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Abstract

An important class of gels are those composed of a polymer network and fluid solvent.
The mechanical and rheological properties of these two-fluid gels can change dramatically
in response to temperature, stress, and chemical stimulus. Because of their adaptivity,
these gels are important in many biological systems, e.g. gels make up the cytoplasm
of cells and the mucus in the respiratory and digestive systems, and they are involved
in the formation of blood clots. In this study we consider a mathematical model for
gels that treats the network phase as a viscoelastic fluid with spatially and temporally
varying material parameters and treats the solvent phase as a viscous Newtonian fluid.
The dynamics are governed by a coupled system of time-dependent partial differential
equations which consist of transport equations for the two phases, constitutive equations
for the viscoelastic stresses, two coupled momentum equations for the velocity fields of
the two fluids, and a volume-averaged incompressibility constraint. We present a nu-
merical method based on a staggered grid, second order finite-difference discretization of
the momentum equations and a high-resolution unsplit Godunov method for the trans-
port equations. The momentum and incompressibility equations are solved in a coupled
manner with the Generalized Minimum Residual (GMRES) method using a multigrid
preconditioner based on box-relaxation. We present results on the accuracy and robust-
ness of the method together with an illustration of the interesting behavior of this gel
model for the four-roll mill problem.

Keywords: mixture theory, transient network model, multiphase flow, viscoelastic flow
simulations, Krylov subspace, multigrid

1. Introduction

An important class of gels are those composed of a polymer network immersed in a
solvent. Because of their multiphase and multiscale nature, such gels exhibit a number
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of unique behaviors. In addition to stress due to deformations, these gels may exhibit
osmotic and active stresses. Osmotic stress, or swelling stress, results from interactions
between the solvent and polymer molecules. Active stresses arise in some biological gels,
such as actomyosin, which are crosslinked with molecular motors that convert chemical
energy into mechanical work. Additionally, when the polymer network is undergoing
polymerization and depolymerization, the rheology of the mixture can be highly vari-
able. In many biological gels such as biofilms, blood clots, mucus, and cytoplasm, poly-
merization/depolymerization and active/osmotic stresses are regulated as part of their
biological function. An essential component in the study of these complex processes is
good numerical methods to solve the equations that describe their mechanics.

In many instances, a gel is not adequately described as a single continuous medium.
For example, during gel swelling the network moves outward while the solvent moves
inward. Modeling the mechanics of gels requires a description beyond a single velocity
field and single stress tensor. The two-fluid model is a widely used approach to describe
gel mechanics [1, 2]. In this model, both network and solvent coexist at each point of
space, and each phase (network and solvent) is modeled as a continuum with its own
velocity field and constitutive law. The coupled system of partial differential equations
that describe the gel presents significant challenges both for analysis and for numerical
simulation, and is therefore not well studied. Among the challenges posed by a gel model
of this type are the need to determine two velocity fields and a pressure coupled through
the two momentum equations and the incompressibility constraint. Another arises if the
gel is not homogeneous in which case gel properties, including its elastic modulus, may
vary spatially and temporally.

The appropriate rheological description of the network phase depends on the type
of gel as well as the time scale of the problem. Gels with permanent crosslinks are
usually described as elastic solids. If the crosslinks form and break dynamically, then the
network is better described as a viscoelastic fluid or even as a viscous fluid, depending on
the relative time scales of the deformation and the crosslinking. A model which captures
all of these behaviors is the transient network model [3, 4], which in its simplest form
is like rubber elasticity with formation and rupture of crosslinks. In the limit that the
rupture rate goes to zero, the material becomes a neo-Hookean elastic solid, and in the
limit of very fast formation and breaking, the material becomes a viscous fluid. Because
of its ability to describe such diverse materials behaviors, this is the type of model we
consider in this paper. For other types of models of the dynamics of viscoelastic gels see,
for example, [5, 6, 7] and the references therein.

When the polymer concentration is uniform, and the formation and rupture of crosslinks
is in equilibrium, the equation for the stress tensor is equivalent to the upper convected
Maxwell equation. We include an additional viscosity within the network, which makes
the network an Oldroyd-B fluid. In this paper, we use a version of the model in which
polymer concentration is variable, and the kinetics of link formation are not taken to be
in equilibrium. This adds an extra equation for the link density. The elastic modulus of
the network is proportional to the link density and so it too evolves in time [8].

Previously we developed algorithms for simulating the equations of gel mechanics
using the two-fluid model in which the network and solvent were modeled as viscous fluids
without inertia [9, 10, 11]. In this paper we extend this work to the case when the network
is modeled as an Oldroyd-B fluid and inertia has an effect. The inertia of the fluid can
play an important role in applications where the gel is in contact with a rapidly moving
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Newtonian fluid [12]. We use a conservative, high-resolution unsplit Godunov method on
a staggered grid for treating the scalar equations describing the transport of the network
and solvent volume fractions. We extend this method to handle the tensor equations for
the viscoelastic stresses and elastic modulus. There are similarities of this method with
previously developed techniques for treating single-phase viscoelastic fluids [8, 13, 14]. We
use a second order finite-difference discretization of the momentum and incompressibility
equations and adapt our iterative method from [9] to handle nonzero Reynolds number
flows. This iterative method uses a Krylov subspace method together with a multigrid
preconditioner for solving this coupled set of equations without splitting. We find that
the adapted method is efficient and robust.

We present numerical experiments showing that our computational technique achieves
second order accuracy in space and time for smooth solutions and is stable provided an
appropriate CFL-type condition is satisfied. The experiments also show that our method
can handle sharp material interfaces without problems, and that it is robust over a wide
range of parameters, from cases where the gel behaves like a viscoelastic fluid to others
in which it behaves like a viscoelastic solid.

The remainder of the paper is organized as follows. In Section 2 we give a brief in-
troduction to the two-fluid, viscoelastic gel model. In Section 3, we describe the compu-
tational method for simulating the gel model. In Section 4, we present several numerical
examples including refinement studies illustrating the accuracy of the method and results
from simulations involving strongly elastic materials and sharp interfaces between mate-
rial parameters. In these numerical examples the flow is driven by a background force
corresponding to the four-roll mill problem. We conclude the paper with some remarks
in Section 5 on future enhancements to the model and computational method that will
be considered.

2. Gel Model

Our intention in this section is to give a brief introduction to the gel model considered
in the present study. A more thorough derivation and discussion of this model and more
general gel models can be found in the recent reviews [1, 2] and the references therein.

We consider a gel composed of two materials, a polymer network and a fluid solvent.
Each point in space is assumed to be occupied by a mixture of network and solvent,
which is described by the volume fractions of the two different phases. Each material
moves with its own velocity and the total amount of gel is assumed to remain constant.
For the model considered in this study, the densities of the two materials are equal and
set to a constant value, i.e. the networked material is neutrally buoyant. With these
assumptions, conservation of mass leads to the following two equations for the volume
fractions:

(θs)t +∇ · (usθs) = 0 (1)

(θn)t +∇ · (unθn) = 0 (2)

where θn, and θs = 1−θn are the respective volume fractions of the network and solvent,
and us and un are the respective transport velocities. Adding (1)–(2) and using θs +θn =
1 reveals that the volume averaged velocity is incompressible:

∇ · (θsus + θnun) = 0. (3)
3
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The transport velocities are determined by Newton’s second law, which in this case are
described by the solvent and network momentum equations

ρ
(

(θsus)t +∇ · (θsusus)
)

=− θs∇p+∇ ·
(
θsσ

s,v
)
− ξθsθn (us − un) , (4)

ρ
(

(θnun)t +∇ · (θnunun)
)

=− θn∇p+∇ ·
(
θnσ

n,v
)
− ξθsθn (un − us) +

∇ ·
(
θnτ

)
−∇Ψ. (5)

The solvent momentum equation reflects our assumption that the solvent behaves as a
Newtonian fluid subject to a viscous force ∇ ·

(
θsσ

s,v
)

and a pressure force θs∇p, and
that it is also acted upon by a drag force ξθsθn (un − us) when the solvent and polymer
velocities differ. Similarly, the network is subject to viscous, pressure, and drag forces
given, respectively, by∇·

(
θnσ

n,v
)
, θn∇p, and ξθsθn (us − un), as well as to two additional

forces. One is a viscoelastic force ∇ ·
(
θnτ

)
due to deformation and restructuring of the

network, and the other is a chemical pressure (or osmotic pressure) force ∇Ψ arising
from chemical interactions due to the presence of the network. In these equations, ρ is
the density of the two fluids and ξ is the drag coefficient.

The viscous stresses for both materials are the standard ones for a Newtonian fluid

σs,v = µs

(
∇us +∇uT

s

)
+ (λs∇ · us)δ (6)

σn,v = µn

(
∇un +∇uT

n

)
+ (λn∇ · un)δ (7)

where µs,n are the shear viscosities and λs,n + 2µs,n/d are the bulk viscosities of the
solvent and network (d is the spatial dimension). For this paper we assume that the
chemical pressure is that used in Flory-Huggins polymer theory [15, p.143]

Ψ(θn) = ψ0(n1 log(θn)− n2 log(1− θn) + χ(1− 2θn)), (8)

where ψ0 > 0, n1, n2, and χ are constants. The constant χ affects the amount of mixing
of polymer and solvent. In this study, we set n1 = n2 = 1 and χ = 2. With this choice of
parameters, the chemical pressure favors some mixing and penalizes full phase separation
of the gel.

The viscoelastic stress evolves according to the differential constitutive equation

τ
t

+∇ ·
(
unτ

)
−
(
τ + zδ

)
∇un −∇uT

n

(
τ + zδ

)
= −βτ , (9)

which is derived in Appendix A. Our view of the elastic stresses in the gel is that they
derive from deformation of a transient network. The parameter β is the rate at which
links in the network rupture. The strength of the network at any time t and location x is
denoted by z(x, t) and is proportional to the density of crosslinks present. The variable
z evolves according to the equation

zt +∇ · (unz) = α (θn)− βz. (10)

Here, α is proportional to the rate at which new crosslinks form. In this paper, we use
α of the form

α(θn) = α0θ
2
n. (11)
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where α0 is a parameter. This α is similar to that used in the platelet aggregation model
from [12, 16] and is chosen to reflect the assumption that crosslinks connect two ‘pieces’
of network and so their formation should depend on the network volume fraction squared.

By defining λ−1
p = β and µp = zλp, equation (9) can be written as

λp

(
τ
t

+∇ ·
(
unτ

)
− τ∇un −∇uT

n τ
)

+ τ = µp

(
∇un +∇uT

n

)
, (12)

which is similar to the upper convective Maxwell (UCM) equation [17]. The difference
is that here the polymer viscosity µp, the relaxation time λp, and the elastic modulus
µp/λp are not material parameters, but are functions of the number of links z. In this
paper, we treat the rupture rate β as constant, but it may be a function of τ and z as
in more general PTT-type models [18, 19].

For ease of implementation, we manipulate (4) and (5) to look more like evolution
equations for us and un. This is accomplished by expanding the derivatives in the left
hand side of these equations and using (1) and (2) to simplify and eliminate the terms
involving time derivatives of θn and θs. With this modification, the complete set of
equations we simulate is given by

(θn)t +∇ · (unθn) = 0, (13)

τ
t

+∇ ·
(
unτ

)
−
(
τ + zδ

)
∇un −∇uT

n

(
τ + zδ

)
= −βτ , (14)

zt +∇ · (unz) = α (θn)− βz, (15)

ρθs

(
(us)t + us · ∇us

)
= −θs∇p− ξθsθn (us − un) +∇ ·

(
θsσ

s,v
)
, (16)

ρθn

(
(un)t + un · ∇un

)
= −θn∇p− ξθsθn (un − us) +∇ ·

(
θnσ

n,v
)

+

∇ ·
(
θnτ

)
−∇Ψ, (17)

∇ · (θsus + θnun) = 0. (18)

θs = 1− θn, (19)

In this study we assume the boundary conditions are periodic. We do not explicitly
nondimensionalize these equations because in doing so the number of parameters would
not be reduced. Additionally, we avoid defining nondimensional parameters such as the
Reynolds number, Weissenberg number, Deborah number, and elastic Mach number [20].
With 2 velocity fields, 4 viscosity parameters, 3 osmotic pressure parameters, a frictional
drag coefficient, and a time-varying elastic modulus the rheology of the flow is difficult
to characterize with these standard nondimensional numbers for single-phase viscoelastic
flow.

3. Computational methodology

We start with a broad overview of the algorithm for numerically solving the coupled
system of equations (13)–(19). For notational simplicity, we use superscripts to denote
values of the unknowns at different discrete times. The algorithm proceeds with the
following staggered-in-time splitting of the equations:

5
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1. Given the values θkn, τ k, and zk at time tk, solve for the velocity fields u
k+1/2
s

and u
k+1/2
n and the pressure pk+1/2 at time tk + ∆tk/2 using a discrete analog of

(16)–(18).

2. Solve for θk+1
n at time tk +∆tk using a discrete analog of (13) and the velocity field

u
k+1/2
n from the previous step. Then compute θk+1

s = 1− θk+1
n .

3. Solve for τ k+1 and zk+1 at time tk + ∆tk using a discrete analog of (14)–(15) with

the velocity field u
k+1/2
n and θk+1

n computed from the two previous steps.

4. Return to step 1, with time equal to tk+1 = tk + ∆tk.

Variable time-stepping is employed in the algorithm, hence the notation ∆tk is used to
denote the time-step from tk to tk+1.

The details of the computational methods for each of the steps above is provided for
the model equations in two spatial dimensions. Before discussing each method, however,
we first describe the grid that is used and make some definitions that help simplify the
discussion of the method.

3.1. Grid

A staggered grid in both space and time is used to represent discrete values of the
variables as shown in Figure 1. For simplicity, the mesh spacing in the x and y direction
is set equal and is given by h = 1/n, where n is the number of cell-centers in either
direction. The time-step is given by ∆tk. All values of the viscoelastic stress tensor τ
are placed at the cell centers since then the stretching terms in (14) and (15) decouple
for each cell center as discussed below. An alternative method common for single-phase
viscoelastic flows is to place the diagonal terms of τ at the cell centers and the off-diagonal
terms of τ at the cell corners. This arrangement of unknowns gives a more natural way
of calculating the divergence of the stress tensor since it does not require averaging any
entries of τ [21, 20]. However, for our two-phase model, this would have the unattractive
consequence of coupling the stretching terms in (14) and (15) and increasing the total
computational cost.

Since the unknowns are not all collocated at the same spatial locations, averaging of
the values is sometime necessary. Here we define the needed averages. Let q be a generic
grid variable defined at the cell-centers (whole integer pairs (i, j)), and u and v generic
grid variables defined at the east-west (EW) and north-south (NS) cell-edges (mix of
whole and half integer pairs), respectively. Then the following notation and definitions
are used for averaging:

qi+1/2,j = 0.5(qi+1,j + qi,j), qi,j+1/2 = 0.5(qi,j+1 + qi,j),

qi+1/2,j+1/2 = 0.25(qi,j + qi+1,j + qi,j+1 + qi+1,j+1),

ui,j = 0.5(ui+1/2,j + ui−1/2,j), vi,j = 0.5(vi,j+1/2 + vi,j−1/2),

ui,j+1/2 = 0.25(ui−1/2,j + ui+1/2,j + ui−1/2,j+1 + ui+1/2,j+1),

vi+1/2,j = 0.25(vi,j−1/2 + vi+1,j−1/2 + vi,j+1/2 + vi+1,j+1/2)

where i and j are non-negative integers.
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tk

tk + ∆tk
2

tk +∆tk

i +1

i

i − 1
j − 1

j

x

j + 1y

t

Figure 1: Location of the unknowns in the space- and time-staggered grid for the 2-D gel
model: B=network/solvent horizontal velocity, M=network/solvent vertical velocity, • =pressure,
© =network/solvent volume fractions, � = components of the viscoelastic stress tensor and z.

3.2. Step 1: Solving the momentum equations and incompressibility constraint

This step is the most computationally intensive part of the algorithm. Letting us =
(us, vs)

T , un = (un, vn)T , and αs,n = 2µs,n + λs,n and defining the operators

Gs,n =

[
θs,n∂x
θs,n∂y

]
, C =

[
ξθsθn 0

0 ξθsθn

]
, Ds,n = ρ

[
θs,n 0
0 θs,n

]
,

Ls,n =

[
αs,n∂x(θs,n∂x) + µs,n∂y(θs,n∂y) µs,n∂y(θs,n∂x) + λs,n∂x(θs,n∂y)
µs,n∂x(θs,n∂y) + λs,n∂y(θs,n∂x) αs,n∂y(θs,n∂y) + µs,n∂x(θs,n∂x)

]
,

and the nonlinear terms

Ns,n(us,n) =

[
us,n · ∇us,n

us,n · ∇vs,n

]
, En(θn, τ ) =

[
(θnτ11)x + (θnτ12)y −Ψx(θn)
(θnτ12)x + (θnτ22)y −Ψy(θn)

]
,

the momentum equations (16) and (17) can be expressed as

∂

∂t

[
us

un

]
=

[
Ds 0
0 Dn

]−1
[Ls − C C −Gs

C Ln − C −Gn

]us

un

p

+

[
0

En(θn, τ )

]−[Ns(us)
Nn(un)

]
,

(20)

and are subject to the volume averaged incompressibility constraint (18).
To approximate the solution of (20) and (18), we discretize first in space using cen-

tered, second order finite-differences as discussed in Appendix B. Replacing the operators
Ls,n and Gs,n with the respective finite-difference approximations Lh

s,n and Ghs,n, replacing

the diagonal operators C and Ds,n with the approximations Ch and Dh
s,n, and replacing

the nonlinear term Ns,n and En with the respective finite-difference approximation N h
s,n

7
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and Ehn , the semi-discrete system corresponding to (20) is given by

d

dt

[
us

un

]
︸ ︷︷ ︸
w

=

[
Dh

s 0
0 Dh

n

]−1

︸ ︷︷ ︸
(Dh)−1

([
Lh

s − Ch Ch −Ghs
Ch Lh

n − Ch −Ghn

]
︸ ︷︷ ︸

Ah

us

un

p


︸ ︷︷ ︸
[w; p]

+

[
0

Ehn (θn, τ )

]
︸ ︷︷ ︸
Eh(θn, τ )

)
−
[
N h

s (us)
N h

n (un)

]
︸ ︷︷ ︸
N h(w)

= (Dh)−1
(
Ah[w; p] + Eh(θn, τ )

)
−N h(w). (21)

The discrete version of the volume averaged incompressibility constraint (18) can also be
written using these discrete operators as

(Ghs )Tus + (Ghn )Tun = 0. (22)

The coupled set of equations (21) and (22) are to be solved to obtain the velocity fields
us and un and pressure p at the half-time level tk + ∆tk/2. The term involving Ah on
the right hand side of (21) is linear in w (and p) and makes the system stiff compared to
the other non-linear terms. We thus use a semi-implicit scheme for solving (21) in which
the linear term is treated implicitly and the non-linear terms are treated explicitly. The
semi-implicit scheme we use is the second order Backward Differentiation/Extrapolated
Backward Differentiation (BD/BDE2) method discussed and analyzed in detail in [22].
This scheme is a linear multistep method requiring values for the variables at two previous
time levels. Since we use variable time-stepping in the algorithm (as discussed in Section
3.5) and the variables are staggered in time, the BD/BDE2 method given in [22] needs
to be slightly modified, as discussed in [23, pp. 132–133].

Letting the time-step from time tk to tk+1 be denoted by ∆tk and the time-step
between tk−1/2 and tk+1/2 be denoted by ∆tk = (∆tk + ∆tk−1)/2, we define the ratios

sk = ∆tk−1/∆tk and rk = ∆tk−1/∆tk. Additionally, we use superscripts k± b to denote
values of the variables at time tk ± b. With these definitions, we can write BD/BDE2
schemes for solving (21) as follows:

2 + rk
1 + rk

wk+ 1
2 =

1 + rk
rk

wk− 1
2 − 1

(1 + rk)rk
wk− 3

2 +

∆tk(Dh)−1
(
Ah[wk+ 1

2 ; pk+ 1
2 ] +

[
Eh(θn, τ )

]k+ 1
2

)
−∆tk

[
N h(w)

]k+ 1
2 , (23)

where [
Eh(θn, τ )

]k+ 1
2 =

1 + 2sk
2sk

Eh(θkn, τ
k)− 1

2sk
Eh(θk−1

n , τ k−1) (24)[
N h(w)

]k+ 1
2 =

1 + rk
rk
N h(wk− 1

2 )− 1

rk
N h(wk− 3

2 ). (25)

The values used for the network and solvent volume fractions in the entries of Ah and
Dh are also extrapolated to the k + 1/2 time-level in a similar manner as (24). The
value for the pressure in (23) is determined from the constraint (22). To boot-strap the
BD/BDE2 method we use one-step of the semi-implicit backward/forward Euler method
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to time ∆t0/2 and one-step of the BD/BDE2 method using values of the velocity fields
at t = 0 and t = ∆t0/2.

The BD/BDE2 method only requires the solution of one linear-system per time-step
to determine the solvent and network velocities and the pressure. Using the definitions
for Dh, Ah, and N h, and imposing the constraint (22), the linear system that arises for
this method is given as follows

(2 + rk)

(1 + rk)∆tk
Dh

s − Lh
s + Ch −Ch Ghs

−Ch (2 + rk)

(1 + rk)∆tk
Dh

n − Lh
n + Ch Ghn

−(Ghs )T −(Ghn )T 0


︸ ︷︷ ︸

Bh


u
k+1/2
s

u
k+1/2
n

pk+1/2

 =

(1 + rk)

rk∆tk


Dh

s u
k− 1

2
s

Dh
nu

k− 1
2

n

0

− 1

(1 + rk)rk∆tk


Dh

s u
k− 3

2
s

Dh
nu

k− 3
2

n

0

+


0[

Ehn (θn, τ )
]k+ 1

2

0

−

Dh

s

[
N h

s (uk
s )
]k+ 1

2

Dh
n

[
N h

n (uk
n)
]k+ 1

2

0

 . (26)

Letting A = Bh(1 : 2, 1 : 2) and B = Bh(1 : 2, 3), the matrix Bh in (26) can be written
in saddle point form as

Bh =

[
A B
−BT 0

]
.

The matrix A is symmetric and positive definite and the matrix B has one zero eigenvalue
since it annihilates constant vectors. Moreover, it follows from [24, Theorem 3.6] that
the eigenvalues of Bh have nonnegative real part (Bh is positive semistable), i.e. Re(λ) ≥
0 for all λ ∈ σ(Bh), which can be advantageous for preconditioned Krylov subspace
methods [24].

The method we use for solving (26) is based on the preconditioned Krylov subspace
method first introduced for gels in [9] and developed further in [10, 11]. The gel model
considered in these studies was for two immiscible viscous-dominated fluids and did not
contain inertial effects. The preconditioner for the resulting linear system was based on
a multigrid procedure with box-relaxation (or symmetric coupled Gauss-Seidel smooth-
ing) [25, 26, 27]. We generalized the box-type smoother from [9] for (26) and combined
it with a multigrid V-cycle. This method is then used as the preconditioner for the gen-
eralized minimum residual (GMRES) method [28]. The presence of inertia in the system
(26) makes it better conditioned than the viscous dominated system from [9], and the
iterative method converges in very few iterations. In the numerical examples presented
in Section 4, the maximum number of iterations required by the method was 8, with the
most common numbers being 3 and 4.
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The BD/BDE2 scheme has been successfully combined with various spatial discretiza-
tions in semi-discrete type formulations for the Navier-Stokes equations (see, for exam-
ple, [29, 30]). However, it is not as popular as the semi-implicit scheme that combines
Trapezoidal rule (or Crank-Nicholson) and second order Adams-Bashforth (CN/AB2).
This is a bit surprising since the BD/BDE2 has many nicer properties. For example,
it is L-stable and almost always outperforms the CN/AB2 method in terms of stabil-
ity and in terms of multigrid efficiency (as demonstrated for the convection-diffusion
equation in [22]). Although the results are not presented here, we did implement the
CN/AB2 scheme for advancing (21) in time. We found that for certain problems which
start out transient but then go to a steady-state with zero velocities in both phases, the
CN/AB2 scheme was not able to capture this behavior, but instead oscillated around the
steady-state. The BD/BDE2 method was able to capture these steady-state solutions.
Additionally, in all of our experiments we did not find any examples of problems which
remained transient where the CN/AB2 method out performed the BD/BDE2 method.

3.3. Step 2: Solving the advection equation

To advance (13) in time we use a variant of the corner transport upwind (CTU)
method of Colella [31], which is a conservative, second order, high-resolution, unsplit
Godunov method. We review the details of this method since it will aid the description
of the method we use for solving (14)–(15). For notational simplicity, we drop the
subscript n from (13) in the description of the discretization below, and use θ to denote
the network volume fraction.

The CTU scheme for advancing (13) in time from t to t+ ∆tk at the (i, j) cell center
can be written in conservative form as

θk+1
i,j = θki,j −

∆tk
h

(
F

k+1/2
i+1/2,j − F

k+1/2
i−1/2,j + F

k+1/2
i,j+1/2 − F

k+1/2
i,j−1/2

)
, (27)

where

F
k+1/2
i±1/2,j = θ

k+1/2
i±1/2,ju

k+1/2
i±1/2,j , (28)

F
k+1/2
i,j±1/2 = θ

k+1/2
i,j±1/2v

k+1/2
i,j±1/2 . (29)

The two velocity components at the k + 1/2 time level are obtained from Step 1 of the
algorithm. The values of θ at the k + 1/2 time level and at the EW and NS edges of
the cell centered at (i, j) are obtained by Taylor series expansions in which temporal
derivatives are expressed in terms of spatial derivatives using (13). For each cell edge,
this results in two approximations to θ, one from each of the two cells which share that
edge. The approximations at the E and W edges for the (i, j) cell are given by

(θ
k+1/2
i±1/2,j)

E,W = θki,j +
∆tk

2
∂tθ

k
i,j ±

h

2
∂xθ

k
i,j

= θki,j +

[
±h

2
− ∆tk

2
uki,j

]
∂xθ

k
i,j −

∆tk
2
θki,j∂xu

k
i,j −

∆tk
2
∂y
(
vki,jθ

k
i,j

)
, (30)

where E and W correspond to the plus and minus case, respectively. The expression
after the second equal sign is obtained by replacing ∂tθi,j with −∇ · (uθ) according to
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the advection equation (13), and then applying the product rule to ∂x(uθ). Similarly,
the approximations at the N and south S horizontal edges are given by

(θ
k+1/2
i,j±1/2)N,S = θki,j +

∆tk
2
∂tθ

k
i,j ±

h

2
∂yθ

k
i,j

= θki,j +

[
±h

2
− ∆tk

2
vki,j

]
∂yθ

k
i,j −

∆tk
2
θki,j∂yv

k
i,j −

∆tk
2
∂x
(
uki,jθ

k
i,j

)
. (31)

The velocities at the kth time level in (30) and (31) are obtained by constant extrapola-
tion of the velocity from the k + 1/2 time level. These first order accurate extrapolated
values are only used in the correction terms to the edge values of the volume fraction.
Thus, the overall approximation of the edge values remains second order accurate.

There are two variants of the CTU algorithm that can be followed at this point.
Starting with (30), the first variant is to approximate ∂xθ

k
i,j with limited differencing, ap-

proximate ∂xu
k
i,j with (staggered) centered differencing, and approximate the transverse

(conservative) derivative ∂y(vki,jθ
k
i,j) with upwind differencing. A similar approximation

is used for the terms in (31). This variant can lead to overshoots or excessive smearing
in the solution when it features large gradients that propagate obliquely to the grid [31,
p. 182]. The second variant ameliorates this problem and is the one we use in this study.
It is identical to the first variant except in the way the transverse derivatives in (30) and
(31) are handled. The method can be viewed as a predictor-corrector method. In the
predictor step, (30) and (31) are approximated without the transverse derivatives terms.
The corrector step updates the predicted approximations with the transverse derivatives,
where, for example, the volume fractions used in the approximation of ∂y(vki,jθ

k
i,j) in (30)

are obtained from the first approximation of (31). The update to (31) with its transverse
derivative is similarly obtained using the predicted approximation from (30).

The exact details of the predictor step are as follows. First, the two values of the
volume fraction at each cell edge are approximated as

(θ̂
k+1/2
i±1/2,j)

E,W =θki,j +

[
±h

2
− ∆tk

2
uki,j

]
∂mc
x θki,j −

∆tk
2
θki,j∂

h
xu

k
i,j , (32)

(θ̂
k+1/2
i,j±1/2)N,S =θki,j +

[
±h

2
− ∆tk

2
vki,j

]
∂mc
y θki,j −

∆tk
2
θki,j∂

h
y v

k
i,j . (33)

Dropping the superscript k, the approximate derivatives operators ∂hx and ∂hy in (32) and
(33) are given by

∂hxui,j =
ui+1/2,j − ui−1/2,j

h
, ∂hy vi,j =

vi,j+1/2 − vi,j−1/2

h
, (34)

while ∂mc
x and ∂mc

y are monotonized central (MC) difference operators [32] and are given
by

∂mc
x θi,j =minmod

(
θi+1,j − θi−1,j

2h
,minmod

(
2
θi+1,j − θi,j

h
, 2
θi,j − θi−1,j

h

))
, (35)

∂mc
y θi,j =minmod

(
θi,j+1 − θi,j−1

2h
,minmod

(
2
θi,j+1 − θi,j

h
, 2
θi,j − θi,j−1

h

))
, (36)
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where

minmod(a, b) =


a if |a| < |b| and ab > 0,

b if |b| < |a| and ab > 0,

0 otherwise.

Next, the appropriate approximate edge values θ̂
k+1/2
i±1/2,j and θ̂

k+1/2
i,j±1/2 are determined by

upwinding:

θ̂
k+1/2
i+1/2,j =

{
(θ̂

k+1/2
i+1/2,j)

E if u
k+1/2
i+1/2,j ≥ 0,

(θ̂
k+1/2
i+1/2,j)

W if u
k+1/2
i+1/2,j < 0,

and

θ̂
k+1/2
i,j+1/2 =

{
(θ̂

k+1/2
i,j+1/2)N if v

k+1/2
i,j+1/2 ≥ 0,

(θ̂
k+1/2
i,j+1/2)S if v

k+1/2
i,j+1/2 < 0.

The corrector step updates the edge values (32) and (33) as

(θ
k+1/2
i±1/2,j)

E,W =(θ̂
k+1/2
i±1/2,j)

E,W − ∆tk
2

(
v
k+1/2
i,j+1/2θ̂

k+1/2
i,j+1/2 − v

k+1/2
i,j−1/2θ̂

k+1/2
i,j−1/2

)
, (37)

(θ
k+1/2
i,j±1/2)N,S =(θ̂

k+1/2
i,j±1/2)N,S − ∆tk

2

(
u
k+1/2
i+1/2,j θ̂

k+1/2
i+1/2,j − u

k+1/2
i−1/2,j θ̂

k+1/2
i−1/2,j

)
. (38)

The final step of the CTU scheme is to again use upwinding to choose the appropriate

approximate edge values θ
k+1/2
i±1/2,j and θ

k+1/2
i,j±1/2 for the fluxes in (28) and (29).

The use of limiting in (32) and (33) eliminates spurious oscillations in the CTU scheme
(27), but it also reduces the order of accuracy to first order where the magnitude of the
gradient of θ is large. In smooth regions, the method is second order accurate (see [31] for
a discussion). There is no proof on the monotonicity properties of the CTU scheme, but
in all of our experiments the method produces monotone results provided the time-step
is chosen appropriately. We discuss the time-step selection in Section 3.5.

3.4. Step 3: Solving the viscoelastic stress equations

Equations (14)–(15) can be written in system form as

∂

∂t


τ11

τ12

τ22

z


︸ ︷︷ ︸

q

= −


∇ · (uτ11)
∇ · (uτ12)
∇ · (uτ22)
∇ · (uz)


︸ ︷︷ ︸
∇ · (F(q))

+


0
0
0

α (θ)


︸ ︷︷ ︸
α(θ)

+


2 ∂xu 2 ∂yu 0 2 ∂xu
∂xv ∂xu+ ∂yv ∂yu ∂xv + ∂yu
0 2 ∂xv 2 ∂yv 2 ∂yv
0 0 0 0


︸ ︷︷ ︸

B


τ11

τ12

τ22

z


︸ ︷︷ ︸

q

−β


τ11

τ12

τ22

z


︸ ︷︷ ︸

q

, (39)
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where we have again dropped the subscript n from the network volume fraction and
velocity terms for notational simplicity. To advance this system in time, we use a CTU-
type approximation of the advection terms and trapezoidal rule (or Crank-Nicolson) to
approximate the remaining terms. The scheme can be written as the following system:

qk+1
i,j =qk

i,j −
∆tk
h

(
F

k+1/2
i+1/2,j − F

k+1/2
i−1/2,j + F

k+1/2
i,j+1/2 − F

k+1/2
i,j−1/2

)
+

∆tk
2

[(
α(θk+1

i,j ) +α(θki,j)
)

+B
k+1/2,h
i,j

(
qk+1
i,j + qk

i,j

)
− β

(
qk+1
i,j + qk

i,j

)]
, (40)

where the first superscript on B indicates the time the entries of B are taken, and the
second superscript indicates that a discrete approximations to the derivatives in B has
been made (as discussed below). As alluded to in Section 3.1, since all values in q reside
at the cell-centers (and θk+1

i,j is computed from the Step 1 of the algorithm), the systems

for determining qk+1 in each of the cell-centers are decoupled. Thus, each qk+1
i,j can be

determined by solving a 4-by-4 linear system. We use Gaussian elimination to compute
these solutions.

While (39) is not a conservation law, we can still use the framework of the CTU
method to obtain a high-resolution approximation of the fluxes in (40). These fluxes are
given by

F
k+1/2
i±1/2,j = q

k+1/2
i±1/2,ju

k+1/2
i±1/2,j , (41)

F
k+1/2
i,j±1/2 = q

k+1/2
i,j±1/2v

k+1/2
i,j±1/2 . (42)

Following the same strategy as for the advection equation (13) from the previous section,
the values of q at the k+1/2 time level and the vertical and horizontal edges of the (i, j)
cell-center are obtained by Taylor series expansions and use of (39). The approximations
of each component of q at the E and W vertical edges for the (i, j) cell are given by

(q
k+1/2
i±1/2,j)

E,W =qk
i,j +

∆tk
2
∂tq

k
i,j ±

h

2
∂xq

k
i,j

=qk
i,j +

[
±h

2
− ∆tk

2
uki,j

]
∂xq

k
i,j −

∆tk
2

qk
i,j∂xu

k
i,j+

∆tk
2

[
α(θki,j) +Bk

i,jq
k
i,j − βqk

i,j

]
− ∆tk

2
∂y
(
qk
i,jv

k
i,j

)
, (43)

where the equation after the second equal sign is obtained by replacing ∂tqi,j with the
right hand side of (39). Approximations at the N and S horizontal edges are similarly
given by

(q
k+1/2
i±1/2,j)

N,S =qk
i,j +

∆tk
2
∂tq

k
i,j ±

h

2
∂xq

k
i,j

=qk
i,j +

[
±h

2
− ∆tk

2
vki,j

]
∂yq

k
i,j −

∆tk
2

qk
i,j∂yv

k
i,j+

∆tk
2

[
α(θki,j) +Bk

i,jq
k
i,j − βqk

i,j

]
− ∆tk

2
∂x
(
qk
i,ju

k
i,j

)
. (44)

As in (30) and (31), the velocities at the k time level in the above approximations are
obtained by constant extrapolation of the velocity from the k + 1/2 time level.
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We use the same predictor-corrector variant of the CTU algorithm as described in
the previous section to approximate (43) and (44). That is, all terms in (43) and (44)
but the last transverse derivatives are first computed, then the approximations at the
cell edges are updated with the transverse derivatives.

MC differencing (35) and (36) is used to approximate ∂xq
k
i,j and ∂yq

k
i,j , respectively,

and centered differencing (34) is used for ∂xu
k
i,j and ∂yv

k
i,j . The discrete approximation

to the entries in the matrices Bi,j are also computed using centered, second order dif-
ferencing. For the entries ∂xu

k
i,j and ∂yv

k
i,j , we again use (34), while for the remaining

entries we use the approximations

∂hyui,j =
ui,j+1 − ui,j−1

2h
and ∂hxvi,j =

vi+1,j − vi−1,j

2h
. (45)

We conclude the discussion of this step, by noting one modification we make to
the final update of the entries in qk+1. A well-known property of UCM contitutive
equations is that the viscoelastic stress tensor is positive semi-definite [33, p.17]. Our
UCM-type equations also have this property, i.e. τ + zδ ≥ 0, which follows from the
derivation of the constitutive model given in Appendix A (in particular, see the integral
representation (A.2)). The modified CTU/Trapezoidal rule method, however, does not
necessarily preserve this property. Therefore, at the end of each time-step, we check
all the cell centers for violations of the positive semi-definiteness of τ + zδ. In these
violating cells, we perturb τ so that τ + zδ is the closest (in two-norm) positive semi-
definite tensor using the method described in [8, Appendix A]. This method proceeds
by first decomposing τ + zδ (now interpreted as a matrix) in the violating cells as

τ + zδ = RΛR−1 and then letting

Λ+ =
Λ + |Λ|

2
and C+ = RΛ+R−1. (46)

To make τ + zδ positive semidefinite, the entries of τ are then changed to

τ11 = C+
11 − z, τ22 = C+

22 − z, and τ12 = C+
12. (47)

From our extensive numerical tests, we have found that the above procedure only becomes
necessary when the viscoelastic stresses and the gradient of z become very large.

3.5. Variable time-stepping

We use a variable time-step in the algorithm and choose its value based on different
CFL constraints. To understand the relevant timescales and to derive these constraints
we first linearize the system of equations (13)-(17) and consider only the transport and
elastic stretching terms. The resulting system is of the form

qt +Aqx +Bqy = 0,
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where we have redefined q as q = (θn, τ11, τ12, τ22, z, un, vn, us, vs), and the matrices A
and B are given by

A =



un 0 0 0 0 θn 0 0 0
0 un 0 0 0 −(τ11 + 2z) 0 0 0
0 0 un 0 0 0 −(τ11 + z) 0 0
0 0 0 un 0 τ22 −2τ12 0 0
0 0 0 0 un z 0 0 0

Ψ′(θn)− τ11

θn
−1 0 0 0 un 0 0 0

−τ12

θn
0 −1 0 0 0 un 0 0

0 0 0 0 0 0 0 us 0
0 0 0 0 0 0 0 0 us


, (48)

and

B =



vn 0 0 0 0 0 θn 0 0
0 vn 0 0 0 −2τ12 τ11 0 0
0 0 vn 0 0 −(τ22 + z) 0 0 0
0 0 0 vn 0 0 −(τ22 + 2z) 0 0
0 0 0 0 vn 0 z 0 0

−τ12

θn
0 −1 0 0 vn 0 0 0

Ψ′(θn)− τ22

θn
0 0 −1 0 0 vn 0 0

0 0 0 0 0 0 0 vs 0
0 0 0 0 0 0 0 0 vs


. (49)

This system is hyperbolic if, for any constants nx and ny that are not both zero, the
matrix nxA+ nyB has real eigenvalues and is diagonalizable [34, pp. 425–428]. Letting
n = (nx, ny), the eigenvalues of this matrix are

σ(nxA+ nyB) =
{
n · un ±

√
n · (τ + zδ)n, n · un ± ‖n‖

√
Ψ′(θn) + 2z, n · un, n · us

}
(50)

The algebraic and geometric multiplicities are 3 for the eigenvalue n · un, 2 for n · us,
and 1 for the remaining eigenvalues. As discussed at the end of Section 3.4, τ is positive
semi-definite. Additionally, z > 0 and, for this study, Ψ′(θn) ≥ 0 (see (8)). Thus all the
eigenvalues of nxA+ nyB are real and the system is hyperbolic.

We use the eigenvalues (50) corresponding to wave speeds in the x- and y-directions
for determining the CFL constraint on the time-step. This corresponds to setting nx = 1,
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ny = 0 and nx = 0, ny = 1 in (50). With these values we choose the time-step as follows

∆tk = hmin



γe

(
max
i,j

∣∣∣∣(un)i,j ±
√

Ψ′((θn)i,j) + 2zi,j

∣∣∣∣)−1

γe

(
max
i,j

∣∣∣∣(vn)i,j ±
√

Ψ′((θn)i,j) + 2zi,j

∣∣∣∣)−1

γe

(
max
i,j

∣∣∣∣(un)i,j ±
√

(τ11)i,j + zi,j

∣∣∣∣)−1

γe

(
max
i,j

∣∣∣∣(vn)i,j ±
√

(τ22)i,j + zi,j

∣∣∣∣)−1

γm

(
max
i,j
{|(un)i,j , | , |(vn)i,j | , |(us)i,j | , |(vs)i,j |}

)−1


, (51)

where the values for the velocities are used at the k − 1/2 time-level and the values of
the volume fraction, viscoelastic stress, and z are used at the kth time-level. Through
our numerical experiments we found that we could use a larger stable time-step if we
allowed the constants γm and γe to differ. The use of different constants makes sense
since the whole system (13)-(17) is not advanced in time simultaneously, but is instead
split into different parts and different methods are used for each of these parts (see the
previous section). In our numerical tests, the values γe = 0.5 and γm = 0.25 lead to
stable time-stepping. From more extensive testing, we found that this value of γe = 0.5
is a good choice for a wide range of parameters. However, the value of γm = 0.25 is linked
to the values of the network and solvent viscosities used in the momentum equations and
may need to be lowered as these viscosities are lowered. This is related to the stability
of the BD/BDE2 method used for advancing the momentum equations. A full analysis
of how the viscosity effects the choice of stable time-step for this method applied to the
Navier-Stokes equations is given in [30].

We conclude by noting that in general, it is possible to have osmotic potentials such
that Ψ′(θn) < 0, which results in a destabilizing force that promotes de-mixing or phase
separation [9, 35, 36]. Our method also works for these cases, however the time-step
restriction (51) should be modified so that the absolute value of Ψ′(θn) is used. In
regions where Ψ′(θn) is negative, the gel is unstable, and certain modes will grow there.
In this case, we are concerned that our scheme does not artificially excite any modes in
these regions. By using the absolute value of this term in (51), we err on the side of
caution and make the time-step more restrictive than may be necessary.

4. Computational tests

We present a series of computational tests on the gel model (13)–(19) using the al-
gorithm described in the previous section. This model has several parameters whose
number cannot be reduced by non-dimensionalization and must therefore be specified.
Our goal is not to present an exhaustive study of all the parameter ranges, but instead to
present examples which test the accuracy and robustness of the method for some “moder-
ate” and “difficult” parameter ranges and initial conditions. These examples correspond
to different behaviors of the gel, from exhibiting characteristics of a viscoelastic fluid to
characteristics of a viscoelastic solid. In all these tests, the domain is the periodic unit
box centered at the origin.
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Parameter Description Relationship

ρ density 1
µn network shear viscosity free
λn network second coefficient of viscosity λn = µn

µs solvent shear viscosity proportional to µn

λs solvent second coefficient of viscosity λs = µs

ξ drag coefficient proportional to µn

β inverse of the polymer relaxation time free

α0 link formation constant
z0β

max
−0.5≤x,y≤0.5

θn(x, y, 0)2

z0 maximum initial value of the elastic modulus free
ψ0 osmotic pressure constant free

Table 1: Summary of the parameters of the gel model and any relationships used for defining these
parameters in this study.

We set certain relationships between the parameters in order to reduce their numbers.
First, we set the bulk viscosity of each fluid to be twice the respective shear viscosity. In
2-D this means λs = µs and λn = µn. This relationship is well within the parameter range
for many biological gels [37]. The solvent shear viscosity µs is chosen to be a multiple of
the network shear viscosity µn. In biological gels, µs is typically many orders of magnitude
less than µn [37]. In the numerical tests that follow, we satisfy this relationship. Similarly,
we chose the coefficient of friction ξ to be a multiple of µn. The ratio of µn to ξ defines
a length scale. The smaller this length scale is compared to the length scale for the
domain of the problem (which is 1 for our tests), the more the drag force will dominate
the network viscous forces. We always choose the ratio of µn to ξ to be much less than
one so that the drag force affects the gel dynamics.

The link formation constant α0 in (11) is chosen to be inversely proportional to the
product of the polymer relaxation time 1/β and the maximum of the square of the initial
network volume fraction:

α0 =
z0β

max θn(x, y, 0)2
. (52)

The initial value for the elastic modulus z is chosen according to

z(x, y, 0) =
α0[θn(x, y, 0)]2

β
(53)

which is the steady state solution to (15) when the network velocity is zero. Plugging
the equation for α0 into this expression shows that z0 controls the maximum initial value
of the elastic modulus. The initial value for the components of the viscoelastic stress
are set equal to zero, which corresponds to the steady state solution of (14) with zero
network velocity. Table 1 summarizes how the gel parameters are chosen, while Table 2
summarizes how the initial values of the state variables are chosen.

The flow of the gel is driven by a body force which is chosen to drive a Newtonian
fluid with a steady state velocity of

u =
[
sin(2πx) cos(2πy) − cos(2πx) sin(2πy)

]T
, (54)
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Variable Description Initial Condition

θn Network volume fraction free (spatially varying)
θs Solvent volume fraction θs(x, y, 0) = 1− θn(x, y, 0)
τ Viscoelastic stress tensor 0

z Elastic modulus
α0[θn(x, y, 0)]2

β
un Network velocity 0
us Solvent velocity 0

Table 2: Summary of the gel state variables and the initial values that are used in this study.

which corresponds to four vortices in each of the quadrants of the periodic box. This
four-roll mill problem has been used in several other numerical studies of (single-phase)
viscoelastic fluids [12, 38, 39, 40] and creates an interesting model since it exhibits both
rotational and elongational flow. The body force associated with (54) is determined by
substituting u into the Navier-Stokes equations. This requires choosing a value for the
density and the viscosity, µf , in the Navier-Stokes equations. We set the density to unity
and the value of µf as a weighted average of the network and solvent viscosities that are
used in the gel simulations:

µf = µn

∫
Ω

θn(x, y, 0)dΩ + µs

∫
Ω

θs(x, y, 0)dΩ.

For a uniform initial volume fraction, this is the viscosity of the volume averaged velocity
field for the four-roll mill. With these values the resulting body force is

f ss =

[
2π sin(2πx) cos(2πx) + 8µfπ

2 sin(2πx) cos(2πy)
2π sin(2πy) cos(2πy)− 8µfπ

2 sin(2πy) cos(2πx)

]
. (55)

In all the tests that follow, both fluids are initially at rest, so (55) is applied gradually
with the modification

fbg = (1− e−5t)f ss. (56)

We apply this force to both phases by adding the weighted term θsfbg to (16) and θnfbg

to (17).
A total of five tests are performed with the four different parameter sets listed in

Table 3. The first two tests correspond to the gel behaving like a viscoelastic fluid. We
vary the relaxation time and the initial elastic modulus in these tests to correspond to a
“moderate” and “difficult” viscoelastic fluid. Here “difficult” refers to longer relaxation
times (smaller β) which allow the stresses to build up and the fluid to exhibit character-
istics similar to those of High Weissenberg number flows. In the remainder of the tests,
the gel behaves like a viscoelastic solid and contains a large spatial variation in material
parameters. We illustrate the elastic effects of the gel in the last two experiments by first
stretching and compressing it according to the four-roll mill geometry and then letting
the gel snapback when the background force is removed. Similar to the first two tests,
we vary the relaxation time to correspond to a “moderate” and “difficult” viscoelastic
solid.
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Parameter Set 1 Set 2 Set 3 Set 4

θn(x, y, 0) 0.15 0.15 Eq. (57) Eq. (57)
µn 0.04 0.04 0.04 0.04
µs 10−4µn 10−4µn 10−2µn 10−2µn

ξ 25µn 25µn 250µn 250µn

β 0.1 0.01 0.2 0.02
z0 0.1 0.01 1 1
ψ0 0.1 0.1 0.05 0.05

Table 3: Parameter values used for the test problems. See Tables 1 and 2 for the relationships defining
the other parameters.

For the first three tests we perform a refinement study to measure the accuracy of
the algorithm. First, we compute a numerical solution to the problem specified using a
fine grid spacing of h = 2−9, or a 512-by-512 grid. We then simulate the model at lower
resolutions and compare those results to the high resolution solution. Since the algorithm
uses a staggered grid, the values at the high resolution grid do not align with the values
of the lower resolution grids. The values from the high resolution grid therefore need to
be interpolated to the lower resolution grids. We use bicubic interpolation. Additionally,
in our refinement studies, we do not use variable time-stepping. Instead we fix the time-
step to be proportional to the grid spacing such that the CFL condition (51) is always
satisfied. For the first two tests we set ∆tk = h/6 for k = 0, 1, . . ., while for the third
test ∆tk = h/5.

4.1. Uniform volume fraction: refinement study

The parameters for the first two tests are listed in the Set 1 and Set 2 columns of
Table 3. The ratio of the two viscosities for these tests is considered high, while the ratio
of µn to ξ (which defines a length scale) is considered moderate.

In the first test, we set the initial elastic modulus to z0 = 0.1 and the inverse of the
polymer relaxation time to β = 0.1. This is a moderate value for β. The simulation is run
up to time t = 4. The network volume fraction and the two velocity fields at this time
are displayed in the left column of Figure 2. The elastic modulus and the viscoelastic
stresses are displayed in the left column of Figure 3. The results of a refinement study
for these 6 state variables are displayed in the right columns of Figures 2 and 3. These
results indicate that the algorithm is converging as O(h2) in each of the `2, `1, and `∞
norms, which is expected since the solutions are smooth.

In the second test, we decrease β and the initial elastic modulus to 0.01, which sets the
initial polymer viscosity µp = z0β

−1 to be the same as the previous test. We can therefore
see the effect of an increased relaxation time (decrease in β) without changing the polymer
viscosity. This value of β is considered difficult and the fluid exhibits characteristics of
high Weissenberg number flow. The simulation is again run up to time t = 4. The
network volume fraction and the two velocity fields are displayed in the left column of
Figure 4, while the elastic modulus and the viscoelastic stresses are displayed in the left
column of Figure 5. We see that the network volume fraction and the elastic modulus
are much more concentrated at the centers of the four roll mill than in the first test.
The speed of the two fluids is also higher than in the previous case (see the titles of the
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Figure 2: Test 1: Left column of (a), (b), and (c) displays the respective network volume fraction,
network velocity, and solvent velocity at t = 4 using the Set 1 parameters. Right column displays the
relative errors in the solutions for the corresponding variable in the left column using various values of
the grid spacing h.
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Figure 3: Test 1: Continuation of Figure 2, but for the (a) elastic modulus, (b) trace of the viscoelastic
stress, and (c) viscoelastic shear stress.
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velocity field plots for the maximum speed). Finally, the trace and shear stresses are
also larger and much more spatially concentrated. The results of a refinement study are
displayed in the right columns of Figures 4 and 5. The second order convergence results
are very similar to Test 1.

As mentioned previously, it is difficult to define the classical non-dimensional numbers
such as Weissenberg number used to classify standard viscoelastic flows for our two-fluid
system. However, to put meaning to our use of the terms “moderate” and “difficult”
viscoelastic flow, we can get an idea of what the Weissenberg number is for the two
above experiments. The Weissenberg number is commonly defined as the ratio of the
polymer relaxation time to the time scale of the fluid flow. To get a rough estimate of
the Weissenberg number, we thus use ‖un‖∞/β (since our length scale is 1), where the
velocities are taken at time t = 4. For the first experiment, ‖un‖∞ ≈ 0.035 and β = 0.1,
giving a rough estimate for the Weissenberg number as 0.35, which is considered small.
For the second experiment ‖un‖∞ ≈ 0.1 and β = 0.01, giving a rough estimate for the
Weissenberg number as 10, which is considered high.

We conclude the discussion of these two tests by commenting on their behavior as
the simulations are run for longer times. For the first test, all the forces come into
balance and the system reaches a quasi steady-state. For the second, the viscoelastic
forces continue to grow without bound along the x and y axes of the box. This behavior
is similar to that of the Oldroyd-B model of single phase viscoelastic fluids at high
Weissenberg number. For the four-roll mill problem, this model is known to develop
singular structures in the stress fields [38]. Our numerical algorithm eventually breaks
down as these singular structures develop in the gel model. This unphysical behavior is a
common complaint of the Oldroyd-B model, which allows infinite extensibility of polymer
chains. Other more physical models have been developed, which limit the extensibility
of the polymer [41, 19]. In the context of the polymer model used in the two-fluid gel
model, the polymer extensibility can be limited by making β a function of trace(τ ) and
z, as done for a single-fluid in [12]. We will examine this type of model in a future study.

4.2. Concentrated volume fraction: refinement study

In the final refinement test, we set initial volume fraction to be concentrated in a
circular region of radius 0.175 centered at the origin as displayed in Figure 6. The exact
form of the initial condition is

θn(x, y, 0) = 0.05 +


1989

896π

(
1−

(
x2 + y2

δ2

)4
)4(

4

(
x2 + y2

δ2

)4

+ 1

)
if x2 + y2 < δ2,

0 otherwise,

(57)

where δ = 0.175. This initial condition has three continuous derivatives and the constants
have been chosen such that

∫
Ω
θn(x, y, 0)dΩ = 0.1. The remaining parameters for this

test are listed in the column labeled Set 3 of Table 3. The ratio of the two viscosities
is considered moderate in this case, while the ratio of µn to ξ is considered high. The
maximum initial polymer viscosity is now 5 times higher than in the first two tests. The
simulation is run up to time t = 2.5, which is half the relaxation time. This test features
sharp differences in material parameters and the gel exhibits behaviors of a viscoelastic
solid.
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Figure 4: Test 2: Left column of (a), (b), and (c) displays the respective network volume fraction,
network velocity, and solvent velocity at t = 4 using the Set 2 parameters. Right column displays the
relative errors in the solutions for the corresponding variable in the left column using various grid spacing
h.
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Figure 5: Test 2: Continuation of Figure 4, but for the (a) elastic modulus, (b) trace of the viscoelastic
stress, and (c) viscoelastic shear stress.
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Figure 6: Initial volume fraction (57) for the third refinement test.

The network volume fraction and the two velocity fields at the end of the simulation
are displayed in the right column of Figure 7 and the elastic modulus and the viscoelastic
stresses are displayed in the left column of Figure 8. The speed of the network is faster
than in the previous two cases, while the speed of the solvent is much slower. This is a
result of the increase in the drag coefficient. The trace of the viscoelastic stress is roughly
of the same magnitude as in the second test, but it is much more spatially concentrated
near the transition from low to high network volume fraction. The viscoelastic shear
stresses are also much more spatially concentrated and larger than in the previous tests.
The results of a refinement study are displayed in a similar manner to the previous tests
in the right columns of Figures 7 and 8. The rates of convergence for all variables,
except the solvent velocity, are less than the previous tests. In the `2 and `∞ norms, the
convergence for the trace and shear stress now appears to be first order. This decrease
in the convergence rate is expected since the solutions feature sharp gradients and the
limiters used in (27) and (40) have been activated.

4.3. Concentrated volume fraction: snapback effect

In the remaining two tests, we further illustrate the robustness of the computational
method by focusing on gels that exhibit characteristics of a viscoelastic solid. The tests
are similar to the previous one in that we start with a concentrated polymer network
centered at the origin and then stretch the gel along the x-axis and compress it along
the y-axis according to the four-roll mill force. However, at time t = 2.5 we turn off
this background force and continue to run the simulation up to time t = 10. The
parameters for both tests are set so that the polymer viscosity is relatively high and
the relaxation times are relatively long, which make the gel have viscoelastic solid-like
behavior. Thus, when the background force is removed the gel will snapback towards its
original configuration.

For the first snapback test, we use the same parameters as the previous refinement
test (Set 3 of Table 3). The relaxation time for these parameters is 5 and the background
force is therefore turned off at half the relaxation time. Stills showing θn, un, and us

from the simulation at times t = 0.2, 2.7, 8, and 10 are displayed in Figure 9. Initially,
the polymer slowly expands radially outwards while the solvent correspondingly moves
in towards the origin to fill the space, as can be seen in the t = 0.2 still. The dynamics
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Figure 7: Test 3: Left column of (a), (b), and (c) displays the respective network volume fraction,
network velocity, and solvent velocity at t = 2.5 using the Set 3 parameters. Right column displays
the relative errors in the solutions for the corresponding variable in the left column using various grid
spacing h.
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Figure 8: Test 3: Continuation of Figure 7, but for the (a) elastic modulus, (b) trace of the viscoelastic
stress, and (c) viscoelastic shear stress. Note that only the region −0.4 ≤ x, y ≤ 0.4 is displayed for
the figures in the left column to better illustrate the structure of the variables near the concentration of
network.
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around this time are being driven by the osmotic pressure, which is designed to force
the gel to mix. The effects of the background force do not dominate the dynamics until
around t = 0.5. While the background force is turned off at t = 2.5, the polymer continues
to be stretched because of inertial effects. This stretching stops around t = 2.7, (see the
second row of Figure 9) at which point the polymer slowly begins to snapback towards
its initial state. The still at t = 8 (see the third row of Figure 9), shows that the polymer
has moved closer to its initial state, but it is more swollen. The relaxation of the elastic
stresses are now dominating the dynamics and network velocity has reversed direction as
the polymer unwinds. In each of the four quadrants there are counter rotating vortices
in the solvent. This pattern is formed by the complex interactions of the drag, pressure,
and inertial forces on the solvent. At t = 10, the polymer has started to swell radially
outwards from the t = 8 configuration (see the fourth row of Figure 9). This is an effect
of the osmotic pressure, which again starts to drive the dynamics as the elastic stresses
subside. The inertial effects on the solvent from the background force have diminished at
this time and the solvent flow has reversed directions to correspond more to the network
flow in the outer parts of the quadrants. The speed of the solvent is also now slower than
the network.

In the second snapback test, we make the gel behave more like a viscoelastic solid
by increasing the relaxation time by a factor of 10 from the previous test. All other
values for the parameters are kept the same; see Set 4 from Table 3. Stills showing
θn, un, and us from the simulation at times t = 0.2, 2.6, 7.5, and 10 are displayed in
Figure 10. The dynamics of the gel for this parameter set are similar to the previous one
up to approximately t = 0.2, as shown by comparing the first rows of Figures 9 and 10.
Beyond this time, however, the dynamics differ. For the gel with the longer relaxation, the
network is not stretched out as far by the background force. Additionally, the stretching
of the gel only continues up to approximately t = 2.6 instead of t = 2.7 as in the previous
case as shown in the second row of Figure 10. Still images of the gel at t = 7.5 in the
third row of Figure 10 also show that the network has snapped back to a state that more
closely resembles the initial condition than the previous test. Furthermore, the velocity
has reversed direction at a much sooner time than the previous test. The final images in
the fourth row of Figure 10 show that the network has moved very little from its t = 7.5
configuration and is much more concentrated than the previous test at t = 10. Finally,
both the network and solvent velocities are higher and osmotic pressure is having little
effect compared to the previous test.

We conclude this section with some comments on the performance of our numerical
method for the two snapback tests. All the results presented were computed on a grid
with spacing h = 2−8. Variable time-stepping was used as discussed in Section 3.5 and
the simulation remained stable throughout the integration period. The tolerance for
the multigrid-preconditioned GMRES solver for the momentum and incompressibility
equations discussed towards the end of Section 3.2 was set to 10−8. Even with this
relatively high tolerance, the solver performed exceptionally well. Figure 11 displays
time-traces of the number of iterations required for the solver for both snapback tests.
The variations in the iteration count can partially be attributed to the use of smaller and
larger time-steps at different times in the simulation and to good initial starting guesses
based on the solution at the previous time-step.
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Figure 9: Stills of θn, un, and us from the first snapback test using the Set 3 parameters listed in Table
3. Red (dark) curves in velocity field plots correspond to the contour θn(x, y, t) = 0.1 while, the yellow
(light) curve corresponds to the initial contour θn(x, y, 0) = 0.1.
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Figure 10: Stills of θn, un, and us from the second snapback test using the Set 4 parameters listed in
Table 3. Red (dark) curves in velocity field plots correspond to the contour θn(x, y, t) = 0.1 while, the
yellow (light) curve corresponds to the initial contour θn(x, y, 0) = 0.1.
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Figure 11: Time traces of the number of iterations required for the iterative solver to reach a tolerance
of 10−8 for the two snapback tests. The jump in iteration count from 3 to 6 in both tests corresponds
to time t = 2.5 when the background force is turned off.

5. Concluding remarks

Gels are important in many biological systems where they exhibit unique character-
istics such as osmotic and active stresses. In many cases, the mechanics of these gels
are appropriately described using a two-fluid model in which the gel is composed of a
polymer network immersed in a fluid solvent. The resulting equations describing these
models pose difficult challenges for simulation, and numerical methods have not previ-
ously been developed. We have presented the first computational technique for treating
the whole coupled system of equations in two dimensions. The algorithm uses second
order high-resolution methods for treating the scalar transport and tensor viscoelastic
stress equations, and a second order finite-difference method for handling the momentum
and incompressibility equations. For solving the large coupled linear system that results
from the latter set of equations, we use a modified version of our previously developed
preconditioned Krylov subspace method [9].

We have presented several numerical experiments using the four-roll mill to drive the
gel motion. For smooth problems, our results confirm the computational algorithm is
second order accurate in space and time. Additional numerical experiments presented
show the method is also able to effectively handle sharp gradients that may develop
in the solutions, but that the order of accuracy is decreased by the use of limiters to
avoid oscillations. All experiments indicate the method is stable provided the variable
time-step is restricted to satisfy an appropriate CFL-type condition. Finally, the five nu-
merical experiments presented and further testing we performed separately show that the
computational method is efficient, robust, and is able to handle gels with widely varying
rheologies, ranging from characteristics of a viscoelastic fluid to those of a viscoelastic
solid.

The polymer network in our model is treated as an Oldroyd-B fluid, which creates
issues with the four-roll mill problem as this model allows singular structures in the stress
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field to develop [38]. In a future study we plan to extend our algorithm to treat more
physical models for the network that limit the polymer extensibility, as in [12].

While our algorithm handles nonzero Reynolds number flows, in many biological
applications the viscous terms dominate so that inertial terms are negligible [36, 35, 42,
37, 43]. Our algorithm can be modified to also handle these zero Reynolds number flow
models. This would require removing the terms involving Ds and Dn from (26). In this
case, the matrix that results is identical (up to boundary conditions) to the matrix from
our previous study [9] where the multigrid preconditioned GMRES method was first
developed.

Biologically relevant problems rarely occur in a bi-periodic box, but in much more
geometrically complicated domains with boundaries. We have previously extended our
method for simulating a viscous two fluid gel model to handle complex domains using a
Cartesian grid embedded boundary method [11]. The extension of this technique to the
viscoelastic two fluid gel model considered in this paper will also be pursued in a future
study.
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Appendix A. Viscoelastic constitutive equation

The viscoelastic stress arises from the deformation of a transient network of polymer
chains. Links between the chains form at a rate that depends on the volume fraction
of network, break at a constant rate, are transported with the network velocity, and are
stretched by gradients of the network velocity. Let E(x,y, t)dy represent the concentra-
tion of links that connect the network at point x to the network at point x + y. This
distribution satisfies the equation

Et +∇x · (unE) +∇y · (y · ∇un) = f(|y|)g(θn)− βE, (A.1)

where f(|y|)g(θn) represents the formation rate of junctions, β is the breaking rate, and
it is assumed that the length scale of the chains is much smaller than the length scale
associated with the fluid motion. If we assume that the force per link is F = Ky, where
K is the stiffness coefficient, then the elastic stress within the network is

σ =

∫
KyyE dy. (A.2)

By multiplying equation (A.1) by Kyy and integrating over all y, we obtain an equation
for σ:

σ
t

+∇ ·
(
unσ

)
− σ∇un −∇uT

nσ = α(θn)δ − βσ, (A.3)

where α(θn) =
∫
Kf(|y|)g(θn)|y|2 dy.

The links form isotropically, and if there were no velocity gradient, then σ would
remain isotropic. We assume that this stress from the presence of the links alone (i.e.
not related to the deformation of the links) does not contribute to the viscoelastic stress.
This isotropic stress is zδ where z satisfies the equation

zt +∇ · (unz) = α(θn)− βz. (A.4)

We note that z is proportional to the total number of links
∫
Edy, and can be interpreted

as the elastic modulus of the network. The viscoelastic stress is

τ = σ − zδ. (A.5)

By combining equations (A.3) and (A.4), we see that τ satisfies equation (9).

Appendix B. Spatial discretization of the momentum equations

We use second order finite-differences on the staggered grid displayed in Figure 1 to
discretize the spatial derivatives in the momentum equations (20) and volume-averaged
incompressibility constraint (18). To make the presentation of the approximations more
clear, we deviate from the subscript and superscript notation used in the main part of
the paper. Here we use subscripts to indicate the location on the grid where the variables
reside. Superscripts are used to differentiate between the network and solvent variables
as well as the different components τ . We also use the overline notation discussed at the
end of Section 3.1 to denote averages of certain variables.
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The approximation of the first row of the semi-discrete equation (21) at (xi+1/2,j , yi+1/2,j)
is given by
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, (B.1)

while the approximation of the second row at (xi,j+ 1
2
, yi,j+ 1

2
) is given by
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The approximations for third and fourth rows of (21) corresponding to the network veloc-
ity are similar, but with the variables for the solvent replaced accordingly by the variables
for the network. The network velocity equations include additional terms Ehn (θn, τ ) cor-
responding to the divergence of the weighted viscoelastic stress tensor and the gradient of
the osmotic pressure. The approximation of Ehn (θn, τ ) that is included in the un equation
at (xi+1/2,j , yi+1/2,j) is given by

1

h
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while the approximation that is included in the vn equation at (xi,j+1/2, yi,j+1/2) is given
by
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(B.4)
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Finally, the volume average incompressibility constraint (22) is approximated at (xi,j , yi,j)
by
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