An : n ∈ N) be a descending sequence of elements of Ωo,
and let (an : n ∈ N) be a bijective enumeration of A1. Define a strategy σ for
One in the game G1(Ωo, Ωo) as follows: One’s first move is σ(Cp(X)) = A1.
If Two responds with an1 , then One plays σ(an1) = An1 \ {aj : j ≤ n1}.
If Two now responds with an2 ∈ σ(an1), then we know that n1 < n2; One’s
next move is σ(an1 , an2) = An2 \ {aj : j ≤ n1 + n2}, and so on.

By (b) we find a play σ(Cp(X)), an1 , σ(an1), an2 , σ(an1 , an2), . . . lost by
One. For each k put g(k) = ank+1 . Then g is as required.

(c)⇒(d). It is clear that Ind1(Ωo, Ωo) implies property P(Ωo, Ωo). To
see that it implies property Q(Ωo, Ωo), let A be an element of Ωo which is
partitioned into the pairwise disjoint nonempty finite subsets (Fn : n ∈ N).
Define an enumeration (an : n ∈ N) of A such that if ai ∈ Fn and aj ∈ Fm,
and if n < m, then i < j. It follows that if an ∈ Fm, then m ≤ n.

For each m set Am =
⋃
n≥m Fn. Now apply (c) to find a strictly increas-

ing function g such that B := {ag(n) : n ∈ N} ∈ Ωo, and for each n,
ag(n+1) ∈ Ag(n). For each n choose f(n) such that ag(n) ∈ Ff(n). By the way
we set things up we have, for each n, g(n) < f(n) ≤ g(n + 1). But then B
meets each Fn in at most one point.

(d)⇒(e). We give an argument for Ωo → (Ωo)2
2; the proof for higher

values of the superscript and the subscript then follows a standard induction
argument.

Let A ∈ Ωo and a coloring f : [A]2 → {0, 1} be given. We may assume
that A is countable, and enumerate it bijectively as (an : n < ω). Put
A−1 = A and define a descending sequence A0, A1, . . . of elements of Ωo
and a sequence i0, i1, . . . of elements of {0, 1} as follows:

Choose i0 so that the set {am : f({a0, am}) = i0} is in Ωo. Suppose that
n ≥ 0 is given and that A0, . . . , An and i0, . . . , in have been defined such
that for each j ≤ n, Aj = {am ∈ Aj−1 : m > j and f({aj , am}) = ij} and
Aj ∈ Ωo.

Then choose in+1 such that An+1 = {am ∈ An : m > n + 1 and
f({an+1, am}) = im+1} is in Ωo. First apply property P(Ωo, Ωo) to the
sequence (An : n < ω) to find a set B ∈ Ωo such that B ⊆ A and for each
n, B \An is finite. For each n put Bn = B ∩ (An \An+1). Then each Bn is a
finite set. Choose a sequence m0 < m1 < . . . < mk < . . . of positive integers
such that for each k, if j ≥ mk+1, then for each an ∈

⋃
t≤mk Bt, Bj ⊂ An.

For each k put Sk =
⋃
mk≤j<mk+1

Bj . Then each Sk is a finite set and the
union of the Sk’s is in Ωo. At least one of the two sets

⋃
k even Sk or

⋃
k odd Sk

is in Ωo. We may assume it is the former. Apply property Q(Ωo, Ωo): We
find a set B ⊂ A such that B is in Ωo, B ∩Sk 6= ∅ implies k is even, and for
each k, |B∩Sk| ≤ 1. By the construction of the Sk’s, B is end-homogeneous
for f (in the order imposed by the original enumeration of A). Thus, for
each an ∈ B, if am ∈ B and n < m, then f({an, am}) = in. Now partition
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B into two sets B0 and B1, where we put an ∈ Bj if in = j. Each of these
two sets is homogeneous for the coloring f , and one of these is in Ωo.

(e)⇒(f). Let R be a tree relation on A ∈ Ωo. Define f : [A]2 → {0, 1} so
that

f({a, b}) =
{

0 if {a, b} is an antichain,
1 otherwise.

From (e) we find a subset B of A such that f is constant on [B]2, and
B ∈ Ωo. If f is constant of value 0, then B is an antichain; in the other case
it is a chain.

(f)⇒(g). Let an A ∈ Ωo as well as a function f : A → ω be given. We
may assume that A is countable. For each n set An = {a ∈ A : f(a) = n}. If
for some n, An is in Ωo, we are done. Otherwise we define a tree ordering R
on A such that the only branches are the An’s. No subset of A which is in
Ωy is a chain, so that by (f) there is a subset B of A which is an antichain
and in Ωy. Then f is one-to-one on B.

(g)⇒(h). The proof starts like that of (d)⇒(e), with one small innovation
near the end. Let A ∈ Ωo be given, as well as f : [A]2 → {1, 2, 3}. We may
assume that each element of A is nonnegative and that A is countable and
enumerate it bijectively as (an : n ∈ N).

First select a descending sequence A1 ⊃ A2 ⊃ . . . in Ωo along with a
sequence l1, l2, . . . with terms in {1, 2, 3} such that each An ∈ Ωo, and for
am ∈ An, m > n and f({an, am}) = ln. Let (gn : n ∈ N) be a sequence
as in Lemma 9. For each n put Bn = {am + gn : am ∈ An \ An+1}. Then⋃∞
n=1Bn ∈ Ωo, while no Bn is in Ωo. Applying g we choose for each n an

amn + gn ∈ Bn such that the set {amn + gn : n ∈ N} is in Ωo. Consequently,
the set {amn : n ∈ N} is in Ωo. Next select n1 < . . . < nk < . . . such that for
all i ≤ n1 we have mi ≤ mn1 and for all j ≥ n2 we have amj ∈ Amn1

, and for
all i ≤ nk we have mi ≤ mnk and for all j ≥ nk+1, amj ∈ Amnk . Put S1 =
{ami : i ≤ n1}, and for all k, Sk+1 = {ami : nk < i ≤ nk+1}\ (S1∪ . . .∪Sk).
One (or both) of

⋃∞
i=1 S2i−1 or

⋃∞
i=1 S2i is in Ωo; we may assume it is the

latter.
Since each S2i is finite, it is not in Ωo. Yet,

⋃∞
i=1 S2i ∈ Ωo. Apply g to

the sequence of S2i’s: in each we pick an element amji such that {amji :
i ∈ N} ∈ Ωo. Since now for i < r we have mji < mjr and amjr ∈ Amji , we
see that the sequence (amji : i ∈ N) is end-homogeneous for the partition f .
Partitioning this sequence into three classes according to the values of the
lmji ’s, we find that one (or more) of these three classes is in Ωo—whichever
it is, is in fact a homogeneous set for the coloring f .

(h)⇒(a). One could argue as follows: Let (An : n ∈ N) be a sequence from
Ωo. Enumerate each An bijectively as (anm : m ∈ N). Let (gm : m ∈ N) be a
sequence of functions as in Lemma 9. By Lemma 10(1) we may assume that
each anm is a nonnegative function. Define B to be the set (gm+amn +ank : m <
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n < k ∈ N) listed with the triples (m,n, k) in lexicographically increasing
order, and without repetitions. Then B is in Ωo. It is well known that if
A → [A]23, then for all k ∈ N, A → [A]2k/≤2.

Define a partition f : [B]2 → {0, 1, 2, 3, 4} as follows (now (m1, n1, k1)
lexicographically precedes (m2, n2, k2)):

f({gm1 + am1
n1

+ an1
k1
, gm2 + am2

n2
+ an2

k2
}) =





0 if m1 = m2 and n1 = n2,
1 if m1 = m2 and n1 < n2,
2 if m1 < m2 and n1 = n2,
3 if m1 < m2 and n1 < n2,
4 if m1 < m2 and n1 > n2.

Apply (h) to find a subset C of B which is in Ωo such that on [C]2,
f has at most two values. Since for each x and m < n < k we have
max{gm(x), amn (x), ank (x)} ≤ gm(x) + amn (x) + ank (x), we see that each
of the sets {gm : (∃k)(∃n)(k > n > m and gm + amn + ank ∈ C)}, {amn :
(∃k > n)(gm + amn + ank ∈ C)} and {ank : (∃m)(gm + amn + ank ∈ C)} is
in Ωo.

Because of the properties of the gm’s there are infinitely many different
values of m for which gm +amn +ank is in C. This means that f ’s value-set is
not contained in {0, 1}. Moreover, C cannot contain an infinite path whose
consecutive terms are 4-colored, since this would mean there is an infinite
descending sequence in N. This rules out value-sets {0, 4} and {1, 4} for f on
C. In each of the remaining cases (the case {1, 2} needs some caution) one
finds for each Aj an xj ∈ Aj such that {xj : j ∈ N} is in Ωo by augmenting
an appropriate subset of the set of middle terms of elements of C, or the set
of last terms.

An analogue in the S1(Ω,Ω)-context of (a)⇔(h) is proved in [21]. Analo-
gies between the properties of countably strong fan tight Cp(X) and of Ram-
sey ultrafilters might suggest that the existence of an uncountable set X of
real numbers for which Cp(X) is countably fan tight implies the existence
of a Ramsey ultrafilter. This is not true. It was shown in Section 5 of [11]
that an assumption weaker than d = ℵ1 implies there is an uncountable set
X of real numbers with property S1(Ω,Ω): Applying Sakai’s theorem, there
is then an uncountable set of real numbers for which Cp(X) is countably
strong fan tight. But by Theorem 5.1 of [13] it is consistent that d = ℵ1 and
there are no Ramsey ultrafilters. The model given for Theorem VI.4.8 of [22]
which shows that it is consistent that there is no P-point ultrafilter satisfies
2ℵ0 = ℵ2. But any model with no P-point ultrafilters and with 2ℵ0 = ℵ2

must have d = ℵ1, because in [12] Ketonen showed that if d = 2ℵ0 , then
there are P-point ultrafilters. Thus the existence of an uncountable set of
real numbers with property S1(Ω,Ω) does not even imply the existence of
P-point ultrafilters.
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The fact that the partition relation in (h) characterizes countable strong
fan tightness for Cp(X), but does not characterize Ramseyness of ultrafilters
(a result of Blass’ from [4]), is another indication that the relationship be-
tween countable strong fan tightness of spaces and Ramseyness of ultrafilters
is not very close. It also indicates, as we shall see below, that Theorem 13 is
more a theorem about the special countably tight spaces Cp(X) rather than
about general countably tight spaces than one might at first expect.

5.2. Countable strong fan tightness in T1-spaces. If Y has countable
tightness, then the following six implications hold at the nonisolated
point y:

1. One has no winning strategy in G1(Ωy, Ωy)⇒ Y has countable strong
fan tightness at y.

2. Y has countable strong fan tightness at y ⇒ Ind1(Ωy, Ωy) ([9], Propo-
sition 1.12).

3. Ind1(Ωy, Ωy)⇒ P(Ωy, Ωy) and Q(Ωy, Ωy).
4. P(Ωy, Ωy) and Q(Ωy, Ωy) ⇒ for all n and k, Ωy → (Ωy)nk .
5. For each n and k Ωy → (Ωy)nk ⇒ C1(Ωy, Ωy).
6. For each n and k Ωy → (Ωy)nk ⇒ Ωy → [Ωy]23.

One can show that for countably tight spaces the converses of the impli-
cations in 2 and 3 hold while the implications in 1, 4 and 6 are not re-
versible. Moreover, for countably tight spaces the implication Ωy → [Ωy]23 →
C1(Ωy, Ωy) is not in general provable.

For 1: The referee found the following example, and kindly permitted me
to include it in this paper. The example is of the form (Y, τJ3). Moreover,
the example is a countably strong fan tight space where One does not even
have a winning strategy in the game Gfin(Ω∞, Ω∞). This illustrates for both
the fan tightness game and the strong fan tightness game that in general
the game does not characterize the selection property. Incidentally, this also
illustrates that fan tight filters on N or strong fan tight filters on N are
not P+-filters or +-Ramsey filters respectively, as introduced by Laflamme
in [14].

The idea is to first define a strategy for One, from it define the ap-
propriate ideal which makes this strategy a winning strategy, and then to
show that the resulting space is countably strong fan tight at ∞. First, let
(Yn : n ∈ N) be a partition of N into pairwise disjoint infinite sets. The
strategy F is constructed such that:

1. For each finite sequence (T1, . . . , Tk) of finite nonempty subsets of N,
each a subset of a different Yt, there is an i with F (T1, . . . , Tk) = Yi.

2. For each i there is a unique sequence (T1, . . . , Tk) of finite subsets of
N with:
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(a) each Tj a nonempty subset of some Ykj , kj 6= i,
(b) if j 6= m, then kj 6= km, and
(c) F (T1, . . . , Tk) = Yi.

Since One may always replace a move (such as the empty set) of Two
by a set properly containing it and pretend that this was actually Two’s
move, there is no loss in generality when we require that the domain of F be
finite sequences whose terms are nonempty. One’s first move will be F ({1}),
and if by inning n, Two has played T1, . . . , Tn, then One’s (n+ 1)th move
will be F ({1}, T1, . . . , Tn).

For every play P := O1, T1, O2, T2, . . . during which One used F , we
put S(P ) =

⋃
n∈N Tn. Let J3 be the collection of X ⊆ N such that there

are finitely many plays P1, . . . , Pk during which One used F , such that
X ⊆ ⋃j≤n S(Pj). One must check that J3 is indeed a proper free ideal. The
effect of 2 is that during any play, Two never gets to choose a finite subset
from any Yi from which a finite subset was chosen during an earlier inning;
this implies properness of J3. Freeness is also easily checked.

By the definition of J3, F is a winning strategy for One in Gfin(Ω∞, Ω∞).
To see that the space (Y, τJ3) has countable strong fan tightness, consider a
sequence (An : n ∈ N) from Ω∞. Then no An is contained in J3. To find a
selector for the An’s, proceed as follows: First, for each j ∈ Y1 choose an aj ∈
Aj . If the set {aj : j ∈ Y1} is not in J3, we are done. Else, there are finitely
many F -plays P1, . . . , Pn such that {aj : j ∈ Y1} ⊆ S(P1) ∪ . . . ∪ S(Pn).
Since S(P1) ∪ . . . ∪ S(Pn) meets each Yj in a finite set, we then proceed to
choose for each j ∈ Y2 an aj ∈ Aj but outside S(P1) ∪ . . . ∪ S(Pn), and
so on.

For 4 the example (Y, τJ1) given after Theorem 11 illustrates the point.
For 6, Blass has used the Continuum Hypothesis in [4] to construct a

weakly Ramsey ultrafilter which is not a Ramsey ultrafilter, i.e., an ultrafil-
ter U on N such that U → [U ]23, but U does not satisfy U → (U)2

3. Let J be
the set {N\X : X ∈ U}. Then the topology τJ on Y = N∪{∞} is such that
(Y, τJ) satisfies the following: for all k, Ω∞ → [Ω∞]2k/≤2, but Ω∞ 6→ (Ω∞)2

3.
Blass showed that a weakly Ramsey ultrafilter is necessarily a P-point one.
Thus, if C1(Ω∞, Ω∞) were true, this would imply that U is also a Q-point
ultrafilter, hence a Ramsey ultrafilter, contrary to its being only a weakly
Ramsey ultrafilter.

Problem 2. Find a countably tight space which illustrates that the im-
plication in 5 is not reversible.

Problem 3. Find a countably tight space which has property C1(Ωy, Ωy),
but not property Ωy → [Ωy]23.
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It is not clear for which spaces Y of countable tightness a property from
the list {Ωy → (Ωy)2

2,C1(Ωy, Ωy),S1(Ωy, Ωy), Ωy → [Ωy]23} implies that
One has no winning strategy in G1(Ωy, Ωy). Here is a partial result in this
direction. Let cov(M) denote the minimal number of first category sets
needed to cover R.

Theorem 13B. For an infinite cardinal κ the following are equivalent :

(1) κ < cov(M).
(2) For each T1-space X of countable tightness and for each y ∈ X such

that χ(X, y) = κ, One has no winning strategy in G1(Ωy, Ωy).
(3) For each T1-space X of countable tightness, if y is an element of

X such that χ(X, y) = κ, then X has countable strong fan tightness
at y.

(4) For each T1-space X of countable tightness, if y is an element of X
such that χ(X, y) = κ, then X has property Ind1(Ωy, Ωy).

(5) For each T1-space X of countable tightness and for each y ∈ X with
χ(X, y) = κ, X has properties P(Ωy, Ωy) and Q(Ωy, Ωy).

(6) For each T1-space X of countable tightness and for each y ∈ X such
that χ(X, y) = κ, for all k and n, Ωy → (Ωy)nk holds.

(7) For each T1-space X of countable tightness and for each y ∈ X with
χ(X, y) = κ, X has the property C1(Ωy, Ωy).

(8) For each T1-space X of countable tightness and for each y ∈ X with
χ(X, y) = κ, X has the property Ωy → [Ωy]23.

P r o o f. We prove (1)⇒(2), (7)⇒(1) and (8)⇒(1).
(1)⇒(2). Let X be a T1-space of countable tightness and let y be an

element of X such that χ(X, y) = κ. Fix a neighborhood basis B of y of
minimal cardinality and let σ be a strategy for One in G1(Ωy, Ωy).

Define a family of points aτ , τ a finite sequence of positive integers, as
follows: (an : n ∈ N) is a bijective enumeration of One’s first move, σ(∅).
For the move an1 by Two, (an1,n : n ∈ N) bijectively enumerates One’s
move σ(an1). For the move an1,n2 by Two, (an1,n2,n : n ∈ N) bijectively
enumerates One’s move σ(an1 , an1,n2), and so on.

For B in B, define SB = {f : for each n, af(1),...,f(n) 6∈ B}. Then each
SB is closed and nowhere dense. By (1) there is an f not in any SB ;
fix one, say f . Then One loses the play σ(∅), af(1), σ(af(1)), af(1),f(2),
σ(af(1), af(1),f(2)), . . .

(7)⇒(1). Let X be a set of real numbers of cardinality κ. Then
χ(Cp(X),o) = |X| = κ, and so by (7), Cp(X) has property C1(Ωo, Ωo).
By Theorem 13 this implies that Cp(X) has countable strong fan tightness.
By Sakai’s theorem X has property S1(Ω,Ω). We have shown that (7) im-
plies that every set of real numbers of cardinality κ has property S1(Ω,Ω).
By Theorem 4.8 of [11], κ < cov(M).
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(8)⇒(1). Let X be a set of real numbers of cardinality κ. Then in the
T1-space Cp(X) we have χ(Cp(X),o) = κ. By (8), Cp(X) satisfies Ωo →
[Ωo]23. By Theorem 13 this implies that Cp(X) has countable strong fan
tightness. By Sakai’s theorem X has property S1(Ω,Ω). We have shown
that (8) implies that every set of real numbers of cardinality κ has property
S1(Ω,Ω). By Theorem 4.8 of [11], κ < cov(M).
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