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Joint Loop End Modeling Improves Covariance Model 
Based Non-coding RNA Gene Search 

 
Jennifer Smith 

Boise State University 
 

Abstract. The effect of more detailed modeling of the interface between stem and 
loop in non-coding RNA hairpin structures on efficacy of covariance-model-based 
non-coding RNA gene search is examined. Currently, the prior probabilities of the 
two stem nucleotides and two loop-end nucleotides at the interface are treated the 
same as any other stem and loop nucleotides respectively. Laboratory 
thermodynamic studies show that hairpin stability is dependent on the identities of 
these four nucleotides, but this is not taken into account in current covariance 
models. It is shown that separate estimation of emission priors for these nucleotides 
and joint treatment of substitution probabilities for the two loop-end nucleotides 
leads to improved non-coding RNA gene search. 

Keywords: sequence analysis, RNA gene search, covariance models 

1   Introduction 
Covariance models are an effective method of capturing the joint probability information inherent in 
the intramolecularly base-paired positions of a non-coding RNA molecule [1, 2]. Unlike profile hidden 
Markov models [3, 4], which have a set of four emission probabilities over the possible nucleotides at 
each consensus sequence position, covariance models allow consensus base pairs to be assigned sixteen 
joint probabilities over the possible ordered nucleotide pairs. Covariance models also allow the 
probability of insertion or deletion of a base pair to be different than the sum of the marginal 
probabilities of insertion or deletion of the individual nucleotides. The profile hidden Markov model 
can be viewed as a special form of a covariance model with no base pairs specified. 
 
Covariance models are finite state machines which require the estimation of state emission and state 
transition probabilities as well as model structure. This is normally done using a family of known 
sequences in a multiple alignment with secondary structure annotation. Counts of nucleotide 
frequencies in unpaired consensus columns or nucleotide pair frequencies in couples of base-paired 
consensus columns form the basis for emission probabilities. Counts of missing nucleotides in 
consensus columns and of nucleotide presence in non-consensus columns can be used to generate 
transition probabilities in and out of deletion and insertion states respectively. 
 
Conceptually, estimation of emission and transition probabilities is as simple as calculating the 
observed frequency of occurrence in the multiple alignment. The reality is much more complex. The 
very small number of family sequences that most RNA family models are estimated from is a major 
problem. In the Rfam 9.1 (December 2008) database of RNA alignments and covariance models, more 
than half of the 1371 family models are estimated from ten or fewer sequences [5, 6]. Most of the 
possible mutations, insertions, or deletions are never observed even though we have no particular 
reason to believe that they should be excluded from consideration. At very least pseudocounts need to 
be added to all possibilities such that the probability estimates do not outright exclude them. 
Pseudocounts are a form of prior information used in the estimation. 
 
Far more informative priors than simple pseudocounts are needed for effective estimation of family 
models formed from so few sequences. Generic mutation, insertion, and deletion probabilities are 
obtained via observed frequency from the entire database of all RNA families. The generic emission 
and transition probabilities are found separately for base-paired and non-base-paired positions and with 
dependence on whether adjacent positions are paired or not. It will be demonstrated that these 
classifications are not quite fine enough later in this paper. In order to automatically uncover groups of 
mutation, deletion, or insertion patterns that tend to be observed together, these generic priors are 
estimated as a Dirichlet mixture [7] in recent versions of the Infernal [8] suite of programs for 
covariance-model-based RNA family analysis and search. 
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When combining the observed-frequency information from the multiple alignment of a specific family 
with the generic prior information, it is necessary to obtain a weighting based on our confidence in the 
family specific data versus our generic information. Having more sequences in the specific family 
increases our confidence in that data. However, simple counts of number of sequences are not very 
effective because our set of known sequences is rarely a random sample of actual sequences from the 
true complete family. We may have many sequences that are nearly identical and only a few with lots 
more diversity. This causes a simple count of number of sequences to overestimate the true information 
content. The usual solution to this problem is to employ entropy weighting based on the variability of 
the known family sequences [9]. 
 
There is a large literature on RNA secondary structure estimation based on primary sequence [10, 11]. 
Much of this literature uses the results of laboratory thermodynamic studies of RNA as its basis. These 
thermodynamic measurements are not used in covariance-model-based RNA family modeling. Instead, 
observed mutations, insertions, and deletions within the family or over the entire database (the priors) 
are used. However, it may be useful to study the regularities in RNA free energy measurements in the 
laboratory to guide choices in how covariance models are constructed. From the laboratory, we know 
that the identities of the nucleotides at the interface between the stem and the loop of a hairpin structure 
greatly affect thermodynamic stability of the hairpin structure. We also know that the length of the loop 
is a factor in stability. The mechanisms to capture these regularities are weak and nonexistent, 
respectively, in current covariance modeling practice. This paper will examine the stem/loop interface, 
but not loop length. 
 
Some initial evidence that interface nucleotides and loop length might be important was found by 
Smith and Wiese [12]. This paper presents much more evidence for the stem/loop interface. It also 
looks at implementing a new type of node in the covariance model that can get around some of the 
problems encountered in tricking the existing Infernal program suite into handling the loop end 
nucleotides jointly. 
 
The next section will review covariance models and estimation of model parameters in more detail. 
Section 3 looks at the regularities in free energy change when forming RNA hairpins observed in the 
laboratory. Changes to covariance model structure and parameter estimation procedure that can capture 
the observed thermodynamic regularities is presented in Section 4. Results of computational 
experiments on data from the Rfam database are presented in Section 5, followed by conclusions. 
 
2   Covariance Model Structure and Parameter Estimation 
Covariance models are finite state machines composed of emitting and silent states and directed edges 
connecting some of the states to some of the others. There is a unique starting state (called the root start 
state) and one or more terminal states (called end states). Given any nucleotide sequence it is possible 
to find the most probable mapping of the sequence onto model state visits and the associated overall 
probability of this mapping. Given a family of sequences, it is possible to find a set of state emission 
and state transition probabilities such that the overall probability when mapping a family member to the 
model is high and of mapping a dissimilar sequence to the model is low. 
 
2.1   Model Structure 
The states of a covariance model and the connectivity of these states can be determined from a 
consensus secondary structure of the RNA family. RNA secondary structure is a listing of pairs of 
sequence positions that intramolecularly base pair. The state structure can be described at a high level 
through the use of node trees, where nodes of a given class have identical internal state structure. 
 
Figure 1 shows an example of a consensus secondary structure for an RNA family (right). The letters 
refer to the consensus nucleotides and the subscripts to the consensus sequence positions. The figure 
also shows the covariance model node tree for the same secondary structure. S, B, and E-type nodes 
contain no consensus emitting states. L and R-type nodes contain a single-emission consensus state and 
P-type nodes contain a pair-emission consensus state. The model is entered at the root start state 
located in the S0 node and has two exit points at the end states contained in nodes E12 and E22. 
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Fig. 1. An example consensus RNA 
secondary structure (right) and associated 
covariance model node tree (left).  

The node tree is simply a guide for constructing the underlying state model. The state model is the final 
model of interest. Figure 2 shows internal state structure of some of the nodes from the node tree in 
Figure 1. Nodes of the same type have the same internal structure, so constructing the state machine 
from the node tree is straightforward. There is a standard rule for how to connect edges from states in 
one node to states in an adjacent node. Each node contains one consensus state and varying numbers of 
non-consensus states. P, L, R, IL, and IR states types are emitting and all others are silent. D states 
allow for deletions relative to the consensus and IL or IR states allow for insertions. 

2.2   Model Parameters 
Once we have state structure, it is necessary to estimate emission probabilities for emitting states and 
transition probabilities for each edge connecting states. These probabilities are converted to log-
likelihood ratios so that the total (log) probability of a particular path can be computed as the sum of 
transition and emission probabilities along the path. Dynamic programming can then be used to find 
the most probable path for a given sequence. 
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Fig. 2. Internal state structure of portions of the example covariance node tree from Figure 1. 

The parameters are estimated through a weighted combination of observed frequency of events in the 
family multiple alignment and the prior for the parameter. The priors in turn depend on the type of 
node holding the state and on adjacent node types. As an example, transition probabilities into and out 
of the D state in the R3 node at the top of Figure 2 would depend in part on the count of the number of 
gap characters in the twenty-third consensus column of the family multiple alignment. The R state in 
the R3 node is the consensus state which emits a consensus U and the D state in the R3 node is used to 
bypass this emission when a sequence has a deletion at this position relative to the consensus. Even 
though U is the consensus nucleotide for position 23, there are actually four emission probabilities 
associated with the R state in node R3. The probability for U is simply the highest of the four. 

3   Thermodynamic Regularities 
The thermodynamic stability of RNA hairpins is a fairly well studied topic [13-18].  Using calorimetry 
observations of the folding of short synthetic strands of RNA, models of the free energy of larger 
hairpin structures can be inferred. These models are used extensively in algorithms to predict secondary 
structure of RNA from sequence. These algorithms are based on the idea that the final conformation of 
an RNA molecule will be close to that of the minimum free-energy conformation. 
 
Two of the major observations from the laboratory data is that hairpin stability depends on the number 
of nucleotides in the loop and on the identities of the four nucleotides at the stem-loop interface. The 
loop-length observation is relevant to covariance models and should be addressed, but the focus in this 
paper is on the stem-loop interface observation. 
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In Figure 3, the stem-loop interface is composed of the closing pair U15 and A20 as well as the loop 
ends A16 and C19. Although the structure appears symmetric in the figure, the free energy of the 
structure shown for GGUAACCAUC is different than its mirror CUACCAAUGG. In other words, it 
maters which side of the stem-loop interface is 5' and which is 3'. Covariance model P nodes can emit 
any of the sixteen possible ordered pairs of nucleotides.  In the middle of a stem it makes sense to allow 
all sixteen possibilities since a mutation from a Watson-Crick or wobble base pair (a canonical base 
pair) to a non-canonical pair can be held together by adjacent base pairs in the stem without necessarily 
destroying the stem. If the closing pair becomes non-canonical, then effectively the loop length 
increases by two and the next pair up the stem becomes the closing pair. So, there are really only six 
consensus ordered pairs to consider for the closing pair: AU, UA, CG, and GC (Watson-Crick) as well 
as the wobble pairs GU and UG. In the Rfam database, consensus wobble pairs are very infrequent at 
the closing pair position  (observed only about 4.1% of the time in version 8.1). 
 
In the work of Vecenie and Serra [13] a number of regularities are noted regarding the thermodynamic 
stability of hairpin structures when different nucleotides are present in the stem-loop interface. They 
note that if the closing pair is CG or GC and loop ends are GA or UU (but not AG), then the hairpin is 
much more stable. They also note that if the closing pair has a purine (A or G) on the 5' side, the GG 
loop ends are particularly stable. 
 
It is hypothesized here that some RNA families may not be able to function as well with less stability in 
one or more of their hairpins. If this is so, then it would be desirable to penalize database search scores 
when the database sequence implies a mutation away from one of the very stable consensus 
configurations noted above. Unfortunately, covariance model structure and parameter priors do not 
allow for these thermodynamic regularities to be expressed either directly or indirectly. 

Fig. 3. A portion of the RNA secondary structure and covariance node tree from Figure 1 showing a 
single hairpin with the locations of the stem's closing pair and the loop ends labeled. 

4   Changes to Model Structure and Estimation 
A major problem making expression of the thermodynamic regularities described in the previous 
section not possible is that the four nucleotides in the stem-loop interface are contained in three 
covariance model nodes with independent emission probabilities. Another problem is that the priors 
used for these emission probabilities are estimated as a mixture of database locations corresponding to 
stem-loop interfaces and to other structures. 
 
To allow for expression of a regularity such as stable GG loop ends when the 5' side of a closing pair is 
A or G requires a new type of covariance model node. Such a node replaces a P node and two L nodes 
of a hairpin structure. In Figure 3, these are the P17, L18, and L21 nodes. Two hundred fifty six joint 
emission probabilities are needed for the consensus state of this node type. Since 160 of these 
combinations are not seen in practice (the combinations with non-canonical closing pairs), they can 
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simply be assigned a very low probability, leaving only 104 emission probabilities that need to be 
estimated. Since wobble pairs are relatively rare, it may also be desirable to treat them as a class with a 
single emission probability (but a different value than for non-canonical pairs). This would leave 64 
emission probabilities to be estimated for the Watson-Crick closing pairs. Clearly, heavy reliance on 
priors for these probabilities is needed since so few families have known sequences numbering in the 
hundreds and even fewer have enough variation in the observed stem-loop interface nucleotide 
combinations. 
 
Implementation of a new node type requires significant programming effort to rewrite program suites 
such as Infernal. A partial solution is to at least express the joint probability of the two loop end 
nucleotides by tricking the existing algorithms. If the two loop-end L nodes are replaced by a single P 
node modeling these loop ends, expression of the joint probabilities of emission is possible. In Figure 
3, the L18 and L21 nodes would be removed and replaced by a single P18 node directly below the 
existing P17 closing-pair node. In practice this can be accomplished simply by marking the two loop 
ends as if they were consensus base pairs in the input multiple alignment file to the cmbuild program of 
the Infernal program suite. 
 
Using the P-node substitution trick does cause a couple of problems with priors. Firstly, The closing-
pair P node will now use priors associated with a P node with P node child rather than the correct P 
node with L node child priors. This first problem can be solved by running the cmbuild program twice, 
once with and once without the loop ends marked as base paired. Then parameter estimates for the 
closing-pair P node in the second run are used in place of the estimates in the first run. The second 
problem is that the priors for the fake loop-end P node are completely wrong. The standard P node 
priors are generated from stem locations in the overall Rfam database with high probabilities for 
Watson-Crick base pairs, somewhat lower probabilities for wobble pairs and very low probabilities for 
non-canonical pairs. Instead, sets of priors for these loop-end P nodes are estimated on the side, one set 
for each possible consensus closing pair.  
 
The loop-end P-node trick allows for a one-way dependence of loop-end emission probabilities on 
consensus closing pairs. It would be possible to also regenerate sixteen sets of priors for closing-pair P 
nodes and use the one associated with a given family's consensus loop ends. This two-way dependence 
would still not be quite as good as full use of joint probabilities. 
 
5   Experimental Results 
This section looks at results of using a P-node to model loop ends with non-standard priors on the loop-
end P node only (and not for the closing pair P node). 
 
First, the entire Rfam 8.1 database was processed and all 26,644 hairpin structures in all the seed 
sequences extracted. Since some RNA families have no hairpins and others have multiple hairpins, this 
number is different than the total number of seed sequences in the database. Table 1 shows the raw 
counts of number of observed loop-end pairs for each observed closing pair. Since wobble closing pairs 
are infrequent, they were not compiled separately, but are including the "All" column (such that the 
AU, UA, CG and GC columns do not add up to the All column). These raw counts are not that useful 
because the background frequencies of A, C, G and U are not each one quarter. To remedy this, Table 2 
shows the same data as base-2 log-likelihood ratios. The log form is what is used by Infernal in order 
that the algorithm calculate additions instead of multiplications and it is visually useful since positive 
values are more likely than chance and negative less likely. 
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Table 1.  Counts of loop-end nucleotides in the full Rfam database (in 26,644 hairpins from all seed 
sequences from Rfam 8.1). 

Loop 
End 

Stem Closing Pair 
AU UA CG GC All 

AA   318   302 2173 1098 4054 
AC     94     25   293   147   628 
AG   113     32   694   114 1013 
AU   110     66   454   208   859 
CA   671 1269   865   163 3007 
CC   301     72   128   133   692 
CG     42   146 1099     86 1405 
CU   115   104   678   175 1133 
GA   175   182 1387 2270 4202 
GC     62     43   170     92   378 
GG     94   235   285   160   844 
GU     48     34   123   153   410 
UA   359   131   450   332 1318 
UC   174   257   238   324 1104 
UG     65     23 1158   219 1495 
UU   207   140 1204 2459 4102 
All 2948 3061 11399 8133 26644 

 

 

Table 2.  Base-2 log-likelihood ratios using raw data from Table 1 (corrected for background 
frequencies of A, C, G, and U). 

Loop 
End 

Stem Closing Pair 
AU UA CG GC All 

AA   0.16   0.03   0.98   0.48   0.65 
AC  -0.93  -2.89  -1.24  -1.75  -1.36 
AG  -0.88  -2.76  -0.22  -2.33  -0.89 
AU  -1.15  -1.94  -1.06  -1.70  -1.36 
CA   1.91   2.77   0.32  -1.60   0.90 
CC   1.43  -0.69  -1.76  -1.22  -0.55 
CG  -1.64   0.11   1.12  -2.07   0.25 
CU  -0.41  -0.61   0.19  -1.27  -0.29 
GA  -0.25  -0.25   0.78    1.98   1.16 
GC  -1.07  -1.66  -1.57  -1.97  -1.64 
GG  -0.69   0.57  -1.04  -1.39  -0.70 
GU  -1.90  -2.45  -2.49  -1.69  -1.98 
UA   0.55  -0.96  -1.07  -1.02  -0.75 
UC   0.18   0.69  -1.32  -0.38  -0.33 
UG  -1.46  -3.01   0.75  -1.17  -0.11 
UU  -0.02  -0.64   0.57   2.09   1.11 

 
 

Some of the regularities noted in section 3 are apparent in Table 2. GA and UU loop ends are 
overrepresented by a factor of four when the closing pair is GC and by a factor of two when the closing 
pair is CG (but not for AU or UA closing pairs). Some other combinations have deviations of up to a 
factor of eight (for example UG loop ends on a UA closing pair). 
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The log-likelihood ratios of Table 2 were used as priors for loop-end P nodes on the fourteen shortest 
RNA families in the Rfam database which contained a hairpin without a pseudoknot. Pseudoknots are a 
situation where at least one pair of base pairs is such that neither base pair is completely between the 
other in sequence [19]. Covariance models use stochastic context-free grammars [20], which are 
incapable of describing a pseudoknot. Covariance models handle pseudoknots by treating some of the 
actually base-paired positions as if they were unpaired. Since what appears to be a hairpin in the node 
tree of pseudoknotted RNA families is actually something somewhat more complex, they will not be 
considered. The amount of computation time require to calculate E-values for covariance models is 
extremely high and goes up by more than the square of sequence length and short sequences are the 
most difficult to find in database search, so short sequences were chosen for this experiment. 
 

 
 
Table 3.  Ratios of E-values using stem closing pair specific priors to E-values using standard priors on 
the full set (seed plus those found by search) of sequences in 14 Rfam families. 

RF 
Acc. 

    Family Properties                         E-value Ratios 
Length Number Mean Max Min 

00032    26 1046   1.64   2.20   1.02 
00037    28 318   1.91   2.25   1.58 
00453    33   30   2.67   3.60   1.81 
00196    35     8   1.21   1.83   0.75 
00180    36   30   1.82   3.01   1.08 
00469    36 344   0.24   0.34   0.16 
00385    41   41   1.66   2.42   1.09 
00496    42   13   0.86   0.97   0.75 
00164    42 302   1.32   1.91   0.87 
00207    44     6   1.41   2.20   0.86 
00617    45 426   1.47   2.43   1.16 
00197    45   25   0.99   1.13   0.87 
00500    45     5   1.58   2.63   0.66 
00522    46   63   1.63   2.91   0.94 
Mean     1.46   
 

Table 3 shows the results of the computational experiment. The first two columns show the length of 
the consensus sequence and the number of known family sequences. Both the seed sequences used to 
construct the family models and those found through database search by the curators of Rfam are 
included in this number. E-values are calculated by the Infernal program suite by reshuffling the known 
sequence many times (5000 times chosen for this study), scoring each reshuffled sequence against the 
family covariance model and then and fitting the resulting scores to a Gumble extreme value 
distribution [21]. The score of the unshuffled sequence is then used to find the probability of matching 
or exceeding the unshuffled score by pure chance. Lower E-values imply better specificity given that 
the threshold is set such that the sequence is just barely accepted as a true positive. The E-value ratios 
shown are the ratio of the E-value using the standard covariance model divided by the E-value with the 
loop-end P node. Ratios greater than one mean that using the loop-end P node has more power than the 
standard model. A E-value ratio of two means that we expected twice as many false alarms from the 
standard model. 
 
On average, in only two cases (Rfam accession numbers RF00469 and RF00496) did modeling the 
loop ends jointly do significantly worse and in most cases it did quite a bit better. 
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6   Conclusions 
Laboratory studies indicate that there is a significant effect on RNA hairpin stability of the specific 
nucleotides at the interface between stem and loop. Covariance models as currently used for database 
non-coding RNA gene search can not capture the thermodynamic regularities know from these 
laboratory studies. Ideally, modification of the covariance-model-based search algorithms to jointly 
model the probabilities of the four nucleotides at the interface would solve this problem, but at the 
expense of significant programming effort. However, some of the benefits of joint modeling can be had 
by tricking the existing algorithms by using a P-type node for the loop ends and using a new set of 
priors for these nodes than depend on the consensus closing pair.  
 
Limited testing on the fourteen shortest Rfam families with a hairpin and without a pseudoknot show 
that specificity does seem to improve given fixed sensitivity when this P-node trick is employed. 
 
Additional testing is needed to be more conclusive. In order to make this feasible, a more automated 
way to generate parameter files for Infernal needs to be developed (currently, it involves manual cut 
and paste and running a side program). Also, access to a computer cluster is needed to calculate E-
values for many more and much longer sequences. These tasks are currently being undertaken by the 
author. 
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