
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

6-1-2010

Optimizing Reconfigurable Hardware Resource
Usage in System-on-a-Programmable-Chip with
Location-Aware Genetic Algorithm
Sin Ming Loo
Boise State University

JingXia Wang
ShenZhen Polytechnic

This document was originally published by International Society for Computers and Their Applications in International Journal of Computers and Their
Applications. Copyright restrictions may apply. http://www.isca-hq.org/journal.htm

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical
https://scholarworks.boisestate.edu/electrical
http://www.isca-hq.org/journal.htm

" IJCA , Vol. 17. No.2, June 2010

Optimizing Recontigurable Hardware Resource Usage in System-on-a
Programmable-Chip with Location-Aware Genetic Algorithm

Si n M ing Loo',
Boise State Univers ity, Boise, Idaho 83725, USA

JingX ia Wangt

ShenZhen Poly techn ic, ShenZhen, C)-UNA

Abstract

This paper presents static !ask scheduling using localioll
aware genetic algorithm techniques 10 schedule task systems to
fi nite amounts of rcconfigurable hardware. This researc h
optimi:tcs the use of limited rcconfigurablc resources. This
scheduling algorithm is built upon our previotls work 11 2- 14].
In Ihis paper, the genetic algorithm has been expanded 10
include a fealure 10 assign selected task s to specific fUllctional
units, tn this reconfigurable hardware environment, llmlliple
sequential proccss ing elements (soft core processors such as
Xilinx MicroBlazc [22] or Altera Nios- II II]), task-specific
corc (application specific hardware), and communicat ion
network within the rcconfigurablc hardware can be used (such
a system is called system-on-a-programmable-ch ip, SoPC).
This paper shows that by prc-assigning (manually or
r<ll1domly) a percentage of tasks to the desired functional units,
the search algorithm is capable of findill g acceptable schedules
and maintaining high resource util ization (>93 percent, with
twO processors configuration).

Key Words: FPGA, schedu ling, hardwarclsoftware
codesign, reconfigurablc hardware.

I Introduetiun

Scheduling algorithms, whethcr static or dynamic, have been
designed around an avai lable target system (usua lly
constmcted ahead of time) that is made up of a processor,
application-specific integrated circuits, and programmable
hardware connected together using some form of bus or switch
interconnection network . Many systems extensively utilize
off-the-shelf processors and dedicated hardware to perform
their intended function . The hardware remains fixed from the
time of its fabrication. The flexibility in the system is
restricted to the software ponion of the system. With the
increased popu larity and availability o f reconfigurable
hnrdware in the late 90s, the hardware itself has become
flexible. The reconfigurab le environment targeted in th is
research is one in which the application can dictate the
stnlcture of the processor, the high-speed logic sect ions, and

Departmcnt ofEleclrical and Compuler Engineering,. Email:
smloo@boi.~cslalc.cd\l .

t Departmenl ofEleclrical Engineering.

Ihe intercollnccti on medium. With all functiona l units and an
in terconn ection network embedded in one reconfig urable
device, this is ca lled syslem-on-a-programmable-chip (SoPC).
The goal of Sol'C is to exploit the synergism thai is possible
when both the hardware and software portions o f the design
are perfonned conculTently and cooperatively.

Reconfigurablc hardware has bcen progressively replac ing
application-specific hardware in small volume designs. The
use of reconfi gurable hardware nllows the system to be re
designed and upgraded without nOll-Tecun·ing engineering
costs because the system can be reconfigured in the field after
deployment. This flexib ility allows the hardwarc structures for
given portions of an application \0 be specia lized and
opt imized to achieve a pcrfomlance that can be orders of
magnitude greater than that which can be achieved within most
trlldi tional processing systems employing a Von Neumann
style architecture. Unfortunately, reconfigurable resources
within off-the-shelf reeonfigurablc hardware (number of pins
for input/output, fl ip-l1ops, look-up tables, etc.) arc limited.
For many applications, this limitat ion means that il is
impossible to configure the reconfi gurable hardware such that
all ponions of the design arc implemented for optimal
perfomlance (for example, optimize for speed). This is
because such performance optimal imp lementations wou ld
probably consume resources orders of magnihlde more than
can be made avai lable.

One desired compromise is to usc the reconfigurable
hardware by cognizant of the space/time trude-off. This
compromise tran slates into detennining how much
concurrency should be employed in order to meet the
pcrfonnance requirements of the appl ication without exceeding
thc resource limits of the reconfigurable hardware. The key to
findi ng this e ffective balance is to develop techniques that can
detennine, with in the confines of the resource limitations,
which portions o f the problem must have increased levels of
concurrency to Illeet the overall perfomlancc constraints and
which portions of the problem can be implemen ted
sequentially 10 save room fo r the hi gher performing portions of
the design. Thi s is a resource constraint problem with an
added twist to il. Because of rcconfigurable hardware, the
technique is able to detennine which flll1c tionul uni t (trade-offs
of the usc of processor core versus appl ication-specific
hardwarc) should be cmployed in order to meet the overall
dcsign and resource constraints.

tSeA CopyrightC 20 I 0

lJCA, Vol. 17, No.2, June 2010

The remainder of this paper is organized as fo llows. First, a
quick survey of reconfigumble hardware ut il i:-..a tion research is
presented . Then, an overview of reconfigurab[e system design
framewo rk is given. Thc reader is introduced to Ihe search
space complexity of this sope scheduling prob[cm. An
overview of genetic algori thm is presented. An exam pl e,
extracted from Space Shutt le Turbo Pump, is used for
scheduling discussion. The next section d iscusses how the
percentage of pre-assigned tasks can in fluence the scheduling
sol utions. This expanded set o f si mulations has been
accomplished using synthetic task systems. Fina lly, some
gencral conclusions are presetlled.

2 PrcviO llS Rcsc~lI'ch

The research into methods to take advantage of
reconfigurable hardware has been concentrated in areas of
scheduling algorithm, operating system, comp il er techniq ues,
and dynamic recon fi guration techniques. An earliest dead li ne
fi rst schedul ing technique is used to schedule tasks onto
recon fi gurable hardware {51. [n th is research, the target
reeon fig urable hardware is partit io ned into slOis. The paper
reported finding feasible schedules with system ut il ization of
up to 70 percent. The usc of state fe edback control has a lso
been presented [20). Embedded operat ing systems have been
designed and implemented to manage reeonfigurable
resources. Basically, thi s mntime system performs online task
and resource management [4. 19J. The use of the operating
system a llows dynami c scheduling and dynamic placement of
hardware tasks into recon fi gurable hardware.

Another set o f methods to take adva ntage o f reconfigurable
hardware has been borrowed from the compiler world. Resano
[17) has developed pre- fetch and replacement techn iq ues to
reconfigure the hardware dynamically. Their techniques
manage the resources by ex plo it ing a novel encoding scheme.
The technique developed can vu lidate the feasibilit y of the
sched uling/placement quickly, increase resource ut ili zation,
and improve the paralle li sm [161. Yet another study [13 J looks
into how loop unro lli ng can take advantage or reeonfigura blc
resources . This research shows that sign ificant performance
improvements can be achieved through combi ning both illlm
and inter-task parallelism.

Numerous papers presentcd in the area of reconfigurable
hardware utilization research described panial or dynamic
reconfiguration techniques [2, [0-1 1, 15J. The goa l of such
techniques is using partial or dynamica lly reconfiguring
technique to share the hardware in time. However. as o f the
writing or th is paper, partial/dyn ami c rcconfigurat ion time is in
the order of milliseconds, whi ch makes the appl icable of these
techniques questionable in real world reeonfigurable hardware.
These techniques, coupled with an e mbedded operating
system, can be very powcrful in assigning the reconfigurable
hardware for task execution.

Others are looking into how task placemem can be
optimized ror computation und, at the same time, decrease
energy usage [2, 9- 11, 15). In one em,c, a genetic algorithm
has been designed to minim ize both task executi on schedule
length and power consumption [15].

85

The research presented in this paper concentrates on well
de fined task systems. The goal is to find II feasible schedule
within confined reconfigu rable resources. The task system
selectcd in our simu lat ion will requ ire more than twi ce of that
provided (in the simulation). The gcnctic algorithm
determines the placemen t of tusks and what task-specifi c
logics will be implemented. The algorithm determines the
configuration of reconfigurable hardware without the usc of
dynamic reconfiguration. Thus, this research is a much more
limited domain of the reconfigurable scheduling research.

I.n this paper, reeonfigurablc hardware is used to implement
both the high-speed logic that has been designed to execute the
most time-intensive portions of the application problem, and
traditional Von Neumann-style processing cores to save
valuable hardware resources. [n this arrangement, the
processsor cores, the application spec ific modul es, the
inpuUoutput log ic, and the routing a1110ng each of these
hardware enti ties arc contained within the finite resources of
the reconfigurable logic. The trade-off is to determi ne the
number and types of each o f these ent it ies that will best meet
the needs of the application and fit within the available
reconfigurab[e hardware resources. Simply placing all the
functionali ty in applicat io n-specific modules will probably
never represent a valid solution because of the fin ite resource
constra ints. Conversely, placing all the runctiona li ty in a
single large processing core un it that will be impl emented
within the reconfigurab le logic is also not desirab le, s ince it is
subject to poor performance. The goal orthis paper is to show
solutions to this space/time trade-o IT in those cases wherc the
application can be decomposed into a well-behaved system of
tasks that can be implemcnted directly in hardware or executed
sequentially 011 one or more processing cores. This paper also
demonstrates a genetic algori thm implementation that allows
cenai n tasks to be assigned either randomly or as speci fi ed by
the user.

3 Reconfigurnble System Design Framcwork

The components of reconfi gurable system design framework
(RSDF) are shown in Figure [. The heart of this framework is
the scheduler. Inputs to the scheduler include the hardware
library, task system, resource and design constraints. The
hardware library supports three Iypes of functional un its that
Can be placed in reconfigurable hardware. There are also
inputs that refl ect the hardware resource limits associa ted with
the reeonfigurable hardware medium. and various desigll
constraints that renect the rcqu ired performance of the
applicat ion. The purpose of the scheduler is to generate a
complete task schedu le and a systcm-on-a-progralllmnble·chip
(Sol'C) hi gh-leve l hardware system description that satisfies
all or the given constrai nts. The task execution schedule
describes the task execution sequence of the system frolll a
g lobal point o r view for :1 singlc major frame o r execution. It
docs so in a manner that sat isfies the precedence and resource
constraints. The high-Ievcl hardware system descliption is
created at the same lime the task schedule is generated. It
consists or the number and type of core processors to be
implemented and the inter-rcconfigurable logic communi cation

HI, IJCA. Vol. 17, No.2. June 20 10

Hardware LibraI)'
Task System Resource & Design

(pes, TSCs. CCEs) Constraints

+ + +
,; Scheduler -;

!., ~'. (Allocation & Assignmenl) i:. .'>

+ t
l-l igh-Level Hardware ~ Task Schedule
System Description .

Figure J: Rcconfigurab lc system design framework . This framework defi nes the eJcmcllIs for reconfigurab lc
resources to be utilized efficiently_ A complete [:15k execution schedule and sope description arc
produced so that 11 system can be implcmcllIcd.

topology of the system. in the fo llowing sections, the
characteristics of these various clements are discussed.

3. 1 l-hl r d wa rc Li bra ry

The hardware library represents a high-level description of
the cand idate logic modules that can be used to implement an
application . It supports three types o f functional uni ts that can
be placed in reconfigurable hardware. These functional uni ts
include the processor cores (PCs), task speci fic cores (TSCs),
and communication core elements (CCEs).

In lhis model, PCs represent dist inct clemcnts in the
hardware library because they have the general capability to
support the Von Neumann-style sequential execution of more
than one task. In general, the number of tasks that they can
execute is limited by the intcmal program and data memory
presellt within the Pc. This is because the model assumes that
all memory clements are exp licitly specified as part of the PC
type definition in the hardware library. This means that there
is an added dimension to the resource utilization problem.
Each PC uscs a fixed amount of hard resources every time an
instance of it is implemented in the reconfigurable hardware.
Some of these hardware resources arc used for internal
program and data storage. The alnount of program/data
storage thus in effect becomes a "soft" resource limit that will
directly affcct the number and type of tasks thai the PC can
exccute. This is because each task in the system has assigned
10 it a projected "soft" resource usage requ irement for each
typc of PC that is present in the hardware library.

TSCs nre another Iype of functiona l unit that may be present
in the hardware library. Unl ike PCs they are not general
purpose in nature, but pcrfonn the specific func tion that is
associiltcd with the task. CCEs arc the final type of functiona l
unit prescn! in the hardware library. The model supports both
synchronous (buffered) and asynchronous (non-buffered)
CCEs.

It is assumed that the functional UTlits themselves utilize a

cOlllmon asynchronous protocol find dedicated communication
ports to communicate wilh each other. Synchronous links
betwcen fu nctional un its are composed of CCEs that :Ire
primarily made up of TOllling resources. Asynchronous
communication is made possible by incorporating buffered
comm un ication eleme nts. In Ihis way, the interface between
PCs and TSCs is uniform regardless of whether synchronous
or asynchronous communication clemcnts arc used.

3.2 Task System

The other input to the reconfigurable system design
fra mework is the task system, where the application task
structure and perfonnancc information as well as the soft
resource requirements for each task arc maintained. For this
portion of tile model, it is assumed that the application problem
has been decomposed into a sct of tasks that can execute in a
detenllinistic manner as software processes on the sequential
processing units or as hardware funclions within the
recon figurable logic. These tasks arc considered to be well
de fined in thai the execution timc can be detcnnined at the
timc of task creation for all so ft ware and hardware
man ifestations. Also, all tasks are considered to be non
precmptive in natme. In th is scenario, the edges in the task
system contain both data and control flow infonnation, which
guarantee the correct system operation. In this work, it is
assumcd that a well-defined system can be unrolled into a
d irected acyclic graph (DAG) pllrt and a commun ication parI.

3.3 Il esollrce and Des ign Constraints

The third sct o f inputs to a reeonfigurablc systcm design
fra mework is the design COllstmints. There are two types of
constraints. The firs l is the amount of hardware resourccs Ihat
are available fo r usc in the rcconfigurBble medium. This is the
global size constraint. The second constraint specifies the
level of performance tha t the system must possess. This is Ihe

ileA, Vol. 17, No.2, June 2010

global timing constraint it is in effect the maximum
acceptable length of the schedule. This constraint is manda
tory in rea l-time systems where it can be viewed as repre
senting the global deadline associated with the major frame of
the application's task system. In gencra[, the more s tringent
the perfonnance requirement (i.e., the shoner the requ ired
schedule length) or the smaller the globa[resource constraint,
the harder it will be to create an acceptable static schedule and
a SoPC high-level hardware description capable of fitting
wi thin the finite resources of the reconfigurab le medium.

3.4 High-Le\'clilardware Sys tem n Cscril)lion

One of the outptns produced by the scheduler is the hi gh
level hardware system description (I·ILI-I SD). This description
indicates both the number and type of processing cores, task
cores. and cOlllmunication core clements that are to be
employed by the system and the interconnection stmeture that
is used to interfaee the various fune tiona l uni ts into a eomplete
system. This representation can easily be translated for
hardware synthesis into a struct ural representat ion of these
components with in a hardware descript ion language.

3.5 Task Sc hedulc

The second output produced by the scheduler is the task
schedu le. The task exccution schedule contains the order of
execution of the given tasks and the order of execution of the
tasks within each PC. The schedule length is used to
detenninc if the implcmcntation will meet the mandated
perfomlance requircments spec ified in thc design constra ints.

4 Sea rch Stl":1tcgy a nd Sc hcdu ling Exa mpl e

4. 1 Genetic Algorithm

A standard genetic algorithm was implemented to permute
the schedulin g data strucnl re, by treating il as the symbo lic
string to which genetic operations can be app lied [7, 13]. In
this scheme, each individual membcr of the population is
reresented by a separate data stnJcture, and the R.ES scheduling
strategy acts as the fi tness fun ction. In the initialization step, a
fJOpu/alion o f ~ stmctlJres is randomly in itialized wi th task
assignment and priority values. A task pre-assignment feature
has been added to the scheduler to mainta in designated task
execution location as requested by the user. Each individual in
the population reprcsented by a separate data s tmcture is called
a candidate. The data structure represents a two-di mensional
chromosome where each row contains the two genes that
comrol task assignmeJII and priority order. The initial izat ion
process initia lizes those tasks, pre-assigned as required by the
user, and randomly creates and initializes the rest that make lip
the initial popu lat ion. The makeup of the popu lation
continuously evolves over time. (The genetic a lgori thm
implementation for this paper is described in previous research
[13]; please refcr to that paper for details of this implcmenta
tion.) [n thi s paper, we extended the previous research to
include the concept of ask mob ility factor. Each task is

87

assigned a mobility factor, in this case randomly (between I
and 100). Duri ng the scheduling and assignment simulations,
we can set the mobili ty factor fo r each simulation. For
example, if the mobility factor is set to 85 for a task system of
100 tasks, 15 tasks have been pre-assigned to their respective
functional units. The genetic search algorithm will find a
feas ible schedule using the 85 tasks that haven't been assigned.

4.2 Exa mple : Space S huttle Turbo I' ump Conti nuous
S imulation Task Systcm

We consider a si mple application to illustrate how the
locat ion-aware schedu ling in rccon figurable hardware can be
applied to a rell[-world example (Figure 2). The pa n icular
example considered came from the general area of continuous
or dynamic system simulation . Such simulations confoml
cl oscly to the RSDF task system model outlined in Section 2.
It is a system of non-prcemptive tasks whose precedence
relat ionships arc irregularly stmctured. Tasks in thesc systems
are govenlcd by and-join precedence semantics and can easily
bc decomposed into a single major frame.

Continuous syslems arc gcnera lly described 11l1llhematieally
using a set of mult i-order nonlinear differcntia l C(luations that
form a class ical ini tial value prob lem. To solvc th is problem,
the set of equations is often decomposed into an equivalent set
of firs t-order differential equations that arc solved in an
iterative manner using numerical integration tcchniques. In
this model, the state of the entire simulation is always a
function of the variables thaI store the resul ts of the
integration. Thesc state variables are given an initial value at
the beginn ing of the simu lation after which they arc fed back
to the ncxt iteration of the simu lation. In this model, each
iteration represents a major frame. The system is often
modeled using addit ional sets of variables and equations that
depend in some way upon the system state variables. These
equations must be executed in a specific partial order within
each major frame to ensure that all data dependencies between
equations arc always met. Depend ing upon the manner in
which the tasks are de fined, these variables arc often used to
transmit the dala that must be communicated between the tasks
during each major frame.

The specific example investigated is based upon one of the
early models of the Space Shuttle Main Rocket Engine's
(SSME) High Pressure Turbo Pump system [18, 21]. In thi s
model, each task is defined as a major declared or state
variable equation. This example is being used 10 show how
tasks are pre-assigned to detennine an exccu tion schedule and
a hardware configurat ion that satisfi es the design constraints.

The task system for the SSME Turbo Pump as shown in
Figure 2 contains 30 tasks. In this example, it was assumed
that there were 10 be two types of PCs present in the hardware
library. The execution time on PC type I was obwi ncd by
profiling an existing SSME Turbo Pump simu lat ion o n a 25
MHz T805 transputer system [18]. The execution time for
each task was then d ivided by two because it was assumed that
reeonfigumble hardware could now suppon a 50 MHz T805
compatible Pc. Th is appears \0 be a conservative estimation
of perfonllllnce considering the current stale of FPGA

88 IJCA, Vol. 17, No.2, June 2010

Figure 2: Space shuttle turbo pump task system

technology. The son resource requiremellts for each task lVefe
esti mated based upon the act11al object code size of the
software tasks when the simulation was compiled to mil onlhe
original T805 system. This is only a loose approximation. PC
lype 2 was derived directly from PC type 1. It was a vers ion
thai was to have essentially the same execution characteristics
as PC type I, but with some add itional hardware thaI
accelerated the computation of a few select operations and
reduced the soft resources required to comp lete these
operations. The program/data memory resources of PC type 2
were assumed to be less than PC type I. This made for an
interesting trade off, since PC type 2 was a bit more powerful,
but could support fewer tasks than PC type I. Table I contains
task execution times and required resources.

The hardware resource requirements for each TSC module
were obtained in a somewhat arbitrary manner. They were
synthetically generated by applying the u =Ar", 2-D VLS I
space/t ime trade-off equation presented earl ier [8], where u is a
space/ti me trade-off constant, A is the hard resource util ization
for an implementation, t is the execution time of an
implementation, and x is a unifonn ly genera ted random value
that was in the range of I to 2. The procedure was to first
randomly generate the TSC execution time under the
constraint that the TSC exccution time would be some value
less th an the fastest PC execut ion time. Then the resource
utilization of the TSC was ca lcu lated using the u =AtX

equation. The goa l was to create a system that had a real-work
derived stmcnlrc that would be constrained in a manner where
it is impossible for all task-specific components to exist within
reconfigurable hardware at the same time.

This 30-task examp le is used to show how pre-assigned
tasks can be beneficial in finding a better schedule with better
schedulc length . Using the task system as shown in Figurc 2, a
proper format text file was crcated for the RSDF too l. Forty
simu lations (with different random secd) were completed for
each percentage of pre-assigned tasks. The results arc shown
in Tab le 2. The resource constraints were set in a way that no
onc functional unit can take on al l the tasks. In fact, if all the
tasks are to be assigned to just one functional unit, 350 percent
of the resources will be needed .

Such resource constraints setup guarantees parallel
processing where PC I, PC2, and TSCs will be used together.
Table 2 shows the resu lts when 0 percent, 10 percent, 20
percent, and 50 percent of the tasks arc pre-assigned before
using the RSDF tool to find a feasible and legal task schedule
that will fi t within the lim ited resources. For each row, 40
simulations (with different random seed) were completed. The
table contains the minimum, average, and maximum schedule
length or the 40 simulations.

We started the experiment by random ly pre-assigning the
tasks. Our findings of these simulati ons showed that when
none or a very small (less than 2 percent) number of tasks are
pre-assigned, the schedule lengths , found are better. When
more tusks are pre-assigned, the schedule length increased.
This is predictable as the number of pre-assigned tasks
increases, the number of "good solutions space" decreases.
Thus, worse schedules were found because the pre-assigned
location may not be the best assignment from the vicwpoint of
schedule length and resource utilization. Another plausible
explanation for the schedul e length is that the 30-task system

IJCA, Vol. 17, No.2, JUlle 2010

Table I: Shuttle turbo ~um~ task infillll13tiotl
PCI PC2 TSC

Execution
Program

Execution
Program

Execution Task name
time (unit

memory
time (unit

memory FPGA resources
required in required in

time (unit
required (eLS) time)

br!es
time)

b;tleS
lime)

DTHFTI 72 2824 30 1158 5 4313
TFP2 17 727 17 727 12 2879

U CFT2 2 77 2 77 2 17856
CPA 16 634 16 634 3 7423

OFPI 2 77 2 77 2 13354
CrF2 11 474 11 474 3 8682
PFTlI 5 180 5 180 2 11955

DTHFT2 73 2973 20 855 6 5822
CP 7 261 7 272 4 4779

DWFTI 16 626 16 626 13 1556
SF2x 2 83 2 83 2 16168

OWFT2 163 5954 80 3452 12 2003
TFrl 15 649 15 649 14 2442
SF2 3 112 3 112 I 40000

PFOI 17 634 17 634 13 1475
TF2 II 443 II 443 10 1475
SFI 3 122 3 122 2 10283

PRFT2 56 2280 56 2280 44 218
TFT2 DA 4 152 4 152 2 12572

TFTI II 431 II 431 10 1627
TFT2D 4 153 4 153 3 5265
dFT2 10 420 10 420 2 10400

DWF02 56 2153 30 f 177 13 809
TFT2 II 403 11 403 10 692

A AMFV 20 786 20 786 8 1195
SFlx 2 85 2 85 2 [5[04

U_CFT I 2 87 2 87 I 40000
FFP 2 82 2 82 2 19980

OFP2 2 85 2 85 2 19742
PF02 17 613 17 613 14 [505

Total resource usage if all tasks arc 10 assign to: PCl: 24580, PC2: 17329, TSC: 28 1575
Tota[of the availab[e resource 111 the simulation: PC I : 6000, PC2: 5000, TSC: 50000
[fthere is no resource limit, the sc hedule length of the critical path is: 67

Table 2: Pre-assigned turbo pump tasks example simulation results
% of ta sks Schedule length (40 simulations for eaeh %) Note: Pre-assigned tasks (task name, assigned functional unit)
pre-assigned Min Ave Max
0% 67 70.4 77
10% 67 67.6 71
20% 67 67.3 69

50% 73 78.5 86

(OWFT2, TSC), (U _ CFn, PC2). (SF2, I'C 1)
(OWFT2, TSC), (U_CFTl, PC2) , (SF2 , PC[), (OFP2, PCl),
(OWFD2 , TSq, (U_Crn, PCI)

89

(OIVFT2, TSC), (U_CFTI, PC21, (SF2. PCI), (OFI'2, PCI).
(OWFD2, TSC), (U_CFT2, PCI), (CPA, PC2), (OWFn,
PC I), (A_AMFV, TSC), (FrP, PC2), (TFPI, TSC), (PFD I,
PCI), (dFT2, TSC), (SF l x, PC l), (TFT2D, TSq

I Number of generat ions- 1000, population size 25, mutation probabi [ity-5%, recombination probability 100%, 0 e!iti~m,
proportional-rou[ette-whce! selection. The average is ror 40 cases.

90

hlls sma ll solution space compared to a task syStem of 100
tasks. With the previous findings, we selectively prc-assigned
tasks. By selectively pre-assigning tasks, beneT schedules
(with better schedule length) can be found . The results are
shown in Table 2.

4.3 Sea rch Space Complex ity

Precedence and resource constraint scheduling problems
closest to the one being investigated in this work have been
shown to be NP·Complete (6). The scheduling problem
addressed in Ihis paper (and our prev ious publicat ions [12-14])
is even more complex than most precedence and resource
constraint scheduling problems. The complicfllion is due 10
the usc of scheduling theory 10 determine the configuf<lIi oll
(determine the schedule length, (Issign tasks to func tional units,
and dctemline thc resource utilization) of sope. The goal is 10
rind a configurat ion (high-level hardware systclll dcscription)
thai is realizablc and has a schcdule length that meets the
dcsign conslra ints.

The search space that must bc transvcrsed for any
ass ignment or schcduling problem is extremely large. For
example, j ust to find the optimum assignment o f tasks to
functional units in a systcm that confonns 10 the RSDF using
exhaustive teehniqucs requires m" assignmclll operations,
whcre 111 is the number of functi onal units \0 which a task can
be targcted, and 1/ is the numbcr of tasks to be sc hcduled . This
is the problem without placing constraints on where a task
would be assigned. The scheduler wi ll decide opt imum
placemcnt during the scheduling process. Thus, in order to
rind an optimum assignmcnt through an exhaustivc search for
a 100·task systcm assuming an active set of hardw3re elements
that consists of threc PCs and two TSCs per task, requi res
(3+2)'00= 7.8886x I069 opcrations. If each assignmcnt
operation can be completed in 0.5 nanoseconds, it would take
1.2507x I 053 years to find such an optimum assignment within
the aVllilablc resources. This calculation docs not include thc
hard and soft resource constraint check time or the time it takes
to rOOllUlate a complete sequencing or schedul ing or the tasks
on thc individual PCs. From this analysis, it is obvious Ihut
only a small subsct of the search space cun ever be transversed.
The key is to utili ze a technique that C3n perform thi s search in
a highly cfficient manner.

The version of the problem prescnted ill this paper is whcre
thc designer can selcctively place the desired tasks at thcir
"opt imIJm" execution location (pre-assigned!). The reasons for
placement can bc as simple ilS the functional unit having the
suitablc access to input/output interface or just that the
designer knows such placement will result in a better overall
SoPC configuration. With this pre-assigned schedul ing feature
added to the allocation and scheduling process, the complexity
reduces to qllt, whcre q is between 0 and 1. In this paper, we
sct q to 0.5 , 0.8, 0.9, and 1.0; this is si milar to pre-assigned 50
percent, 20 percent, 10 perccnt, and 0 percent or the tasks,
respectively. With sitch constru int, the scheduler has a sma ller
legal search space and a better solution can be detcrmined
more quickly.

ileA, Vol. 17, No.2, lune 20 10

5 Mo re Comprehensive S imul ations a nd Result s

In the previous section, we used a 30-task system to show
the working of the Illsks pre-assigned tcchnique. In this
section, we use synthetic task systems to test how well the
technique will stand up to pre-assigned tasks.

In parallcl processing, it is common to evaluate the effect
tivencss or compcting assigning, mapping, and sequencing
heuristics by applying a common set of randomly-gcnerated
task systems and comparing the perfonnance or the resulting
ass ignments or sc hedules in a sta tistical manner [1 2-14]. Us
ing synthetic task graph generation techniques and parameters
as described in {l4], task systems wcre gcnerated to lest the
effectiveness of our genetic algorithm implemcntation when
some po rtion (0 percent ,S percent, 10 percclll, 15 percen t, 20
percent, 25 pcrcent, 30 percent, 35 percent, 40 percent, 45
percent , and 50 percent) of the tasks were pre-assigned.

The genetic algorithm was used to find a feasib le allocation
within the available SoPC resources. Four hundred systems
werc generated with 100 tasks per task system (40 task
systems ror each edge probability). The task graph gencrmion
technique was presented in [14]. For each task system, cleven
simulations were completed for each category or pre-assigned
tasks (0 percent,S pcrcent, 10 percent, 15 percent, 20 percent,
25 pcrce1ll,)0 percent, 35 percent, 40 percent, 45 percent, and
50 percent). This meant that for each probability value, 440
simulations were completed. As for thc target pes, a
configuration of two soft-processor cores (based on Xil inx
Microblaze which utilizes 410 CLBs and 510 CLBs) were
chosen. Each processor core consists of 4 Kbyte and 8 Kbytc
of data memory, respectively. The number or CL13s used for
the simulation was sel 10 15,304. II is noted that for the task
systcms to be implemented optimally, more than 2.5 times of
the rcsourccs witl be required. The resources constraint
promotes space-time trade-off. The genetic algorithm searches
through which runctional unit should be used ror each task.
The characteristics or the task systems are shown in Figure 3.
Figure 3(a) shows that as the probabi lity o f an edge increases
between two nodes, the critical path time incrcases (or the best
possible parallel schedule Icngth increases). Th is critical path
timc is caleulated by schedul ing the t3sks using as soon as
possib le algorithm without resourceS constraints. The best
sequential time is for thc tasks systems as shown in Figure
3(b). This is calculated by summing the shortest execution of
each task using the optimal functiona l unit (again these
numbers nre determined without resources constraints being
introduced). The implementing of such a schedule is 1I0t
possible because it will require more than 250 percent of
available resources.

The si mulat ions were completed using an Apple PowerMac
G5 (with Dual 2 .5 GHz PowerPC G5'processors and 4 Gbyte
ofmernory) running OS X 1004.8. Each simu lation took seven
minutes with parameter sett ings as shown in Table 2. The
simulations were set to find (optimize) the best schedule length
withi n 1,000 generations (loops).

Figure 4 shows the best schedulc length fo und. Thc results
show thaI when 0 percent to 25 percent o r tasks 3re pre-

IJCA, Vol. 17, No. 2, June 20 10 91

Cri!ieal Palh

" t---- ---- -

••

.. ••
Probability of In ed ge ('I.)

('J

Iks! !kqucnllal E~eculion Time

'T
m 1- __ "'-~_ "

'" I=----=-=::o_=~---------==_--~---~-=:o-==
I

mp-~ .--==--
I ~

,

,., .. ••
Proo.bi l"y of.n edge (%)

(bJ

Figure 3: Synthetic task systems characteristics. (a) shows that parallel execut ion time increases as the number of edges
increases. There are 40 task systems per probability. (b) shows sequential execut ion time of task systems

assigned, better schedule can be found. There are two
instances when no task pre-assigned has the best solut ions
(0.01, and 0.05 , probability an edge ex ists bctween two nodcs).
As shown in Figure 4, the schedule lcngth found (out of 40
cases) gets worse with the increased pcrcentage of tasks pre
assigned, wh ich is because a larger percentage of tasks pre
assigned decreases the solution space. Comparing the resul ts
to Figure 3, il can be sccn Ihat the beSI schedule length found
with resources constraints is better than the best sequentia l
schedule length without resources constraints. Thi s shows the
flexible and capabil ity of genct ic algorithm in finding good

sol utions within the confined resources constraints. It is noted
Ilml the simu lation runs achieved reconfigurable resources
ut ilizntion of over 93 percent .

[t is important to note thnt when the pre-assigned percentage
vnlues arc in the 40 percent to 50 percent range, there were up
to three simulations (out of 40) with no feas ible schedule at the
end o r 1000 iterations. Figure 5 shows the average schedule
length of each probability value from 0 to 50 perccntillsks pre
assigned, in 5 percent increments. (rhe average is calculated
rrom 40 schedul e lengths when available ; in a few cases, only
37 solutions were found) . The plots show that the average

92

a.G' _0.0.

% or,,,1-> 1"<-.... p'I<d

." .. "
(a) Probability values frOIll 0.01 10 0.05

RUI Sdoed,,!" l ength Found

'",------- --- - -

...

ileA, Vol. J 7, No.2, June 2010

l
--~

::,:---------------------------c--------""" ,.. ' ''' " .. 10.. 1"" ,... " .. _0 .. ".

(b) Probabi lity values from 0.06 to 0.10

Figure 4: The best schedule lengths found are presented in two plots for case of reading. Each curve represents
the probability of an edge ex ist ing between two nodes. There are 40 task systems per probabi lity
value. The pre-assigned percentage increases from 0% to 50% with 5% increment. Each dot on the
plols indicates the best schedu le length among the 40 simulations

schedule length increases with the increasing percentage of
tasks locked at desired functional units.

found because the search space has been reduced by the pre
search task assignment phase. However, we also showed that
when a large pereentllge of tllsks is pre-assigned (locked to an
execution unit), the execution schedu le found is not as good as
when only a minor percentage of the tasks is pre-assigned. We
show that if the user decided to assign the tusks to the
desirable func tional units, the tool can take such assignments
inlO consideration and dctemlinc a feasible schedu le that can
be implemcntcd with in finite resource rcconfigurable
hardware.

6 Conclusions

This paper shows that pre-assigning a number of tasks cun
help 10 determine a beller schedule. It was shown that when 0
10 25 percent of tasks are prc-assigned, bellcr schedules cou ld
be found and take advantage of the limited recon li gurnble
resource at the same time. Beller schedule length can be easily

ileA, Vol. 17, No.2, June 2010 9J

'" I

1
J
"'1- --
'.
",

,.
~ ,. ", ., ", - ", - '"

- - 0.01

% of wh rrt __ iiJ>Oll
0.01 •• _0.0'

(a) Probability values from 0.01 to 0.05

A'troge Sched ule Length

''' ,----

,.

'''~.::..- ---------
110 ... - _

~I-------

'" ---

,. . .. ,. ,,. ", '" ., '" "'
'.0 __ 0.0'

%of' .. bpr ipod

•• ••
(b) Probabil ity values from 0.06 to O. \0

Figure 5: Average schedule lengt h of each probability values when the perccnt<lgc of pre-assigned tasks
increases. As the number of prc-ass igncd tasks increases, the average schedule length increases

References

[I] Altera Nios Processor, hllp://www.altcra.cominios.2006.
[2] S. Banerjee, E. Bozorgzadch, and N. Dun, " Physically

Aware I-IW-S W Parti ti on ing for Rcconfi gurable
Architc(.; tures with Partial Dynamic Rcconfigura tion,"
42nd Design Automation Con rerence, Anaheim, CA,
USA , June 13- 17, 2005.

[3] Pascal Benoit, Lionel Torres, Gilles Sassatell i, Michel
Robert, and Gasloll Cambon, "Automatic Task Schcdu-

ling/Loop Unrolling using Dedicaled RTR Controllers in
Coarse Gmin Recollfigurablc Architectures," 19th IEE E
Intcrnational Parallel and Distributed Processing
Sympos ium, Denver, CO, Apri l 4-8, 2005 .

[4] Yuan-Hsiu Chen and Pao-An n Hsiung, "Hardware Task
Scheduling and Placement in Operating Systems for
Dynamically Reconfigurable SoC," Proceedillgs of
IlIlem(lliOllol Conference of Embedded (llId UbiquilOIlS
Compll ling, Nagasaki, Jap:lI1, pp. 489-98, Dec. 6-9, 2005.

[5] K. Danne and M. Platzncr, "Partitioned Schedul ing of

94

Periodic Real-Time Tasks onlO Reconfigurable
Hardware," Proceedings of 20lh IEEE in/ernational
Paraflel Gild Distributed Processing Symposium, Rhodes
Island, Greece, pp. 25-29 Apri l 2006.

[6J M. R. Gurey and D. S. Johnson, "Computers lind imracl
ability: A Guide to the Theory of NP-Complcteness," W.
H. Freeman San & Co. Ltd, Francisco, 1971),

171 J. Holland, AdaptaTion ill Na/ural and Arliflcial Systems,
Ph.D. Dissertation, Ann Arbor, M I, University of
Michigan, 1975.

l8J Kai Hwang, Advanced Compuler Architecture
Parolle/ism Scalability Programmability, McGraw-Hili
Inc., New York, 1993.

(9] T. T ,-O. Kwok and Yu-Kwong Kwok, "Pract ical Design
of a Computation and Energy Efficient Ilardware Task
Scheduler in Embedded Rcconfigurahle Computing
Systems," Proceedings of 20th International Parallel (llId
Distributed Proces~·ing SymposiulII, Rhodes Island,
Greece, April 25-29, 2006.

[10] J. Levman , G. Khan, J. Alirezaie, and K. Raahemifar,
"Hardware-Software Co-Synthesis of Partially Re
configurable Embedded Systems Optimized for Reduced
Power Consumption," CCECE 2003 Canadian
Conference on Electrical and Computer Engineering -
Toward a Caring and Humane Technology, Montreal,
Que. , Canada, May 4-7, 2003.

[II] Shang Li, Robert 1'. Dick and Kiraj K. Jha, "SLOPES:
Hardware-Software Cosynthesis of Low-Power Real
Time Distributed Embedded Systems with Dynamically
Reeonfigurable FPGAs," iEEE Tr(HlSactiolls all
Computer-Aided Design of integrated Circuils and
Systems, 26(3):508-526, March 2007.

[12] S. M. Loa, B. Earl Wells, and J. Winningham, "A Ge
netic Algorithm Approach to Static Task Schcduling in a
Rcconfigurable Hardware Environment," Proceedings of
the ISCA 181h InternaliOllal Calif of Computers alld
1heir AppficaiiollS, Honolulu, 1-11, USA, PI'. 36-39, 2003.

[13] S. M. Loo and Earl Wells , "Applying Stochastic Static
Task Scheduling to a Rcconfigurablc Hardware
Environmelll," Internationol JOllrnol of Complilers alld
Their Applications, 12(2):57-75, June 2005.

[14] S. M. Loo and J. Winningham, "A Task Graph Set for
Evaluation of Reconfigurablc Hardware Scheduling
Algorithms," Proceedings of the ISCA 19th !mernational
Conference of Computers alld 111eir Applications,
Seattle, Washington, USA, pp. 159- 163,2004.

[15] M. Purnaprajna, Marek Refonnat, and Witold Pedrycz,
"Genetic Algorithms In Hardware-Softwllre
Partitioning," Proceedillgs of Ihe International
Conference 011 Engineering of Reconfiglll"able Systems
and Algorithms, Las Vegas, NY, USA, PI'. 123-129, JUll

21 -24,2004.
[16] Ji Qi, Xi Li, Nan Hu, Xue-Hai Zhou, Yu-Chllng Gong,

and Feng Wang, "Algorithms of Resource Management
for Reconfigurable Systems Based on Hardware Task
Vertexes," Chinese Institute, of Electronics Elec!ronica
Sinica, 34(11):2094-2098, November, 2006.

[JCA, Vol. 17, No.2, June 2010

[17] J Rcsano, --1\ Specific Scheduling Flow for Dynamically
Reconfigurable Han..lware," 14th International Conference
of held-Programmable Logic and Apphcations,
AJlIwerp, Iklgium, August 30-September 1,2004.

[I S] Rockwell International Corporation - Rocketdync Divis
ion , Space Tnlllsportation System Technical Manual -
Spacc Shuttle Main Engine, [41000 RSS-8559-1-I-l,
NASA Technical Rcpot1 RS007001, September 1983 .

[19] C. Steiger, H. Walder, and M. 1'latzner, "Operating
Systems for Reconfigurable Embedded Platforms:
Online Scheduling of Real-lime Tasks," IEEE Tran
.saclions 011 Complliers, 53(11): 1393-1407, Nov. 2004.

[20J T. Ushio and K. Onogi, "Scheduling of Periodic Tasks on
a Dynamically Reconfigurable Device using Timed
Discrete Event Systems," Eighth International Workshop
Oil Discrete Event Systems, Am} Arbor, MI, USA, 10-12
July 2006.

[21] 0. Earl Wells, Kenneth G.Ricks, and John M. Weir,
"Panlilel Simulation of a Large Scale Aerospace System
III a Multicomputer Environment," IEEE Transactions 011

Aerospace alld Electronic System, 33(2):507-523, April
1997.

[22] Xilinx MicroBlaze Processor,
http ://www.x ilinx.contimicroblaze, 2006.

Sin l\·Jin g Loo received his Ph.D. III

Computer Engineering from University of
Alabama at Binningham and the
University of Alabama in Huntsville in
2003. From 1998 to 2003, he was
involved 1Il research projects which
included deve lopment of space plasma
simulat ion model utilizing parallel
processing on 256-processor HP Exemplar

X2000 and I 28-processor SG I Origin, built and maintained SO
node PcntiUlll-4 Beowulf cluster, and development of digital
system rapid prototyping course materials. Dr. Loo is
presently an Associate Professor of Electrical and Computer
Engineerin g at the Boise State University. His research
interests include scheduling, parallel processing, distributed
sensor networks, embedded system, hardware/software
codesign, and reconfigurable computing.

J in gX ia Wang received her M.S. III

Electrical Engineering from the University
of WuHan Surveying and Mapping
Technology ill 1994. From 1994 to 2003,
she was employed as an Assistant
Professor and cUlTently is an Associate
Professor ill the Department of Electrical
Engineering in Shenzhell Po lytechnic.
From 2005 to 2006, she worked in the
Department of Electrical and Computer

Engineering at Boise State University in USA as a visiting
scholar. Her research interests include embedded system,
rcconfigurable computing, computer architecture,
hardware/software codesign.

	Boise State University
	ScholarWorks
	6-1-2010

	Optimizing Reconfigurable Hardware Resource Usage in System-on-a-Programmable-Chip with Location-Aware Genetic Algorithm
	Sin Ming Loo
	JingXia Wang

	Scanned Document

