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ABSTRACT 

The inherent intermittency of the two fastest growing renewable energy sources, wind 
and solar, presents a significant barrier to widespread penetration and replacement of 
fossil-fuel sourced baseload generation.  These intermittencies range from short term 
ramp events experienced by wind farms to the diurnal fluctuation of solar installations. 
Traditionally, grid operators have had very little control over demand and full control 
over supply. With the increase in wind and solar based generation onto an electric grid 
comes a decrease in control of supply. Grid operators are required to have a certain 
amount of spinning reserve ready to respond when wind or solar resources suddenly 
decrease. One solution to this problem of grid integration is the use of energy storage. 
While traditionally used as merchant facilities to buy and sell energy on the spot market, 
storage is actively being investigated as a means of enabling renewable energy sources to 
achieve widespread penetration onto national grids. Pumped hydro storage has been used 
extensively as a means of large scale energy storage. Standard compressed air energy 
storage (CAES), while only two installations currently exist, shows potential to store 
large amounts of energy. Both traditional technologies have drawbacks; they are site 
specific, and in CAES, require natural gas combustion.  
 
In this thesis, a short-to-medium term energy storage system is presented. While similar 
to the CAES technique in that compressed air is still used for energy storage, it differs as 
an incompressible liquid is the working fluid in the turbine, thus eliminating the need for 
supplementary combustion when the energy is recovered. Energy is stored above ground 
in pressure tanks until power is needed; at this time, it exerts a force on the 
incompressible fluid, pushing it through a hydroturbine. This family of approaches 
combines the best concepts attributed with pumped hydro storage and CAES in a system 
that is not site-specific, does not require natural gas and has the potential for being very 
efficient. 
 
Thermodynamic analyses were performed to determine energy flows into and out of the 
system. The results from that analysis were used to verify a system model created from 
individual component models. This system model was then used to simulate the 
application of this energy storage technology in various applications and accurately 
assess its performance.  
 
This research found that this approach to energy storage is feasible with existing 
technology.  The upper bound on the round-trip efficiency of energy stored in this 
manner is 65%.
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INTRODUCTION 

Throughout the world the power generation industry is actively changing in 

response to several issues including legislation resulting from increased levels of carbon 

dioxide in the atmosphere, ever-increasing demand and distribution, and re-assessment of 

the business-as-usual practices set in place decades ago. This industry, while impacting 

all aspects of the economy, is being forced to adapt to these challenges and innovation is 

being spurred. It is unlikely that these issues possess one solution, but rather a 

combination of approaches will be the optimal method. Installed wind power capacity in 

the United States is currently at 8,500 MW and is seeing continued growth; likewise, 

solar power installations are outpacing expectations. The renewable energy industry is 

currently one of the fastest growing industries in the world.  

 

  As wind and solar-based electrical generation continues to increase, the problems 

inherent with integrating these intermittent sources to the grid increase as well. Some 

utilities (both domestic and international) are already seeing the impact that intermittent 

and uncontrollable supply can have on grid control. Traditionally, the utility has had full 

control of the supply and little control of the demand. After decades of this model, grid 

operators can accurately forecast load predictions and allow their supply to respond 

accordingly. When renewable penetration reaches high levels, more and more issues 

concerning their variability are noticed: 

 



 

 

• sudden wind ramps (up or down)

• gust-induced turbine shutdown

• out-of-phase relation between peak demand and peak supply

These characteristics of renewable power 

when combined with their intermittency

solution of the energy balancing problem, as shown in Figure 1.

 

Figure 1. Energy storage can play

 

The US Department of Energy described its goal of supplying 20% of the nation’s 

electricity with wind by the year 2030 in a report issued

concludes that this level of penetration will be made possible by expanding load 

balancing areas, creating more flexible electric transmission and using natural gas 

generators to balance the remaining variability.  However, significant barri

these approaches: there are regulatory hurdles involved with expanding load balancing 

areas; grid expansion faces financial and permitting obstacles, as well as significant 

 

sudden wind ramps (up or down) 

induced turbine shutdown 

phase relation between peak demand and peak supply 

These characteristics of renewable power production increase the difficulty of integration 

when combined with their intermittency, and energy storage can contribute to the 

solution of the energy balancing problem, as shown in Figure 1. 

 

. Energy storage can play a vital role in balancing intermittent renewable 

energy sources. 

The US Department of Energy described its goal of supplying 20% of the nation’s 

electricity with wind by the year 2030 in a report issued in 2008 [1].  That report 

concludes that this level of penetration will be made possible by expanding load 

balancing areas, creating more flexible electric transmission and using natural gas 

generators to balance the remaining variability.  However, significant barri

these approaches: there are regulatory hurdles involved with expanding load balancing 

areas; grid expansion faces financial and permitting obstacles, as well as significant 
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generators to balance the remaining variability.  However, significant barriers exist to 

these approaches: there are regulatory hurdles involved with expanding load balancing 

areas; grid expansion faces financial and permitting obstacles, as well as significant 
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public opposition; and there are definite, long term environmental and financial risks 

associated with fossil fuels such as natural gas. These methods to counterbalance the high 

wind power penetration into the national electric grid are viable and will be implemented, 

but there is an additional technology that can be investigated to counteract the 

problematic interaction of wind power and other renewables: energy storage. 
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EXISTING ENERGY STORAGE SYSTEMS 

 

  Energy storage has been used for years to decouple the time of electricity 

generation from the time of its use. Short term energy storage has traditionally been used 

for system regulation and spinning reserve; it has also been used as transmission 

curtailment in allowing grid operators to overcome transmission bottlenecks [2]. Recently 

there has been renewed research and interest into various energy storage technologies as 

a means to make intermittent renewable energy sources dispatchable and controllable. 

Investigations into the applicability and benefits of response systems (seconds or 

milliseconds) and bulk systems (minutes and hours) integrated with renewable energy 

sources has shown the potential for various energy storage technologies [3]. The state of 

energy storage in the US in 2006 was shown by S. van der Linden to be at a critical time 

for advancement and integration: “The current storage concepts are ready for 

deployment… storage needs to be implemented.” [3] 

 

Traditional Compressed Air Energy Storage 

  Compressed Air Energy Storage (CAES) is a proven technology with two 

successfully facilities operating  in the world (Huntorf, Germany and McIntosh, 

Alabama). Cavallo notes that “…with an installed capital cost of about $890/kW, CAES 

is the least cost utility scale bulk storage system available” [4]. However, the means of 

extracting energy from the compressed air storage still requires the use of natural gas. 
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The sudden expansion of air through a turbine in the CAES scheme causes a dramatic 

temperature drop, thus necessitating the addition of heat, often in the form of natural gas 

combustion. While using roughly 2/3 to 1/2 less fuel less than a conventional natural 

gas/combined cycle power plant, traditional CAES systems still require combustion to 

bring the compressed air to an appropriate temperature. 

  The standard configuration for a traditional CAES system can be seen in Figure 2. 

It is a competitive means of storing energy as it has nearly the lowest capital cost per unit 

energy of any modern energy storage technologies [14].   

 

 

Figure 2. Traditional CAES configuration uses underground caverns to store 

compressed air. Natural gas combustion is used during expansion. (CAES 

Development Company) 

 

  There have been advances in traditional CAES cycle design, attempting to 

decrease or eliminate the use of natural gas. The possibility of using thermal energy 

storage in a CAES cycle was investigated by Bullough, et al. [5]. In this configuration, 
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the heat generated during the compression phase is transferred to a thermal storage 

medium. The heat is stored, and then exchanged with the air prior to the expansion phase 

reheating it to an acceptable temperature for expansion. 

  Traditional CAES systems use low-cost off peak energy to operate air 

compressors, storing energy as compressed air. In 1982 Ramakumar [6] proposed the 

idea of using wind energy to compress air for energy storage. The idea to use wind to 

operate an air compressor has been continually investigated since. Lieberman, Enis and 

Rubin discussed the operation and grid-connection of a hybrid wind energy/compressed 

air facility [7]. They looked at operating the compressor both electrically and 

mechanically either in the nacelle or on the ground. In addition, they investigated a novel 

approach to integrate storage with transmission: mile long sections of 2.5 feet diameter 

pipes where both the compressed air is stored and the energy is transmitted.  A similar 

concept is being commercially developed by Massachusetts-based General Compression, 

Inc. 

  In their Energy Storage Handbook, the Electric Power Research Institute (EPRI) 

reviews CAES plants and looks at the services such facilities can offer to the grid [9]. In 

their report, they conclude that ‘small CAES’ systems (10 MW or less) would be 

particularly well suited for load shifting up to 3 hours.  In the EPRI supplement for Wind 

Energy, they conclude that 10 MW CAES is well suited for transmission curtailment, 

time shifting and forecast hedging [10]. 
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Pumped Hydro 

  Pumped hydro storage facilities exist all over the world. The typical operation is 

to use low cost electricity during off peak hours to pump water into an elevated reservoir. 

When demand requires electricity, the flow is reversed and discharged through a turbine. 

This allows energy to be stored in the form of potential energy in the elevated water, then 

recovered through a traditional hydroturbine. Figure 3 is an illustration of such a system 

in Tennessee. 

 

 

Figure 3. Standard pumped hydro storage facility. (TVA) 

 

While these systems can effectively store large quantities of energy, they are inherently 

site specific. For this type of energy storage, a significant elevation gain is required. The 

typical locations are on top of hills near acceptable waterways. Ideally they are near 

existing dams and hydroturbines. 
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  As well as using wind energy to compress air and store energy, it has been 

investigated how wind energy might be used to pump water and store energy in the form 

of potential energy in the water.  In 2004 Castronuovo and Lopes showed the use of a low 

and high water reservoir for wind to pumped-hydro storage [8]. The wind energy is used 

to pump water to the high reservoir in times of low demand; then when needed, the water 

is run through a hydroelectric turbine into the low reservoir.  

 

Batteries, Fuel Cells & Flywheels 

  There has been an extensive amount of research and commercialization performed 

on various other energy storage systems. These other systems consist of various batteries, 

fuel cells, flywheels, etc. and are characterized as response systems (providing power for 

seconds or milliseconds).  

- Sodium Sulfur (NaS) Batteries: uses a liquid sulfur and salt battery reaction to 

store excess energy.   Batteries using this technology have been used to supply 

energy to the grid, notably in Japan 

- Flow Batteries: generate energy as chemicals stored in tanks are allowed to mix.  

They can be easily recharged but are relatively expensive to operate. 

- Lithium-ion Batteries: one of the highest energy density battery formulations and 

also one of the lightest has found application in portable and automotive 

applications.   Cost would be a big issue for non-portable storage applications 

associated with the grid where the other advantages like low weight are not as 

compelling. 
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- Lead Acid Batteries: are the oldest battery storage technology and also widest 

spread.   In comparison, they suffer from low energy density and high 

environmental impact. 

- Fuel Cells: have the advantage of being rechargeable by just adding new chemical 

fuel.  They have the disadvantage of being expensive to build (in comparison).  

- Flywheels: store energy in the kinetic energy of massive spinning wheels. The 

energy is extracted directly to drive generators and produce electricity.   

Applications have been found on smaller scales like uninterruptible power 

supplies for individual buildings; efforts are being made to scale flywheel 

technology to sizes required by grid operators.   



10 
 

 
 

 

PROPOSED ENERGY STORAGE SYSTEMS 

 

  The goal of this research is to develop a feasible system that is capable of meeting 

the challenges of grid-integration posed by renewable energy sources. From daily to 

within-the-hour storage, this system will be able to mitigate ancillary service demands 

and provide peak-load shifting capabilities to the grid operators. This technology takes 

the most attractive attributes from CAES and pumped hydro storage and eliminates some 

of their shortcomings. Its similarity to CAES comes with a significant difference: The 

working fluid used to recover the energy is incompressible. The proposed approach 

avoids the requirement of additional energy, thus greatly improving the overall 

performance of the energy storage system. 

  This study indicates that this system has several potential advantages over current 

energy storage systems:  

• does not require the use of natural gas 

• not site-specific 

• scalable/adaptable to many different applications 

• low capital cost 

• simpler system optimization and control based on nozzle velocity (in an impulse 

turbine);  

• better thermal management since the working fluid acts as a heat sink 
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Carbon-Free Compressed Air Energy Storage 

  In its most basic manifestation, the Carbon-Free Compressed Air Energy Storage, 

CF-CAES, System uses two fluids, a compressible and an incompressible fluid. Air and 

water are the most common examples of each.  Energy is stored by pumping the 

compressible fluid in an enclosed tank or chamber.  Unlike the current standard of 

Compressed Air Energy Storage (CAES), the compressible fluid is not expanded through 

a turbine; rather it is used to push an incompressible fluid through an impulse or hydro-

turbine. As a result, the expansion takes place over the entire volume of compressed gas, 

not just the small amount passing through a nozzle.  The storage tank then has time to 

equilibrate with the surrounding environment and no additional heat is needed to 

counteract the problematic temperature drop that accompanies sudden air expansion in a 

turbine. 

 

 

Figure 4. CF-CAES conceptual schematic 
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  A conceptual sketch of the CF-CAES system is shown in Figure 4. In this 

scenario, wind or solar energy is used to compress air in a ground level tank, either 

through an in-nacelle compressor or by electrically powering a ground-level compressor. 

The compressed air is used to charge water stored in a pressure vessel. Once charged, the 

compressed air exerts a force on the water. The water drives a hydro-turbine which turns 

a generator producing electricity. Finally, consumptive use of water can be avoided by 

capturing the water after it has moved through the turbine and reusing it. 

  The fundamental principle behind this research is the use of two fluids in which a 

compressible fluid is used as energy storage and an incompressible fluid is used for 

energy recovery.  The configuration shown in Figure 5 utilizes wind energy to compress 

the air in large tube trailers.  

 



 

 

Figure 5. Artistic rendition of a complete CF

 

  Finally, it should be pointed out that others have recognized the advantage of a 

storage approach utilizing multiple fluids and a number of patents have been granted for 

variations on this theme [10

sections, the barriers that have limited this concept will be discussed in detail.

 

 

. Artistic rendition of a complete CF-CAES system

Finally, it should be pointed out that others have recognized the advantage of a 

oach utilizing multiple fluids and a number of patents have been granted for 

variations on this theme [10-12] but none have been reduced to practice.  

sections, the barriers that have limited this concept will be discussed in detail.
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CAES system 

Finally, it should be pointed out that others have recognized the advantage of a 

oach utilizing multiple fluids and a number of patents have been granted for 

  In the following 

sections, the barriers that have limited this concept will be discussed in detail.  
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THERMODYNAMIC ANALYSIS 

  Before detailed models of the system’s components were developed, a thorough 

analysis of the energy flows within the cycle was performed. This not only provides 

information crucial to operation of the system, but certain insight into economic viability 

as well. A single tank that contains both the compressible and incompressible fluid was 

used as the system to investigate energy inputs, outputs, and heat transfer. The process of 

interest is shown below: 

 

 

Figure 6. Each phase of the cycle has an energy input or output, in the form of 

either work or heat. 

 

  When mass is added to a fixed volume of air, both pressure and temperature 

increase. The increase in pressure stores energy in mechanical potential, while the 

increase in temperature stores energy in the form of heat. How these two factors relate 

can be determined through first law analyses. In the above process, from (a) to (b), air is 

being added to the tank, increasing the temperature and pressure of the air. Energy is now 
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stored in the tank (in mechanical potential as well as heat) and inevitably equilibrates 

with its surroundings: (b) to (c). The reduction in temperature due to heat transfer also 

reduces the pressure. Energy can be removed from the system by allowing the 

pressurized air to push the water out of the tank. During this expansion, the volume of air 

is increasing which causes both temperature and pressure to go down: (c) to (d). The cold 

air in the tank will now draw heat from the surroundings, increasing the temperature and 

pressure. At this state the tank can then be re-filled with water and the system and cycle 

from energy input, through storage, to output, with respective heat transfer along the way.  

  One important parameter of the system is the ratio of air to water in the uncharged 

tank; to capture this characteristic, the parameter α is defined as the ratio of the initial 

volume of air to the final volume of air. Low α values correspond to relatively large 

quantities of water initially in the system. Conversely, high α values describe a system 

with very little water cycling through it, Figure 7.  

 

 

Figure 7. The ratio of initial volume of air to the final volume is defined as α, a very 

important parameter in the performance of the system. 
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  Regardless of what alpha value is used, once all the water has been removed from 

the tank, the pressure inside is most likely not at atmospheric pressure. For each α, a 

particular target pressure does exist to produce this result; however, these cases yield very 

low energy output and are thus unlikely in any application. Thus, the residual pressure 

remaining in the tank after the water has been removed and the air has expanded can be 

calculated from the assumed isentropic expansion of the compressed air:  
��� � ���	
��
 

for a constant mass of air, isentropic expansion: 

��� � ���	
��
 

�
�
� � ����� 

Where subscript (1) and (2) refer to the states surrounding the expansion of air and 

removal of stored energy and k is the ratio of specific heats for air ( approx. 1.4). From 

the definition of α: 

� � �
�� � ������ �� ��� ����� 
� �����	��������� �� ��� ��
�� �����	���  

�� � �
�� 

 for the first state being the high pressure air and the second being the residual: 

�������� � �!�"!�� 

Because of this fact that there is a residual pressure in the tank after expansion, an 

algorithm was developed to allow water to be pumped back into the tank without 

compressing the air in the process (Operational Cycle). Once the tank is filled with water 



17 
 

 
 

to the desired alpha ratio, the compressor starts at this pressure and operates until the high 

pressure is achieved. This initial condition of initial pressure being equal to the residual 

pressure in the tank after expansion must be taken into consideration during the 

thermodynamic analysis in order to accurately represent the energy flows in the system. 

The amount of heat created (and therefore mechanical potential lost) is directly 

proportional to the pressure difference; hence designing a system to minimize this loss is 

beneficial. The following derivation develops the relationship between this quantity of 

heat and total energy input.  

 

 

Figure 8. The unavoidable destruction of useful energy to heat occurs after the work 

input to compress the air causes an increase in temperature. 
 

  The work input to the system equals the difference in total internal energy 

between states a and b in Figure 8. Once again, assuming an insentropic compression 

process of the air in the tank: 

����� � �#�#� 
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�� ���
��� � �# �#��#� 

$���
%� � $#�#
%�       &�
'       �� � �#     ��(     � � �)$�  

Substituting in the definition for total internal energy, 

* � �+,$ 

The total internal energy at state b can be shown to be, 

*# � *� -�#��.� � *��%� 

And the change in total internal energy during the constant volume compression, 

∆*�%# � *�0�%� 1 13 
During the next two states in Figure 8, b to c, the mass of air equilibrates with the 

environment in a constant mass, constant volume heat addition. 

The internal energy at state c, 

*4 � �4+,$4 

with,  
�4 � �# ��( $4 � $� 

*4 � �#+,$� � *� �#�� � *��%
 

And the change in total internal energy during the constant mass and volume heat 

addition, 

∆*#%4 � *�0�%� 1 �%
3 
Therefore, the percent of energy input that becomes heat, γ, is the ratio of these two 

differences: 
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5 � ∆*#%4∆*�%# � *�0�%� 1 �%
3*�0�%� 1 13  

5 � 1 1 ��%

1 1 ��  

The following figure shows γ, the percent of energy input that is lost to heat, as function 

of α. At low values the pressure difference between the residual pressure at the end of the 

cycle and the target pressure is very high, and therefore a larger percentage of input is 

transformed into heat. This quantity can be shown to converge to k-1/k as alpha 

approaches 1. For air, at best, 28.6% of energy input will be lost in the form of heat. 

 

 

Figure 9. A percent of energy input will always be lost in the form of heat. It can be 

seen that γ can be known, and therefore controlled, by varying α. 

 

  The thermodynamic analysis aids in determining feasibility of the system as well 

as producing directions for design.  
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MODELING 

  Detailed dynamic models were created in order to determine system-wide 

operation and performance characteristics. Each component of the system was modeled 

then assembled with their interactions represented within the model. Acting over the 

entire system is the control system with embedded logic triggers particular to a desired 

application. 

 

 

Figure 10. Each component of the system was modeled independently then 

connected into a system-wide model. 

 

Compressor 

  There are many different compressor designs, from centrifugal to positive-

displacement, most receiving their power input through an electric motor. For this energy 

storage system, it is possible to have wind power as an input, in which case a 

mechanically driven, in-nacelle compressor could be investigated. However, for this 

research, a compressor receiving electrical power input was assumed.  
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Figure 11. Diagram of compressor model 

 

  The compressor in this system is used to add mass to a rigid tank, increasing the 

pressure in the tank. Additionally, since the compressor will be receiving input from an 

external source (solar array, wind farm, etc.), the power input was considered a known 

quantity. It was therefore desired to determine the mass flow rate through the compressor, 

given the work input and states (pressure and volume) of the tank. The work input (per 

unit mass) is equal to the integration of specific volume over the pressure change.  

6� � 7 � (�89
8:

, 6 � � 7 � (�89
8:

 

As the goal of this model is to determine mass flow rate through the compressor given 

pressure in the tank and work input, an assumption is made concerning the process of 

compression. Assuming a polytropic compression process with polytropic coefficient 

equal to the ratio of specific heats, k (Cp/Cv), the process is thus isentropic; substituting 

into the above equation gives: 

��� � ���	
��
, +, � � -+�.
:<
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The above equation describes the work required to compress a mass, m, from pressure P1 

to P2. 

Differentiating both sides with respect to time: 

(6(
 � ((
 =� 7 -+�.
:<  (�89

8:
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(note: the pressure in the tank, P2, and the mass of air in the tank, m, are both functions of 

time). Evaluating the integrals then taking derivatives and rearranging: 
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 +
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This equation was used to model the ideal thermodynamic relationship of the compressor; 

the mass flow rate through the compressor can now be determined for a given volume, 

tank pressure and power input.  

Tank 

  Throughout the cycle of the system, the pressure, temperature, and mass (both air 

and water) within the tank are constantly changing. It was assumed that even under the 

expected pressure in the tank, water would be modeled as completely incompressible. 

Therefore, any incremental change in volume of water leads to the same change in 

volume of the air.  While it is acknowledged that some of the air will be forced into 
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solution with the water, this phenomenon is assumed to have negligible impact and is 

outside the scope of this effort. 

 

 

Figure 12. Tank model derived from conservation of mass and ideal gas law. 

 

In a control volume analysis with the control volume being the volume of air in the tank, 

the ideal gas law states: 

�� � �)$, � � �)$�%
 

(�(
 � ((
 F�)$�%
G � (�(
 )$� ? ($(
 �)� 1 (�(
 �)$��  

The rate of the change of the pressure within the tank is a function of the mass, 

temperature and volume of the air on the tank, which are all changing in time. The mass 

and volume are functions of the cycle – whether the system is charging or discharging. 

The temperature is determined from the assumed polytropic compression and expansion. 

��� � ���	
��
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differentiating both sides with respect to time: 
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simplifying, 
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 As air or water is added or removed from the tank, the subsequent changes in 

temperature and pressure can now be determined. This relationship is implemented inside 

the above tank subsystem as shown below. 

 

 

Figure 13. The state of the tank can be determined through the integration of all 

variables that are changing in time: mass, volume, pressure, and temperature. 

 

Turbine 

  When power is desired from the system, water can be removed through an 

adjustable diameter nozzle and delivered through a hydro turbine. Accurately modeling 

the interaction of the fluid with the turbine requires extensive computational abilities. The 

performance of particular hydro turbines, such as a pelton wheel, has been documented 



25 
 

 
 

through detailed experimentation and can effectively approximate the performance of the 

turbine by scaling the quantifiable power of the stream passing through the nozzle: 

6K �L���M � N∆� 

6K O� LPQ � RO� LPQ6K �L���M � RO� LPQN∆� 

Hence, for this analysis, all dynamic and hydrodynamic effects of the turbine were 

assumed to be captured in the above efficiency term.  

Neglecting the minor losses and hydrostatic pressure term and assuming that the turbine 

discharges to atmospheric pressure, the flowrate can be determined by: 

N � 6K O� LPQRO� LPQF�� 1 ��LMG 

In the above expression, Ẇ pelton is the power output desired from the turbine; the nozzle 

diameter can then be adjusted such that the calculated flowrate will be achieved and the 

desired power will be output.  

 

Logic 

  The control system that governs the performance of the system was created using 

decision matrix (truth table) criteria. To accurately model the behavior of the system 

through time, the logic controller must step the system through the actual actions of the 

cycle. This is analogous to actual circuitry that would be controlling valves, pumps, 

switches, etc. Preliminary values were decided for compression pressure, tank volume, 

and alpha; the logic then needs to compare actual pressure and volume of water in the 

tank with these cutoff values and determine the decision to be performed. The sequence 
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of events that the system cycles through is described in detail Operational Cycle. The 

Truth and Action Tables can be seen below. The action is determined from the Condition 

Table on the left and read down the column as follows: if P is not greater than Pi and P 

does not equal Phigh and P is greater than Phigh and V is greater than the product of alpha 

and Vtank, etc. then perform the action at row 1 of the Action Table (Fill).  

 

Table 1. Truth table for determining which phase of the cycle to perform. 
Condition D1 D2 D3 D4 Row Description Action 

P > Pi F - T -   Fill Fill = 1; 

P ≥ Pi - T T - 1   Press = 0; 

P = Phigh F - - -     Extract = 0; 

P < Phigh T T - -   Pressurize Fill = 0; 

P ≤ Phigh - - T - 2   Press = 1; 

V > αVtank T F - -     Extract = 0; 

V ≥ αVtank T T T -   Extract Fill = 0; 

V = αVtank F T - - 3   Press = 0; 

V < Vtank - T - -     Extract = 1; 

V = Vtank - F - -   Nothing Fill = 0; 

V ≤ Vtank T - T - 4   Press = 0; 

Action: Specify a row 
from Action Table 

1 2 3 4 
    Extract = 0; 

 

System 

  All of the components and control logic were then assembled into a complete 

system. This model, shown below, will now cycle through the operation of the system 

with accurate mechanical, thermodynamic, and conservation principals. The operation of 

each component (pump, compressor, turbine, valves) produces a subsequent change in 

the state of the tank. These states are determined through the integration of the 

differential equation governing the tank. This state is monitored by the logic criteria and a 

decision is sent to the controller.  
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Figure 14. Complete system with embedded logic and controller to cycle through the 

process.  
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OPERATIONAL CYCLE 

  There are a variety of ways in which this energy storage system can behave. Due 

to the nature of the proposed system, continuous operation is not possible, therefore, a 

cyclic batch process is proposed.  A possible sequence is shown below: fill the tank with 

water to the level dictated by the desired alpha, compress the air above the water, extract 

energy by releasing the water through the turbine, vent the residual pressure to another 

tank or the atmosphere then re-fill the tank. There are many different possibilities of not 

only performing events in parallel and series (compressing air while extracting water) but 

modified thermodynamic cycles as well (different venting algorithms).  

 

 

Figure 15. CF-CAES cycle. 

Pressurize

Extract

Vent

Fill



29 
 

 
 

 

Pressurize 

  Beginning with the state where the tank contains a particular amount of water, the 

compressor is allowed to operate and increase the pressure of the air above the water. The 

volume of air can be ducted to another storage vessel or a series of tube trailers. 

Whatever the configuration, the chosen value of alpha can still be obtained, even though 

multiple tanks might exist.  

Extract 

  Once the air pressure meets the target value, energy can be stored until needed. 

The time that the system will store the energy before dispatching it to the grid is 

dependent on the application. When power is demanded, water is released through the 

hydro turbine (impulse, Pelton style) which drives a generator, creating electric energy. 

The power output of the hydro turbine can be controlled through use a variable diameter 

nozzle; this provides a range of power outputs. For example, as the water is released and 

the air pressure in the tank decreases, the nozzle can respond in such a way as to provide 

a constant power output throughout the extraction.  

Loop 

  As was discussed earlier, once the tank is empty of water, it is most likely not at 

atmospheric pressure, and therefore a significant amount of stored energy still remains. In 

order for the cycle to loop, water needs to be added back into the tank. Water cannot be 

pumped back into the tank when the air is under such high pressure without further 

design considerations. Likewise, it is not desirable to vent the residual pressure to 
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atmospheric, as there is still a substantial amount of energy stored in the system. Using 

the state analysis for internal energy that was previously used in Thermodynamic 

Analysis, the percent of stored energy that is remaining in the tank after expansion (c to d 

below) can be derived: 

 

Figure 16. Energy extraction causes the expansion of air and thus a drop in 

temperature. 

 

The internal energy at state c as a function of the initial internal energy, 

*4 � *��%
 

And at state d,  

*� � *���%� 

The percent of stored energy remaining in tank after expansion, ε, is the ratio of these two 

energies, 

S � *�*4 � *���%�
*��%
 � ��%�

�%
 � ��%� 



31 
 

 
 

This relationship can be seen in the following figure. 

 

Figure 17. After expansion, a fraction of the energy input still remains in the tank.  

 

  A venting algorithm was developed to address this issue of residual pressure and 

stored energy remaining in the tank after extraction, Figure 18. In this procedure, a 

second tank nearly equal in size to the volume of water is used to collect the water during 

discharge. Once extraction is complete, the two tank pressures are equilibrated. Given 

that the second tank contains very little air, the residual pressure remains essentially 

unaffected. An unbiased pressure difference now exists between the tanks and water can 

be pumped from one to the other. The end result of this algorithm is the original tank 

filled with water and containing the residual air pressure; the second tank contains just 

air, also at the residual pressure. The second tank is then either vented or used in a 

secondary process. If vented, stored energy is still being lost, but just a fraction of the 

amount remaining in the tank. During the next cycle, the original tank is no longer being 
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pressurized from atmospheric to a particular target pressure, but beginning at the residual 

pressure.  

High 

Pressure

Residual 

Pressure

Residual 

Pressure

Residual 

Pressure

Residual 

Pressure

1 atm

(a) (b)

(c) (d)

Turbine

Open valve

Pump

Open valve

Secondary Process

 

Figure 18.  A venting algorithm must be used in order to avoid the venting of all 

residual pressure remaining in the tank after expansion. 

 

 

  An advantage of this venting algorithm is that the tank begins the next cycle with 

the air compressed to the residual pressure. In this case the system is cycling between the 

high and residual pressure, never requiring atmospheric venting. As was previously 

discussed, α determines both the energy input and how much useful energy can be 

extracted.  
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Figure 19. In utilizing the venting algorithm, the initial pressure in the tank is the 

residual pressure. 

 

The energy output from the system can be determined from the change in internal energy 

during expansion (b) to (c) in Figure 19: 

6P�L � *4 1 *# � �4+,$4 1 �#+,$# 

6P�L � +,) F�4�4 1 �#�#G � +,) F��4�# 1 �#�#G � +,) F��4�# 1 �����#G 

6P�L � +,) �4�#F� 1 ��G 

Similarly, the energy input to the system utilizing the venting algorithm to keep the initial 

pressure in the tank at residual pressure is derived by integrating the specific volume over 

the change in pressure: 

6� � 7 � (�
8T

8U
, 6 � � 7 � (�

8T

8U
 

once again assuming a polytropic compression: 

��� � ���	
��
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and that the initial pressure in the tank is equal to the residual pressure: 

�������� � �!�"!�� 

�� � �# � �4�� 

substituting these relationships and integrating, the work input to the system assuming the 

described venting algorithm, as a function of α is: 

6�Q � +,
) �#�� D� 1 � <

<B:E 

For an α value close to 0 (little air initially in system), the pressure drops too quickly 

while the air expands over the large distance to extract any significant amount of energy. 

Similarly, for high α (little water initially in system) there is too little distance for the 

compressed air to expand over and all the water is expelled before the air fully expands; 

also extracting very little energy. Similarly, since the system starts the cycle with residual 

pressure in the tank, at α values close to 1 and 0, the amount of energy input to the system 

goes to zero. Figure 20 shows this relationship. 
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Figure 20 The quantity of both energy input and output is a function of the amount 

of water initially stored in the tank, or specifically, α. 

 

 

  As the energy input and output are functions of α, the efficiency of a system 

acting under this venting algorithm is as well. Assuming adiabatic heat recuperation 

during compression/expansion, and ideal component performance, the inefficiencies of 

the system are a result of venting losses only. This efficiency, η, of the venting algorithm 

can be determined from the ratio of energy output and input terms. 

R � 6P�L
6�Q

�
+,) �4�#F� 1 ��G

+,) �#�� D� 1 � <
<B:E

 

R � � 1 ��
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Under these assumptions, an upper-bound efficiency can be calculated, Figure 21. 
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Figure 21. Upper-bound efficiency of the system as a function of α. 

 

 

Fill 

  For the cycle to begin again, the tank must be filled with water to a particular 

height. As was previously shown, this ratio of water to air is a very important parameter 

in the performance of the system. The amount of water that the tank should initially hold 

is not necessarily an optimization problem, but a design consideration pertaining to the 

particular application. In this step, water is pumped into a vented tank such that air is not 

being compressed in the process.  
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PARAMETERS 

  The thermodynamic analysis and dynamic modeling of the system and its 

components has provided a means to investigate the performance of the system under 

various conditions. The quantities that govern the effectiveness of this energy storage 

system are: energy capacity, power capacity, and duration of storage. There are 

parameters that affect these characteristics, as well as the cost of the system. Energy 

capacity is a function of both compression pressure and tank volume; these are referred to 

as cost variables. For a given compressor and turbine, the cost of the system (the tank) 

scales directly with the size and wall thickness of the pressure vessel. Power capacity is 

also a function of the cost variable pressure, but not volume. The parameter ‘alpha’ is 

designated as a performance variable because its value directly influences energy 

capacity but does not contribute to cost.  

 

Table 2. Different parameters effect energy and power capacities, as well as cost 

  Influencing Factors Variable 

Parameters Cost Energy Power Type 

Target Pressure x x x Cost 

Tank Volume x x - Cost 

Alpha - x - Performance 
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OPERATION 

  Through use of the dynamic model, a simulation of the system can operate under 

various inputs and desired outputs. Tank size and operating pressures can be adjusted and 

their effect on the performance investigated. For the standard configuration, each step of 

the cycle that was previously discussed is necessary during operation.  

  One desired performance metric for this system is adequate lead time notification 

to the grid operator. With different parts of the country operating under different power 

scheduling times (15 minutes up to 1 hour), it was desirable for this system to provide 

such predictability. By monitoring the level of compression in the CF-CAES System, the 

operator can accurately predict how long it will take for the system to go online at a 

certain power level. Additionally, if that power level is maintained, appropriate 

notification could be made to the grid operator concerning when the system will be going 

offline.  

 

Batch Operation 

  With a single tank system there will always be a discontinuity in power output as 

a result of the system cycling through its loop: eventually the tank will run out of water. 

Some applications may desire an uninterrupted power output from the system; this can be 

accomplished through a multiple tank system. As one tank is charging (drawing power) 

the other is discharging (providing power); the two can be sized appropriately to provide 

a necessary out-of-phase relationship and have a continual power output achieved. 
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However, because of the expected flowrates both into the tank (pumping phase) and out 

of the tank (power output phase), the time scales for drawing power and providing power 

are not necessarily evenly matched. This irregularity would lead to times when both tanks 

are pumping and not providing power. A third (or more) tanks could be added to the 

system to balance this timing issue. Examples of multiple tank batch operation can be 

seen in the following section.   
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APPLICATION STUDIES 

 This energy storage system is design to be adaptable to many different scenarios 

and applications. Potential customers include grid operators, renewable energy electric 

generation operators and merchant storage facilities. 

 Grid operators are tasked with balancing generation and load.  They generally 

have no control over the load (demand side), but have been able to control the generation 

side by increasing or decreasing fuel consumption.  With the addition of intermittent 

generators, the act of balancing becomes more difficult.  Energy storage systems, such as 

CF-CAES, can assist in balancing load and generation. 

 Owners/operators of wind and solar electric generation facilities are potential 

customers in that energy storage could allow them to sell electricity to the grid when 

demand is high, rather than only when the wind is blowing or sun is shining.  Policies 

governing electric utilities vary state to state in the US.  Many regulatory agencies are 

considering time-of-use pricing for retail customers.  In these markets, it is possible that 

regulators would allow utilities to pay a higher rate ($/MWh) for energy that is 

dispatchable according to demand schedules.  This would provide economic incentives 

for owners/operators of wind and solar generators to purchase energy storage systems, 

such as CF-CAES. 

 Finally, merchant storage facilities are potential CF-CAES customers.  Merchant 

storage facilities take advantage of fluctuations in the energy markets, purchasing energy 

when demand is low, storing it, and selling it when demand is high.  Merchant facilities 
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currently use a mix of storage technologies, with pumped-hydro being predominant in the 

western US.   The McIntosh CAES plant in Alabama is a merchant facility.  Pumped-

hydro and CAES both provide low-cost bulk storage technology, but are site specific; 

CAES also requires burning of natural gas.  The proposed CF-CAES is site independent 

and does not require burning natural gas, making it an attractive option for merchant 

facilities. 

For the following simulations, various power output routines can be maintained to 

meet the above described application: 

• output to follow a daily load curve (grid operators) 

• constant power output (renewable energy electricity generation operators) 

• daily scheduled power output, such as to meet peak demand (merchant storage 

facilities). 

 

Grid Operators 

  For the first two simulations, wind data from a site in southern Idaho was used to 

develop the input profile for the compressor. The number of tanks and sizes were chosen 

from OEM information. The parameters of the simulation can be seen below. The value 

of α was chosen from the modeling information to balance the increased efficiency at 

lower alphas with the decreased energy output.  

 

 

 



 

 

Table 3. Parameters used in Grid Operator and Renewable Energy Generation 

CF-CAES Parameters

No. tube trailers
Tank pressure
Total volume

α 
 
Wind Turbine Parameters

No. Turbines
Type 

 

 The goal of utilizing energy storage for a grid operator is to take an intermittent source 

and provide a predictable, dispatchable output. 

 

Figure 22. Typical demand curve for a single day.

 

 

. Parameters used in Grid Operator and Renewable Energy Generation 

simulations. 

CAES Parameters 

No. tube trailers  10 
Tank pressure 2850 psi 
Total volume 4,379 m3 – NTP  

(26.3 m3 – water volume) 
0.25 

 
Wind Turbine Parameters 

No. Turbines 13 
GE 1.5MW 

 

The goal of utilizing energy storage for a grid operator is to take an intermittent source 

and provide a predictable, dispatchable output.  

Typical demand curve for a single day. California, July 15, 2007

(Lawrence Berkeley National Lab) 
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. Parameters used in Grid Operator and Renewable Energy Generation 

The goal of utilizing energy storage for a grid operator is to take an intermittent source 

 

California, July 15, 2007 



43 
 

 
 

  A typical demand curve can be seen above in Figure 22; the line at the top of the 

figure is power capacity of the system, the bottom line is imported power, the stepped 

line is the forecast of the smooth actual load curve in blue. Grid operators are tasked with 

balancing the load with the supply from the utility. Thus, the objective of this simulation 

was to provide a power output from the CF-CAES system to follow this daily trend, 

which is modeled as a sine function with a period of one day, the maximum occurring at 

3:00pm. The results from this simulation can be seen in the following figure. 

 

 

Figure 23. One week simulation. Power input from wind energy, power output 

controlled to follow the trend of a daily load curve. 

 

  Throughout this one-week simulation, the maximum amount of stored energy at a 

single time was 2.2 MW-h. Throughout the course of the week, 134 MW-h were input, 

and 88.1 MW-h were output; this results in a roundtrip efficiency of 65.7%.  
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Renewable Energy Electricity Generation Operator 

  The desired outcome of this application is to shape the power output from an 

intermittent wind energy source to the grid. When the wind is blowing, power is being 

provided to the compressor and energy is being stored in the compressed air. The control 

system for this simulation mandates that a constant power output be continually provided. 

This was accomplished through the previously mentioned multiple tank batch operation, 

each of the four tanks functioning out of phase of one another. The following figures are 

the results of the simulation. Below, the power output is continually maintained at a 

constant level.  

 

 

Figure 24. Multiple tank batch operation used to provide uninterrupted power 

output. 

 

  The following two figures show the how the pressure and water volume of the 

tanks change throughout the course of a day of the one-week simulation. 
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Figure 25. Volume of water (as a percent of tank volume) in each of the four tanks. 

Out of phase relationship allows continual power output. 

 

 

Figure 26. Pressure status in each of the four tanks. As one tank is discharging and 

dropping pressure, the others are receiving power input and their pressure is 

increasing. 

 

  The energy input for this simulation was still 134 MW-h. While this equates to an 

efficiency of 65.7%, the value of energy must be considered when making decisions 

concerning the effectiveness of this system.  
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  It should be noted that any energy storage system comes at a price of reduced 

delivered energy.  Energy losses in the compressor due to mechanical inefficiencies and 

heat transfer, as well as inefficiency in the turbine and generator add up to a reduced 

overall capacity factor for the system.  The efficiency of these simulations only considers 

the losses associated with the venting algorithm; all heat transfer was assumed to be 

adiabatically recaptured in the cycle. This issue is the subject of continuing research and 

is recognized as an important performance factor in assessing storage methods and 

specific designs. However, it should be noted that capacity factor is not the only means to 

gage performance. Dispatchable energy is more valuable to grid operators than non-

dispatchable. By having the knowledge of when this system will go online, and with 

exactly what power capacity and duration, makes its energy more valuable. 

  With increased renewable energy penetration onto the grid, it’s not just the 

unpredictability of wind or solar energy that is a concern for the utility. Certain events 

can occur during normal operation of a wind farm that greatly strain the utility. For 

example, if a wind farm is experiencing high winds, the turbines are producing a 

considerable amount of power. If a wind gust, even a very short one, sends the turbines 

past their cutoff speed, they enter a shut-down scenario. This is problematic to the utility 

because very rapidly they lose a significant amount of power being put on the grid. It can 

take up to 30 minutes for the turbines to come back online and begin producing power 

again. Through use of the proposed CF-CAES system, situations such as this could be 

drastically less problematic for the grid operator.  
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Merchant Storage Facility 

  Another application for the CF-CAES system is through use as a merchant storage 

facility. In this scenario energy is drawn from the grid during low cost, off peak hours 

and supplied during peak, high cost times. The two current compressed air energy storage 

systems in Germany and Alabama are both examples of this application.  

  Although power will still be drawn from the grid, the energy storage system can 

still be characterized as ‘carbon-free’ because during the energy recovery stage no natural 

gas combustion is required. In the simulation results shown below, 10.65 MW-h were 

input to the system during the evening and night. During peak demand, 7 MW-h were 

output, resulting in the same efficiency as in the previous two simulations: 65.7%. This 

consistent efficiency, independent of application and power output, is a function of alpha 

only.   

 

Figure 27. Merchant storage facilities store low-cost, off peak energy and sell it back 

in times of high demand. 
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  A merchant storage facility operating in response to certain energy markets can 

not only effectively supply power when demand is high, but dynamically receive power 

as well. Throughout the course of the year, certain situations arise where wind farm/grid 

operators are forced to pay other utilities to take surplus power. These events correspond 

to times when many wind farms suddenly begin operating and demand is not high enough 

balance the supply. As wind farms already operate under very small financial margins, 

paying another utility to take their sole commodity is very unfavorable. Contractual 

arrangements can be established with a merchant storage facility to provide a means of 

unloading power during these times at pre-established rates, thus greatly mitigating the 

loss associated with spot market rates. 
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CONCLUSIONS AND FURTHER RESEARCH 

  It is becoming widely recognized that a variety of solutions are present to the 

global energy issues that the world is facing. The need for investment in energy storage 

infrastructure is rapidly becoming evident. 

  The proposed energy storage system, Carbon-Free Compressed Air Energy 

Storage, presents a new technology that could be capable of meeting the integration 

burdens posed by renewable energy. For an energy storage system to feasibly mitigate 

these problematic issues, it must be able to do so without incurring too great a reduction 

in delivered energy. It must be efficient enough in order to be both technologically and 

economically feasible. Barriers exist which challenge the feasibility in both regards. 

Technological Barriers 

  Application specific performance was simulated by implementing the results of 

the thermodynamic analysis into a fully functioning dynamic model. The required input 

of certain physical parameters into the model allowed the calculation of all other physical 

variables. Specifically, nozzle flow rate, compressor mass flow rate, and pumped water 

flow rate, which are initially dependent variables, were determined. No constraints were 

established to limit the bounds of these variables. As such, under certain conditions their 

values may be unrealistic. 
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Pelton Turbine 

  For an energy storage technology to be viable, the power level that it can deliver 

the stored energy is a very important parameter. In the case of CF-CAES, power is 

delivered by means of a Pelton style hydroturbine, which are sized according to flow rate 

and pressure. Considering the high-head, low flow applications suitable for CF-CAES, 

this would result in a very unconventional turbine design: very large diameter, small cup 

geometry. Several immediate options exist in approaching this barrier: custom turbine 

design, parallel/series operation, or re-evaluation of energy removal technique. Further 

research is necessary to undergo complete mechanical design of the system and establish 

appropriate constraint on flow rate.  

Tank Size 

  The two competing factors governing tank size are internal pressure and volume. 

For large scale energy storage, it is desirable for both parameters to be as great as 

possible. It is no surprise that they are not only proportional to cost, but quickly reach 

bounds that limit design adjustments for both. Because of this limitation on a single tank 

design, further research needs to confront the issues associated with multiple tanks used 

for a single CF-CAES system. Tube trailers were investigated as a scalable means to 

store large quantities of compressed air, with a separate large tank containing water. 

However, as an air/water interface would still need to exist, the tank containing water 

would still be under the high pressure of the air and thus, must be sized accordingly. 
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Roundtrip Efficiency 

  An upper bound in roundtrip efficiency is dictated by the venting algorithm: the 

mass of compressed air that is transferred to a second tank allowing water to be pumped 

back into the initial tank is either vented or used in another process. The actual efficiency 

of the system would be a function of the thermodynamic process and the unavoidable 

destruction of useful to energy to heat. Additionally, each component in the system 

operates under its own efficiency, which must all be considered when establishing a 

roundtrip efficiency for the system. This study aimed to determine the maximum 

operating efficiency of the system under ideal conditions. 

Economic Barriers 

  To assess the economic feasibility of CF-CAES, it must be viewed in the 

appropriate economic environment. A system such as this is designed proactively to be 

employed when conditions exist that require its application. There are unavoidable capital 

costs that pose considerable barriers; namely, those costs associated with the solutions to 

the aforementioned technological barriers. A newly designed Pelton turbine is a 

considerable cost, particularly when noted that its only likely application is in an 

emerging technological market. Likewise, great expense can be accrued in the design and 

fabrication of specialized tanks, piping, and manifolds to enable a sophisticated air/water 

interface.  

  In addition to the economic barriers associated with capital costs, there are 

barriers to the acceptance and integration of energy storage into various utilities energy 
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portfolios. Pricing schedules, required performance metrics, and development costs are 

all hurdles that the energy storage industry is overcoming. 

  It is evident that barriers exist to the development of this technology, but they can 

be confronted with increased research and design. Additionally, the heightened necessity 

of energy storage as a facilitator to renewable energy integration will aid to increase its 

potential. Large scale energy storage technology has the opportunity to enable levels of 

renewable integration into the national grids necessary for their objectives to be met. 
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APPENDIX 

Matlab/Simulink Models 
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Initialization.m 

 

%% Initialization File 
% This File creates variables for the CF-CAES model 
% simulations. 

  
alpha=0.25; %Percent of initial water height to tank height 
V_tank=1000; %Volume of tank [m^3] 
P_high=204*101000; %Target Compression Pressure [Pa]204 

  
%% Load Wind Data 
load WindSpeed 
load PowerCurve 
WindPower=interp1(pcwind,pcpower,WindSpeed); 
WindPower=WindPower*13;  %Use 13 turbines 

  
%% Generic Tank (Volume) 
Vi_a=V_tank*alpha; %Initial Volume of Air in tank [m^3] 
Vi_w=V_tank-Vi_a; %Initial Volume of water in tank [m^3] 
alphaV=alpha*V_tank; 
%% Compressor Initialization 
Comp_EFF = 1; % Compressor efficiency for 1st stage  
n = 1.4;     % polytropic constant for compression process   

  
T_i=300; %K 
%% Pelton Initialization 
Pelton_Eff=1; %Efficiency of Pelton wheel, 0.6 
%% Physical Parameters 
rho_w=1000; %Density of water [kg/m^3] 
g=9.81; %Acceleration due to gravity [m/s^2] 

  
%Properties of Air 
Cv_a=0.7179; %[kJ/kg-K] 
Cp_a=1.005; %[kJ/kg-K] 
k_a=Cp_a/Cv_a; 
R_a=Cp_a-Cv_a; 
k=k_a; 
%% Pressures 
Patm=101000; %[Pa] Atmospheric Air Pressure 
P_res=P_high*alpha^1.4; %Residual Pressure in the Tank after Expansion 

[Pa] 
P_i=P_res;  %Initial pressure in tank 
P_inlet=Patm; %Compressor Inlet pressure 

  
m_i=(P_i*V_tank)/(RGAS*T_i); 
C=P_i*(V_tank/m_i)^k_a; 
%%  
save Logic_Init alpha P_i P_high P_res V_tank  
global alpha P_i P_high P_res V_tank  alphaV 

  



 
 

 
 

 

Figure A. 1 Simulink model of a four system batch operation 
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Figure A. 2 Single System Model 
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Figure A. 3 Tank Model
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