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1 Introduction
The work presented here exploits elimination theory (solving systems of poly-

nomial equations in several variables) [1][2] to perform nonlinear parameter

identification. In particular show how this technique can be used to estimate

the rotor time constant and the stator resistance values of an induction machine.

Although the example here is restricted to an induction machine, parameter es-

timation is applicable to many practical engineering problems. In [3], L. Ljung

has outlined many of the challenges of nonlinear system identification as well

as its particular importance for biological systems . In these types of problems,

the model developed for analysis is typically a nonlinear state space model with

unknown parameter values. The typical situation is that only a few of the state

variables are measurable requiring that the system be reformulated as a non-

linear input-output model. In turn, resulting the nonlinear input-output model

is almost always nonlinear in the parameters. Towards that end, differential

algebra tools for analysis of nonlinear systems have been developed by Michel

Fliess [4][5] and Diop [6]. Moreover, Ollivier [7] as well as Ljung and Glad [8]

have developed the use of the characteristic set of an ideal as a tool for iden-

tification problems. The use of these differential algebraic methods for system

identification have also been considered in [9], [10]. The focus of their research

has been the determination of a priori identifiability of a given system model.

However, as stated in [10], the development of an efficient algorithm using these

differential algebraic techniques is still unknown. Here, in contrast, a method

for which one can actually numerically obtain the numerical value of the para-

meters is presented. We also point out that [11] has also done work applying

elimination theory to systems problems.

Here, using the techniques of elimination theory, it is shown that a significant

class of nonlinear identification problems can be formulated as a nonlinear least-

squares problem whose solution is guaranteed to be found in a finite number of
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steps. The proposed methodology starts with obtaining an over-parameterized

input-output model that is linear in the parameters. It is then assumed that

the relationship between the actual parameters in the over-parameterized model

are rationally related which is not atypical of many engineering systems. After

making appropriate substitutions, the problem is transformed into a nonlinear

least-squares problem which is- not overparameterized. It is then shown how

the nonlinear least-squares problem can be solved in a finite number of steps

using elimination theory.

2 Mathematical Model of an Induction Machine
An induction machine is now used as a realistic application to describe the

methodology. Specifically, the identification of the rotor time constant and sta-

tor resistance are considered. As background, field-oriented control provides a

means to obtain high-performance control of an induction machine for use in

applications such as traction drives. This field-oriented control methodology

requires knowledge of the rotor flux linkages, which are not usually measured

[12][13]. To get around this problem, the rotor flux linkages are usually esti-

mated using a state observer, and this observer requires the value of the rotor

time constant . However,  =  varies due to ohmic heating and thus

it is of considerable interest to estimate its value online in order to update the

flux estimator with its current value.

A standard two-phase model of the induction machine is given by ([13])




=




 +  −  +

1







=




 −  −  +

1







= − 1


 −  +




 (1)




= − 1


 +  +









=




( − )−





where the state variables are the rotor angular position , the rotor angular

speed  =  , the (two-phase equivalent) stator currents  , and the

(two-phase equivalent) rotor flux linkages  . The controllable inputs are

the (two-phase equivalent) stator voltages   while the disturbance input

is the load torque .

The parameters of the model are the stator and rotor resistances  and

, the mutual inductance  , the stator and rotor inductances  and ,

the moment of inertia  and the number of pole-pairs . The symbols

 =   = 1−2 ()
 = ()  =  () + 
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are used to simplify the expressions where  is referred to as the total leakage

factor.

This model is transformed into a coordinate system attached to the rotor

as the signals in this new ( ) rotor frame typically vary at the slower slip
frequency rather than at the stator frequency in the ( ) frame. The current
variables are transformed according to∙




¸
=

∙
cos() sin()
− sin() cos()

¸ ∙



¸
 (2)

This transformation does not depend on any unknown parameter in contrast to

the field-oriented (or ) transformation which requires knowledge of the rotor

fluxes. The stator voltages and the rotor fluxes are transformed in the same

way as the currents resulting in the following model (see [14][15])




=




−  +




 +  +  (3)




=




−  +




 −  −  (4)




=



 − 1


 (5)




=




 − 1


 (6)




=




( − )−




 (7)

As explained above, the interest here is in the online estimation of  as

it changes due to ohmic heating so that an accurate value is available to the

rotor flux estimator. However, the stator resistance value  will also vary due

to ohmic heating, therefore its variation must also be taken into account in the

estimation. The electrical parameters    are assumed to be known and

not varying. Measurements of the stator currents   and voltages  
as well as the position  of the rotor are assumed to be available; the velocity

is then computed from the position measurements. The rotor flux linkages are

not assumed to be measured.

3 Input-Output Model
Standard methods for parameter estimation are based on equalities where known

signals depend linearly on unknown parameters. However, the induction motor

model described above does not fit in this category unless the rotor flux linkages

are measured. As this is not the case here, the fluxes   and their deriv-

atives   must be eliminated from the final identification model.

The four equations (3), (4), (5), (6) are used to solve for the four unknowns

 ,  . Further, a new set of independent equations is
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found by differentiating equations (3) and (4) to obtain

1






=

2

2
+ 




− 





− 




− 





− 



− 




(8)

and

1






=

2

2
+ 




− 






+ 




+ 




+ 



+ 




 (9)

To simplify the presentation we now assume that the speed is held constant

as in [16][17] (this is not necessary, see [18][19]). The expressions for  ,

  found from solving equations (3), (4), (5), (6) are substituted

into equations (8) and (9) with  = 0 to obtain

0 = −
2

2
+




 +

1






− ( + 1


)




− (−
 2

+



) + (

1


+




) +




(10)

0 = −
2

2
− 


 +

1






− ( + 1


)




− (−
 2

+



)− (

1


+




) +




 (11)

As  =  () + , it follows that

− 2 +  = ()  ()

 + 1 =  () + ( + 1) 

which is used to rewrite (10) and (11) as

0 = −
2

2
+




 +

1






−
³
 () + ( + 1) 

´ 



− (




1


) + (( + 1) ) +




(12)

0 = −
2

2
− 


 +

1






−
³
 () + ( + 1) 

´ 



− (




1


)−  ( + 1)  +




 (13)
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More compactly, equations (12) and (13) are written in linear regressor form as

() = () (14)

with

() ,

⎡⎢⎣ 2

2
− 


 − 1






2

2
+




 − 1







⎤⎥⎦ (15)

and

 () ,

⎡⎢⎢⎣ −




1


( + 1)

µ
−


+ 

¶
+




− 



−


1


( + 1)

µ
−


− 

¶
+




− 



⎤⎥⎥⎦
(16)

as well as

 =

⎡⎣ 1

2

3

⎤⎦ ,
⎡⎣ 

1


⎤⎦  (17)

This model is over-parameterized in the parameters, that is, they must satisfy

the constraint

3 = 12 (18)

Replacing3 by12 in (14) results in a model that is not over-parameterized,

but it is no longer linear in the parameters. This issue is considered next.

4 Nonlinear Least-Squares Identification
A discrete-time sampled version of (14) is

( ) = ( ) (19)

where  is the sample period,  is the time the  sample is taken, and

 =
£
1 2 3

¤
is the (over-parameterized) vector of unknown para-

meters. If the constraint (18) is ignored, then the system is a linear (but over-

parameterized) least-squares problem. Theoretically, an exact unique solution

for the unknown parameter vector  may be determined after several time in-

stants. However, due to the fact that both ( ) and ( ) are measured from
signals that are noisy (due to quantization and differentiation), the regressor

model (19) is only approximately valid in practice. These sources of error result

in an overdetermined system of equations. In order to get around this prob-

lem, the solution vector  is specified as that which minimizes a least-squares

criterion. Specifically, given ( ) and  ( ) where ( ) =  ( ), one
defines

2() =
X
=1

¯̄̄
( ) − ( )

¯̄̄2
(20)

5
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as the residual error associated to a parameter vector. Then, the least-squares

estimate ∗ is chosen such that 2() is minimized for  = ∗. The function
2() is quadratic and therefore has a unique minimum at the point where

2() = 0 holds. Solving this expression for ∗ yields the least-squares
solution to ( ) = ( ) as

∗ =

"
X
=1

 ( ) ( )

#−1 "
X
=1

 ( )( )

#
 (21)

However, there is no guarantee that the solution of (21) will satisfy the con-

straint 3 = 12. Furthermore, the over-parameterized identification model

consisting of (17) and (19) results in an ill-conditioned solution for ∗. That
is, small changes in the data  ( ) ( ) can result in large changes in the
value computed for∗. To get around these problems, a nonlinear least-squares
approach is taken which involves minimizing

2() =
X
=1

¯̄̄
( )− ( )

¯̄̄2
=  − 2

 + (22)

subject to the constraint 3 = 12 where

 ,
X
=1

 ( )( )  ,
X
=1

 ( )( )

 ,
X
=1

 ( ) ( ) (23)

On physical grounds, the parameters 12 are constrained to the region

0  1 ∞ 0  2 ∞ (24)

and the squared error 2() will be minimized in this open region. Substituting
3 = 12 in (22), we obtain a new error function 2(12) as

2(12) ,
X
=1

¯̄̄
( ) − ( )

¯̄̄2
3=12

=  − 2


¯̄̄
3=12

+
¡


¢¯̄̄
3=12

 (25)

As the minimum of (25) must occur in the region (24), it follows that the

minimum is located at an extremum point. To solve for this minimum thus

entails solving simultaneously the two extrema equations

1(12) ,
2(12)

1
(26)

2(12) ,
2(12)

2
 (27)
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which are polynomials in the parameters12. The degrees of the polynomials

 are given in the table below

deg1 deg2

1(12) 1 2
2(12) 2 1

These two polynomials are rewritten in the form

1(12) = 1(2)1 + 0(2) (28)

2(12) = 2(2)
2
1 + 1(2)1 + 0(2) (29)

A systematic procedure to find all possible solutions to a set of polynomials is

provided by elimination theory through the method of resultants [1][2]. How-

ever, in this particular example, 1(12) is of degree 1 in 1 and can be

solved directly. Substituting 1 = −0(2)1(2) from 1(12) = 0 into
2(12) = 0 and multiplying the result through by 21(2), one obtains the
(resultant) polynomial

(2) = 20(2)2(2)− 0(2)1(2)1(2) + 21(2)0(2) (30)

where deg2
{} = 5. The roots of (30) are the only possible candidates for the

values of 2 that satisfy 1(12) = 2(12) = 0 for some 1. In the on-

line implementation, the coefficients of the polynomials 1(2) 0(2) 2(2)
1(2) 0(2), whose explicit expressions in terms of the elements of the matri-
ces  and  are known a priori vis-a-vis (25), (26), and (27), are computed

and stored during data collection. The coefficients of the polynomial (2)
are then computed online according to (30). Next, the positive roots 2 of

(2) = 0 are computed and substituted into 1(12) = 0 which is then
solved for its positive roots 1 . By this method of back solving, the finite num-

ber of possible candidate solutions (1 2) are found. The pair that results
in the smallest squared error, i.e., the smallest value of 2(12), is chosen.

5 Simulations
The above parameter identification method was studied in simulation using a

two-phase equivalent model of an induction machine under closed-loop control.

The parameters of the induction machine are (see [13]):  = 00117 H,  =
0014 H,  = 0014 H,  = 17 Ω,  = 39 Ω, 0 = 015 Nm,  = 000011
Kgm2, and  = 3. The controller sets the desired rotor speed at  = 2×75
rad/s, while the load torque is defined to be  , 0 +  with 0 = 015
Nm. The data was sampled at  = 4 kHz which was filtered through a 2

order low pass Butterworth filter with a cutoff frequency of 70 Hz.
To mimic the ohmic heating of the rotor and stator resistors, in the simula-

tion of the motor model their values were increased by 50% after 3 seconds of

operation with the estimator updating the value of  every 05 seconds. After
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the update at 3.5 secs the estimator provides the new estimates of  and 

to the controller. Figure ?? below is a plot of 2 = 1 and its reference

versus time showing that after the update the estimator gives the value of 2

within 2% of the correct value.

To show the importance of having an accurate value of the rotor time con-

stant, the power consumed before and after the rotor time constant update was

computed. Figure ?? shows the speed versus time for the simulation. (the tran-
sient at  = 0 is due to the fact that the flux in the machine is zero so that
during the build up of the flux the machine has torque oscillations). Figure ??
below is a plot of the real power  () =  +  vs time. As the figure

shows, the real power jumps up to 669 W at 3 sec. After the rotor time con-

stant value is updated to controller at 3.5 seconds, the real power comes down

to 637 W, which is a 5% decrease. Of course these numbers are small because

the simulation was done with a small (a less than kW) machine. In industry

where large machines are used, the energy savings would be significant.

2 = 1 and 2 vs. time in seconds.
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Real power  in Watts versus time in seconds. (The large transient in the

power at the beginning is due to the discontinuity in the acceleration - see the

speed trajectory)
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As explained above, the rotor time constant  = 12 is used to estimate

the rotor fluxes which in turn are used to estimate the direct and quadrature

currents for use in field oriented control. In field oriented control the motor

torque is given by  =  ( =



) which at constant speed reduces to

 = . For a given torque, the current magnitude 
2
 + 2 is minimized if

 =  [13]. Thus it is important to estimate the rotor flux angle accurately to

have accurate values of the  currents in order to achieve this minimization.

6 Conclusions
An approach to solving a nonlinear least-squares parameter identification prob-

lem in a finite number of steps was presented. This is in contrast to iterative

methods which may or may not converge and, even if convergences takes place,

it may be to only a local minimum. The method was presented by showing how

the rotor time constant of the induction machine can be found online. In this

application, the results show that an incorrect value of  leads to the controller

commanding non-optimum values of the stator currents to the machine which

in turn increases the Ohmic losses. That is, a higher power usage is required

for the same torque requirement.

References
[1] David Cox, John Little, and Donal O’Shea, IDEALS, VARIETIES, AND

ALGORITHMS An Introduction to Computational Algebraic Geometry and

Commutative Algebra, 2nd Edition, Springer-Verlag, Berlin, 1996.

[2] Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra,

Cambridge University Press, Cambridge, UK, 1999.

[3] Lennart Ljung, “Challenges of Nonlinear Identification”, 2003, Bode Lec-

ture, IEEE Conference on Decision and Control, Maui HI.

[4] Michel Fliess and S. T. Glad, Essays on Control: Perspectives in the Theory

and Applications, chapter An algebraic approach to linear and nonlinear

control, pp. 223—267, Birkhäuser, 1993.

[5] Hebertt Sira-Ramírez and Sunil K. Agrawal, Differentially Flat Systems,

Marcel-Dekker, New York, 2004.

[6] S. Diop, “Differential-algebraic decision methods and some applications to

system theory”, Theor. Computer Sci., vol. 98, pp. 137—161, 1992.

[7] F. Ollivier, Le problème de l’identifiabilité structurelle globale: Ètude

thèorique, mèthodes effective et bornes de complexitè, PhD thesis, École

Polytéchnique, 1990, Paris, France.

10

elizabethwalker
Text Box
This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright restrictions may apply.  DOI: 10.1007/978-3-642-16135-3_6




[8] Lennart Ljung and S. T. Glad, “On global identifiability for arbitrary

model parameterisations”, Automatica, vol. 30, no. 2, pp. 265—276, 1994.

[9] Gabriella Margaria, Eva Riccomagno, Mike J. Chappell, and Henry P.

Wynn, “Differential algebra methods for the study of the structural iden-

tifiability of biological rational polynomial models”, 2004, Preprint.

[10] M. P. Saccomani, “Some results on parameter identification of nonlinear

systems”, Cardiovascular Engineering: An Internation Journal, vol. 4, no.

1, pp. 95—102, March 2004.

[11] S. Diop, “Elimination in control theory”, MCSS, vol. 4, pp. 17—32, 1991.

[12] Werner Leonhard, Control of Electrical Drives, 3rd Edition, Springer-

Verlag, Berlin, 2001.

[13] John Chiasson, Modeling and High-Performance Control of Electric Ma-

chines, John Wiley & Sons, 2005.

[14] J. Stephan, M. Bodson, and J. Chiasson, “Real-time estimation of induc-

tion motor parameters”, IEEE Transactions on Industry Applications, vol.

30, no. 3, pp. 746—759, May/June 1994.

[15] J. Stephan, “Real-time estimation of the parameters and fluxes of induction

motors”, Master’s thesis, Carnegie Mellon University, 1992.

[16] John Chiasson and Marc Bodson, “Estimation of the rotor time constant

of an induction machine at constant speed”, in Proceedings of the European

Control Conference ECC’07, July 2007, pp. 4673—4678, Kos, Greece.

[17] A. Oteafy, J. Chiasson, and M. Bodson, “Online identification of the rotor

time constant of an induction machine”, in Proceedings of the American

Control Conference, 2009, pp. 4373—4378, St. Louis MO.

[18] KaiyuWang, John Chiasson, Marc Bodson, and Leon Tolbert, “A nonlinear

least-squares approach for estimation of the induction motor parameters”,

IEEE Transactions on Automatic Control, vol. 50, no. 10, pp. 1622—1628,

October 2005.

[19] Kaiyu Wang, John Chiasson, Marc Bodson, and Leon M. Tolbert, “An on-

line rotor time constant estimator for the induction machine”, in Proceed-

ings of the IEEE International Electric Machines and Drives Conference,

May 2005, pp. 608—614, San Antonio TX.

11

elizabethwalker
Text Box
This is an author-produced, peer-reviewed version of this article.  The final publication is available at www.springerlink.com. Copyright restrictions may apply.  DOI: 10.1007/978-3-642-16135-3_6



	Boise State University
	ScholarWorks
	1-1-2011

	Elimination Theory for Nonlinear Parameter Estimation
	John Chiasson
	Ahmed Oteafy

	llncsde2_bernouilli_5_bsu.dvi

