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A Study of the Lyapunov Stability of an Open-Loop Induction Machine
Ahmed Oteafy, Graduate Student Member, IEEE, and John Chiasson, Senior Member, IEEE

Abstract—The induction motor is widely utilized in industry and
exists in a plethora of applications. Until the last 20 years or so, it
was primarily used in an open-loop fashion (i.e., balanced sinu-
soidal voltages, constant load torque and viscous friction) with its
inherent stability counted on to allow operation over a wide range
of operating conditions. Unlike classical arguments based on the
steady-state torque-slip curve, a rigorous analytical stability argu-
ment using the full nonlinear dynamical model is presented. In par-
ticular, conditions for global asymptotic stability of the induction
motor in the sense of Lyapunov are given in terms of the motor pa-
rameters, operating slip, and synchronous frequency.

Index Terms—Global asymptotic stability, induction motor, Lya-
punov stability, open-loop stability, power balance equation.

I. INTRODUCTION

A CLASSICAL way of depicting the steady-state operation
of the induction motor is the torque versus slip curve as

shown in Fig. 1 (see [1] and [2]). We denote the stator electrical
frequency as , the steady-state rotor speed as , the number
of pole-pairs as , and the normalized slip as

(1)

In Fig. 1, is the steady-state output torque of the induction
motor, is the peak torque, and is the pull-out slip which
corresponds to the peak torque .

The torque versus slip curve indicates the stability of the in-
duction motor about steady-state operating points, but does not
ensure it. For example, the stable steady-state operating points
for motoring must satisfy . To explain, suppose
the motor is operating at slip producing the torque as
shown in Fig. 1. Then an increase in the load torque on the ma-
chine would slow the motor down decreasing the steady-state
speed . As (1) indicates there is a consequent increase in
the steady-state slip (i.e., a shift to the right from the oper-
ating slip in Fig. 1). The increased slip gives an increase in
the steady-state output torque accommodating the increase in
load torque. On the other hand, consider the motor operating
at the slip in Fig. 1 producing the same steady-state
output torque as when operating at . Now an increase in
the load torque again results in a decrease in and thus an
increase in the steady-state slip [see (1)], i.e., to the right of
in Fig. 1. However, as Fig. 1 shows, a lower output torque is
now produced which cannot meet the increased load demand.
Hence the motor will stall. Note that this argument is based on
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Fig. 1. Torque versus normalized slip curve. The linearized system model is
unstable for � � � and may or may not be stable for � � � .

steady-state conditions and does not account for transients. In
fact it can be shown analytically (see the Appendix ) that with
no viscous friction, the operating points for which have
a corresponding linearized system model that is unstable.1 On
the other hand, operating points with may or may not
be stable (even with viscous friction) as was shown in [3] and
[4] where a linearized analysis was employed. A fundamental
observation here is that stability cannot be ascertained from the
torque versus slip curve. Consequently, we argue that a rigorous
stability analysis is needed.

In this work, we analyze the open-loop stability of induction
machines, i.e., the input is a fixed set of sinusoidal steady-state
voltages, the load consists of a constant load-torque and a
viscous friction load , . In particular, using Lyapunov
theory we give sufficient conditions for global asymptotic sta-
bility (GAS) of the machine. Roughly speaking, these condi-
tions are satisfied for a lightly loaded machine when

, where , are the stator and rotor re-
sistance values, respectively, and is the mutual inductance.
That is, we analytically prove that under such conditions, the
machine can be started from rest up to its operating speed run-
ning in open-loop. The detailed analysis presented here and the
latter result are an extension to an earlier version given in [5].

To understand why starting an induction machine requires a
light load, consider the machine at rest, so and

. Then usually so that at the startup of the motor,
the (instantaneous) slip . As Fig. 1 shows, the torque
produced by the motor is then low and thus the motor must be
lightly loaded so that it can come up to full speed under open-
loop conditions. After getting up to full speed, the motor can
then be loaded and run stably.2 A contribution of this work is to
show this rigorously using analytical techniques.

1See also [2, p. 175].
2Consequently, one cannot expect to obtain globally asymptotically stable

results for a fully loaded machine.
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We begin in Section II by deriving a nonlinear error model
of the induction motor (about an arbitrary operating point) in
the stator field coordinate system. In Section III a power bal-
ance equation of the motor is developed that is then rewritten
in terms of error state variables. The results of Section III are
then utilized in Section IV to develop a Lyapunov function that
is used to obtain sufficient conditions for the global asymptotic
stability of the induction motor. Section V provides a numerical
example to illustrate the theoretical results. Finally, concluding
remarks are presented in Section VI.

To our knowledge there has not been much work reported in
the literature applying Lyapunov theory to study the open-loop
stability of the induction motor using the full differential equa-
tion model of the machine. One exception is the work of Ahmed-
Zaid in [6] where a Lyapunov approach (integral manifold) was
used to study the stability of an induction generator connected to
the grid whose stator resistance was zero and where some of the
transients were neglected. On the other hand, for closed-loop
control there has been extensive work using Lyapunov (pas-
sivity)-based ideas for induction machines most notably in [7]
and the references therein.

II. STATOR FIELD MODEL OF THE INDUCTION MOTOR

The starting point for the analysis is the two-phase equivalent
model of the motor (see [1] and [2]). The parameters of the two
phase induction motor are the stator-side inductance and
resistance , the rotor-side inductance and resistance ,
the mutual inductance , the number of rotor pole pairs ,
the moment of inertia of the rotor , and the viscous friction
coefficient .

The variables consist of the angular position of the rotor ,
the angular speed , the load torque , the stator
currents and , the stator voltages and , and the
rotor currents and , where and denote the equivalent
two phases of the motor.

A. Space Vector Model

A space vector model of the induction motor is [1], [2]

(2)

where the state vector’s (complex) stator current, rotor current
and stator voltage are defined as

The total load torque on the motor is defined as

where denotes the external load torque exerted on the rotor,
and is henceforth assumed to be constant.

B. Stator Field Coordinate System Model

Next, the model (2) is transformed into a stator field coordi-
nate system. The transformation is defined as

(3)

or

(4)

where is the electrical frequency of the voltage source ap-
plied to the stator and is assumed to be constant. Substituting
(4) into the space vector model (2) and simplifying results in

(5)

Expanding into real and imaginary parts, we obtain the state
space representation

(6)

where

and is the leakage factor defined as
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The equilibrium conditions are obtained by setting the deriva-
tives in the stator field model (5) to zero and then equating the
real and imaginary parts to obtain

(7)

C. Error Model

Next, to facilitate the Lyapunov analysis of the induction
motor, we translate the origin of the system (6) to an arbitrary
equilibrium point given by

which is a solution to (7). The set of error state variables about
this equilibrium point are defined as

(8)

Eliminating the state variables in the model (6) using the error
variables given by (8) we obtain the error model of the induction
motor

(9)

where , and are given in (10)-(11) at the bottom
of the page.

The term consists of quadratic terms and is independent
of the equilibrium point. The system is dominated by the linear
term near the equilibrium point . Equation (7) which
determines the equilibrium points may be rewritten as

(12)

(13)

where is given in (14) at the bottom of the page. We selected
the set-points for the voltages , , and the speed ,
and then computed the corresponding equilibrium currents ,

, , and using (13). The resulting load torque
is determined by (12). In other words, one specifies , ,
and , and then uses

(15)

and

(16)

to obtain the currents and load torque. We further require that
.

(10)

(11)

(14)
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III. POWER BALANCE EQUATION

The Lyapunov candidate function will be derived from a
power balance equation that characterizes the power transfer
between the input and output of the motor.

A. Power Balance Equation

First we define the magnetic field energy of the motor
and the mechanical energy as (see [1])

(17)

and

(18)

The power balance equation in terms of the stator field coordi-
nate variables is given by

(19)

B. Error State Variables

Using (8), we now rewrite (19) in terms of the error variables
taking into account the equilibrium conditions (7) as

(20)

where

IV. LYAPUNOV STABILITY OF THE INDUCTION MOTOR

In this section, the power balance (20) is used to obtain a
Lyapunov candidate function .

Define the function by

where

This ensures , however is not assured to be posi-
tive definite. Next is rewritten as

(21)

where

(22)

and

(23)

The derivative of is of course the same as the right-hand
side of the power balance (20), which is now rewritten as

(24)

where

A. Lyapunov Candidate Function and its Derivative

Next, using as defined in (22) above, a candidate Lyapunov
function is constructed by defining

(25)

The derivative of this Lyapunov candidate function is thus
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Using (9) this becomes

which can be rewritten as

(26)

where is given in (27) at the bottom of the page, and
or explicitly

where the substitution , holds because
in open-loop operation these input voltages are held fixed.

However, with reference to (7) one sees that the components
of are the equilibrium conditions and therefore . Hence,
the Lyapunov candidate function and its derivative are, respec-
tively

(28)

and

(29)

The leading principal minors of the matrix are

As all of the leading principal minors of are positive, is
positive definite [8]. Furthermore,
and as we have as .

B. GAS of an Unloaded Induction Motor

We first consider the special case with the machine operating
at . This means there is no load on the machine (both

and ) as the machine produces no torque if the
slip is zero. We first show that is positive semidefinite and
then use LaSalle’s theorem [9] to conclude global asymptotic
stability. With and [so —see
(42)] the matrix in (27) reduces to

We now show is positive semidefinite. Recall that a ma-
trix is positive semidefinite if and only if all the principal
minors are non-negative (see [8, p. 74]). The nonzero 1 1
principal minors of have values the nonzero
2 2 principal minors of have values and

, the nonzero 3 3 principal minors
of have values

, and the single nonzero 4 4 principal minor

of has the value . Finally, the
only 5 5 principal minor is zero. Consequently, is positive
semidefinite if and only if

(30)

Remark: If then is neither
positive semidefinite nor negative semidefinite.

LaSalle’s theorem tells us that the induction motor system (9)
is globally asymptotically stable in the sense of Lyapunov if (see
corollary 4.2, [9, p. 129])

(a) and .
(b) .
(c) .
(d) as .
Conditions (a) and (d) hold for defined as in (28). Condition

(b) holds as and was just shown to
be positive semidefinite with the assumption of condition (30).
To check condition (c), suppose the derivative of the Lyapunov
function is identically zero, that is

(31)

(27)



1474 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 18, NO. 6, NOVEMBER 2010

We begin by showing that (31) implies
. This in turn is accomplished by first showing that

(31) implies . To this end, note that

(32)

which upon expanding becomes

(33)

Subtracting (31) from (33), we have

or

(34)

We now require that (30) hold with strict inequality, that is

(35)

noting that as .
Using (35), we obtain a contradiction in (34) unless

. For example, if and then
choose the sign in the first term of (34) and the sign in
the second term of (34) so that the inequality (35) implies (34)
is negative, which is a contradiction. Similarly, regardless of the
signs and a contradiction will always result unless

. With this result, it then follows from (31) that

or equivalently

Finally, we show To do so, note that (9) still holds,
that is

(36)

With it follows that
. Also, setting in (14) and solving (15) shows

the steady-state rotor currents are zero. However, the steady-
state stator currents are not zero for . Thus (36) reduces
to

(37)

which can only hold if
Thus, with (i.e., no load) and

all the conditions
of LaSalle’s theorem hold and the (unloaded) induction motor
system is globally asymptotically stable.

Remark: An alternative candidate Lyapunov function could
be

where .
Also, a straightforward calculation shows that

(38)

Then, the derivative of the Lyapunov candidate function be-
comes

However, straightforward calculations show that with
( ), the matrix is indefinite so this
Lyapunov candidate function is not helpful.

C. GAS of an Induction Motor With Load

With defined as in (28), the induction motor is globally
asymptotically stable (GAS) in the sense of Lyapunov if (see
[9, Th. 4.2, p. 124])

(a) and .
(b) .
(c) as .
We have already shown that satisfies conditions

(a) and (c). We now find conditions under which in (27) is
positive definite. Recall that a matrix is positive definite if and
only if its leading principal minors are positive [8]. The leading
principal minors of are

To get we can require that the two factors of be
positive,3 i.e.,

(39)

(40)

3We could also require both factors to be negative. However, rewriting � in
terms of � and taking the limit as � � � we have ��� � � �� �� � �

��� � ��	 	. Hence, we could not get � to be positive definite for small
slip values with � � � ��� � ��	 	 �
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Clearly for (40) to be positive requires which also implies
. Also it is easily seen that (40) positive implies (39) is

positive. Thus if (40) is positive. Note that
implies To consider rewrite (40) as

which implies so that (40)
implies .

Similarly, multiplying (40) by and rearranging
gives

(41)

and thus (40) implies . In summary, is positive definite
if (40) is positive.

Using (15) with replaced by , the sum of
the squares of the steady-state rotor currents can be written as

(42)

where is the determinant of the matrix in (14) and is
given by

(43)

Note that for . Using ,
(40) can be written as a function of given by

(44)

By (43), we have for all . It then follows upon
multiplying (44) through by that the condition for to be
positive definite is

(45)

Note that

assuming the condition . Thus is a
polynomial in which is positive for . Then there exists
an such that and for .
Thus we are assured of finding an interval of values of

for which is positive definite.
This is not quite a sufficient condition for global asymptotic

stability because we are implicitly assuming the external load
torque given in (16) is non-negative. Using (15) to eliminate

the stator and rotor currents in (16) and ,
we can rewrite the condition [see (16)] as

(46)

Multiplying through by this becomes the polynomial con-
dition

(47)

To give some insight that there are positive values of satis-
fying condition (46) [equivalently (47)], consider rewriting the
steady-state torque as

which is a good approximation for small (see Fig. 1). Then
the condition (46) simplifies (approximates) to

(48)

or

(49)

where denotes the smallest positive real root of (47).
Theorem: GAS of an Induction Motor with Load.
If
1) and .
2) Assume with and defined as above.

Then the induction motor is globally asymptotically stable for

Remarks: Note that with any load on the machine
so that if then and cannot possibly

be positive definite or even positive semidefinite. Similarly, note
for example that if then cannot be positive definite
or even positive semidefinite with .

V. NUMERICAL EXAMPLE

In this section, a numerical example is presented to demon-
strate the analytical results and their application. Namely, an ex-
ample is presented to illustrate the test for global asymptotic
stability.

Consider a small induction motor with the following param-
eter values (see [1]): 0.0117 H, 0.014 H,
0.014 H, 1.7 , 3.9 , 0.00014 N m/rad/s,

0.00011 kg m , , 60 rad/s. With
the input voltages set as 50 V, 0 V, and the
steady-state speed chosen as 124 rad/s, the normalized
slip is
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First, checking condition (1) of the theorem we have

Second, substituting the parameter values into (45) and (47),
the numerical values of and can be computed. Specifi-
cally, solving for the smallest positive real root of (47) gives

while the other two roots of (47) are complex conjugates.
Solving (45) for its smallest positive real root gives

where the other roots of (45) consist of a complex conjugate pair
and a negative real root. Thus the system is globally asymptoti-
cally stable for

In our example, so the system is globally
asymptotically stable at this slip. The corresponding equilibrium
currents and external load torque set point are computed from
(15) and (16) as 2.852 A, 8.521 A,

0.128 A, 0.040 A, and 0.025 N m.
In the no load case for this machine, that is, taking ,

, and , it is straightforward to verify that
condition (35) holds. Consequently, the machine is GAS in the
no load case as well.

VI. CONCLUSION AND DISCUSSION

Sufficient conditions for the global asymptotic stability of
an open-loop induction motor have been derived in this work.
Roughly speaking, under either no load or lightly loaded condi-
tions, it was shown that the induction motor is globally asymp-
totically stable if . Though such
behavior of a lightly loaded machine is empirically known, to
the authors’ knowledge this is the first analytical result showing
this. In particular, as it guarantees GAS, the machine will start
from rest.

With significant load on the machine, it is usually not globally
asymptotically stable. In particular, it is well known that open
loop starting of an induction machine under load is a challenge.
One common method is the addition of resistance in series with
the rotor (using a wound rotor machine) to shift the peak of the
torque slip curve to the right so the starting torque is increased.
Thus the motor parameters are changed to help with its starting
torque. Though not the same, this is consistent with the con-
dition given in our work, that
is, increasing the value of helps. The torque-slip curve has
long been used to give an (imprecise) indication of the operating

point stability of the induction machine. In contrast, the analysis
presented here gives conditions that (precisely) ensure GAS.

The conditions for Lyapunov stability presented here appear
to be rather restrictive, however this seems most likely due to
the inherent dynamics of the induction machine. With the Lya-
punov candidate function chosen as in (25), the system will be
either GAS, that is in (29) is positive definite, or no conclu-
sion on Lyapunov stability can be inferred. A question therefore
presents itself as to whether another Lyapunov function exists
that allows one to obtain less restrictive conditions for GAS.
However, the Lyapunov function chosen here was based on en-
ergy (power) and the choice of another such function is not at
all obvious to the authors.

APPENDIX

The linearized system matrix given in (10) with
can be written as a function

of the normalized slip as using (15), and
and setting , . With , its

characteristic equation has the form

(50)

where (
).
Straightforward calculations show that for all
However, for the term and for

the term . Thus the linearized system is unstable for
.
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