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Abstract

This paper presents static task scheduling using location-
aware genctic algorithm techniques to schedule task systems to
finite amounts of reconfigurable hardware. This research
optimizes the use of limited reconfigurable resources. This
scheduling algorithm is built upon our previous work [12-14].
In this paper, the genetic algorithm has been expanded to
include a feature to assign selected tasks to specific functional
units, In this reconfigurable hardware environment, multiple
sequential processing elements (soft core processors such as
Xilinx MicroBlaze [22] or Altera Nios-II [1]), task-specific
core (application specific hardware), and communication
network within the reconfigurable hardware can be used (such
a system is called system-on-a-programmable-chip, SoPC).
This paper shows that by pre-assigning (manually or
randomly) a percentage of tasks to the desired functional units,
the search algorithm is capable of finding acceptable schedules
and maintaining high resource utilization (>93 percent, with
two processors configuration).

Key Words: FPGA, scheduling,
codesign, reconfigurable hardware.
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1 Introduction

Scheduling algorithms, whether static or dynamic, have been
designed around an available target system (usually
constructed ahead of time) that is made up of a processor,
application-specific integrated circuits, and programmable
hardware connected together using some form of bus or switch
interconnection network. Many systems extensively utilize
off-the-shelf processors and dedicated hardware to perform
their intended function. The hardware remains fixed from the
time of its fabrication. The flexibility in the system is
restricted to the software portion of the system. With the
increased popularity and availability of reconfigurable
hardware in the late 90s, the hardware itself has become
flexible.  The reconfigurable environment targeted in this
research is one in which the application can dictate the
structure of the processor, the high-speed logic sections, and
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the interconnection medium. With all functional units and an
interconnection network embedded in one reconfigurable
device, this is called system-on-a-programmable-chip (SoPC).
The goal of SoPC is to exploit the synergism that is possible
when both the hardware and software portions of the design
are performed concurrently and cooperatively.

Reconfigurable hardware has been progressively replacing
application-specific hardware in small volume designs. The
use of reconfigurable hardware allows the system (o be re-
designed and upgraded withoul non-recurring engineering
costs because the system can be reconfigured in the field after
deployment. This flexibility allows the hardware structures for
given portions of an application to be specialized and
optimized to achieve a performance that can be orders of
magnitude greater than that which can be achieved within most
traditional processing systems employing a Von Neumann-
style architecture.  Unfortunately, reconfigurable resources
within off-the-shelf reconfigurable hardware (number of pins
for input/output, flip-flops, look-up tables, etc.) are limited.
For many applications, this limitation means that it is
impossible to configure the reconfigurable hardware such that
all portions of the design are implemented for optimal
performance (for example, optimize for speed). This is
because such performance optimal implementations would
probably consume resources orders of magnitude more than
can be made available.

One desired compromise is to use the reconfigurable
hardware by cognizant of the space/time trade-off. This
compromise translates into  determining how  much
concurrency should be employed in order to meet the
performance requirements of the application without exceeding
the resource limits of the reconfigurable hardware. The key to
finding this effective balance is to develop techniques that can
determine, within the confines of the resource limitations,
which portions of the problem must have increased levels of
concurrency to meet the overall performance constraints and
which portions of the problem can be implemented
sequentially to save room for the higher performing portions of
the design. This is a resource constraint problem with an
added twist to it. Because of reconfigurable hardware, the
technique is able to determine which functional unit (trade-offs
of the use of processor core versus application-specific
hardware) should be employed in order to meet the overall
design and resource constraints.

ISCA Copyright© 2010
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The remainder of this paper is organized as follows. First, a
quick survey of reconfigurable hardware utilization research is
presented. Then, an overview of reconfigurable system design
framework is given. The reader is introduced to the search
space complexity of this SoPC scheduling problem. An
overview of genetic algorithm is presented. An example,
extracted from Space Shuttle Turbo Pump, is used for
scheduling discussion. The next section discusses how the
percentage of pre-assigned tasks can influence the scheduling
solutions. ~ This expanded set of simulations has been
accomplished using synthetic task systems. Finally, some
general conclusions are presented.

2 Previous Research

The research into methods to take advantage of
reconfigurable hardware has been concentrated in areas of
scheduling algorithm, operating system, compiler techniques,
and dynamic reconfiguration techniques. An earliest deadline
first scheduling technique is used to schedule tasks onto
reconfigurable hardware [5]. In this research, the target
reconfigurable hardware is partitioned into slots. The paper
reported finding feasible schedules with system utilization of
up to 70 percent. The use of state feedback control has also
been presented [20]. Embedded operating systems have been
designed and implemented to manage reconfigurable
resources. Basically, this runtime system performs online task
and resource management [4, 19]. The use of the operating
system allows dynamic scheduling and dynamic placement of
hardware tasks into reconfigurable hardware.

Another set of methods to take advantage of reconfigurable
hardware has been borrowed from the compiler world. Resano
[17] has developed pre-fetch and replacement techniques to
reconfigure the hardware dynamically. Their techniques
manage the resources by exploiting a novel encoding scheme.
The technique developed can validate the feasibility of the
scheduling/placement quickly, increase resource utilization,
and improve the parallelism [16]. Yet another study [13] looks
into how loop unrolling can take advantage of reconfigurable
resources. This research shows that significant performance
improvements can be achieved through combining both intra-
and inter-task parallelism,

Numerous papers presented in the area of reconfigurable
hardware utilization research described partial or dynamic
reconfiguration techniques [2, 10-11, 15]. The goal of such
techniques is using partial or dynamically reconfiguring
technique to share the hardware in time. However, as of the
writing of this paper, partial/dynamic reconfiguration time is in
the order of milliseconds, which makes the applicable of these
techniques questionable in real world reconfigurable hardware.
These techniques, coupled with an embedded operating
system, can be very powerful in assigning the reconfigurable
hardware for task execution.

Others are looking into how task placement can be
optimized for computation and, at the same time, decrease
energy usage [2, 9-11, 15]. In one case, a genetic algorithm
has been designed to mimimize both task execution schedule
length and power consumption [15].
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The research presented in this paper concentrates on well-
defined task systems. The goal is to find a feasible schedule
within confined reconfigurable resources. The task system
selected in our simulation will require more than twice of that
provided (in the simulation).  The genetic algorithm
determines the placement of tasks and what task-specific
logics will be implemented. The algorithm determines the
configuration of reconfigurable hardware without the usc of
dynamic reconfiguration. Thus, this research is a much more
limited domain of the reconfigurable scheduling research.

In this paper, reconfigurable hardware is used to implement
both the high-speed logic that has been designed to execute the
most time-intensive portions of the application problem, and
traditional Von Neumann-style processing cores lo save
valuable hardware resources. In this arrangement, the
processsor cores, the application specific modules, the
input/output logic, and the routing among each of these
hardware entities are contained within the finite resources of
the reconfigurable logic. The trade-off is to determine the
number and types of each of these entities that will best meet
the needs of the application and fit within the available
reconfigurable hardware resources. Simply placing all the
functionality in application-specific modules will probably
never represent a valid solution because of the finite resource
constraints. Conversely, placing all the functionality in a
single large processing core unit that will be implemented
within the reconfigurable logic is also not desirable, since it is
subject to poor performance. The goal of this paper is to show
solutions to this space/time trade-off in those cases where the
application can be decomposed into a well-behaved system of
tasks that can be implemented directly in hardware or executed
sequentially on one or more processing cores. This paper also
demonstrates a genetic algorithm implementation that allows
certain tasks to be assigned either randomly or as specified by
the user.

3 Reconfigurable System Design Framework

The components of reconfigurable system design framework
(RSDF) are shown in Figure |. The heart of this framework is
the scheduler. Inputs to the scheduler include the hardware
library, task system, resource and design constraints. The
hardware library supports three types of functional units that
can be placed in reconfigurable hardware. There are also
inputs that reflect the hardware resource limits associated with
the reconfigurable hardware medium, and various design
constraints that reflect the required performance of the
application. The purpose of the scheduler is to generate a
complete task schedule and a system-on-a-programmable-chip
(SoPC) high-level hardware system description that satisfies
all of the given constraints, The task execution schedule
describes the task execution sequence of the system from a
global point of view for a single major frame of execution. It
does so in a manner that satisfies the precedence and resource
constraints. The high-level hardware system description is
created at the same time the task schedule is generated. It
consists of the number and type of core processors to be
implemented and the inter-reconfigurable logic communication
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Figure 1: Reconfigurable system design framework. This framework defines the elements for reconfigurable
resources to be utilized efficiently. A complete task execution schedule and SoPC description are

produced so that a system can be implemented.

topology of the system. In the following sections, the
characteristics of these various elements are discussed.

3.1 Hardware Library

The hardware library represents a high-level description of
the candidate logic modules that can be used to implement an
application. It supports three types of functional units that can
be placed in reconfigurable hardware. These functional units
include the processor cores (PCs), task specific cores (TSCs),
and communication core elements (CCEs).

In this model, PCs represent distinct elements in the
hardware library because they have the general capability to
support the Von Neumann-style sequential execution of more
than one task. In general, the number of tasks that they can
execute is limited by the internal program and data memory
present within the PC. This is because the model assumes that
all memory elements are explicitly specified as part of the PC-
type definition in the hardware library. This means that there
is an added dimension to the resource utilization problem.
Each PC uses a fixed amount of hard resources every time an
instance of it is implemented in the reconfigurable hardware.
Some of these hardware resources are used for internal
program and data storage. The amount of program/data
storage thus in effect becomes a “soft” resource limit that will
directly affect the number and type of tasks that the PC can
execule. This is because each task in the system has assigned
to it a projected “soft” resource usage requirement for each
type of PC that is present in the hardware library.

TSCs are another type of functional unit that may be present
in the hardware library. Unlike PCs they are not general
purpose in nature, but perform the specific function that is
associated with the task. CCEs are the final type of functional
unit present in the hardware library. The model supports both
synchronous (buffered) and asynchronous (non-buffered)
CCEs.

It is assumed that the functional units themselves utilize a

common asynchronous protocol and dedicated communication
ports to communicate with each other. Synchronous links
between functional units are composed of CCEs that are
primarily made up of routing resources. Asynchronous
communication is made possible by incorporating buffered
communication elements. In this way, the interface between
PCs and TSCs 1s uniform regardless of whether synchronous
or asynchronous communication e¢lements are used.

3.2 Task System

The other imput to the reconfigurable system design
framework is the task system, where the application task
structure and performance information as well as the soft
resource requirements for each task are maintained. For this
portion of the model, it is assumed that the application problem
has been decomposed into a set of tasks that can execute in a
deterministic manner as software processes on the sequential
processing units or as hardware functions within the
reconfigurable logic. These tasks are considered to be well-
defined in that the execution time can be determined at the
time of task creation for all software and hardware
manifestations. Also, all tasks are considered to be non-
preemptive in nature. In this scenario, the edges in the task
system contain both data and control flow information, which
guarantee the correct system operation. In this work, it is
assumed that a well-defined system can be unrolled into a
directed acyclic graph (DAG) part and a communication part.

3.3 Resource and Design Constraints

The third set of inputs to a reconfigurable system design
framework is the design constraints. There are two types of
constraints. The first is the amount of hardware resources that
are available for use in the reconfigurable medium. This is the
global size constraint. The second constraint specifies the
level of performance that the system must possess. This is the
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global timing constraint -- it is in effect the maximum
acceptable length of the schedule. This constraint is manda-
tory in real-time systems where it can be viewed as repre-
senting the global deadline associated with the major frame of
the application’s task system. In general, the more stringent
the performance requirement (i.c., the shorter the required
schedule length) or the smaller the global resource constraint,
the harder it will be to create an acceptable static schedule and
a SoPC high-level hardwarc description capable of fitting
within the finite resources of the reconfigurable medium.

3.4 High-Level Hardware System Description

One of the outputs produced by the scheduler is the high-
level hardware system description (HLHSD). This description
indicates both the number and type of processing cores, task
cores, and communication core clements that are to be
employed by the system and the interconnection structure that
is used to interface the various functional units into a complete
system.  This representation can easily be translated for
hardware synthesis into a structural representation of these
components within a hardware description language.

3.5 Task Schedule

The second output produced by the scheduler is the task
schedule. The task execution schedule contains the order of
execution of the given tasks and the order of execution of the
tasks within each PC. The schedule length is used to
determine if the implementation will meet the mandated
performance requirements specified in the design constraints.

4 Search Strategy and Scheduling Example
4.1 Genetic Algorithm

A standard genetic algorithm was implemented to permute
the scheduling data structure, by treating it as the symbolic
string to which genetic operations can be applied [7, 13]. In
this scheme, each individual member of the population is
reresented by a separate data structure, and the RES scheduling
strategy acts as the fitness function. In the initialization step, a
population of £ structures is randomly initialized with task
assignment and priority values. A task pre-assignment feature
has been added to the scheduler to maintain designated task
execution location as requested by the user. Each individual in
the population represented by a separate data structure is called
a candidate. The data structure represents a two-dimensional
chromosome where each row contains the two genes that
control task assignment and priority order. The initialization
process initializes those tasks, pre-assigned as required by the
user, and randomly creates and initializes the rest that make up
the initial population. The makeup of the population
continuously evolves over time. (The genetic algorithm
implementation for this paper is described in previous research
[13]; please refer to that paper for details of this implementa-
tion.) In this paper, we extended the previous research to
include the concept of ask mobility factor. Each task is
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assigned a mobility factor, in this case randomly (between |
and 100). During the scheduling and assignment simulations,
we can set the mobility factor for each simulation. For
example, if the mobility factor is set to 85 for a task system of
100 tasks, 15 tasks have been pre-assigned to their respective
functional units. The genetic search algorithm will find a
feasible schedule using the 85 tasks that haven’t been assigned.

4.2 Example: Space Shuttle Turbo Pump Continuous
Simulation Task System

We consider a simple application to illustrate how the
location-aware scheduling in reconfigurable hardware can be
applied to a real-world example (Figure 2). The particular
example considered came from the general area of continuous
or dynamic system simulation. Such simulations conform
closely to the RSDF task system model outlined in Section 2.
It is a system of non-preemptive tasks whose precedence
relationships are irregularly structured. Tasks in these systems
are governed by and-join precedence semantics and can easily
be decomposed into a single major frame.

Continuous systems are generally described mathematically
using a set of multi-order nonlinear differential equations that
form a classical initial value problem. To solve this problem,
the set of equations is often decomposed into an equivalent set
of first-order differential equations that are solved in an
iterative manner using numerical integration techniques. In
this model, the state of the entire simulation is always a
function of the variables that store the results of the
integration. These state variables are given an initial value at
the beginning of the simulation after which they are fed back
to the next iteration of the simulation. In this model, each-
iteration represents a major frame. The system is often
modeled using additional sets of variables and equations that
depend in some way upon the system state variables. These
equations must be executed in a specific partial order within
each major frame to ensure that all data dependencies between
equations are always met. Depending upon the manner in
which the tasks are defined, these variables are often used to
transmit the data that must be communicated between the tasks
during each major frame.

The specific example investigated is based upon one of the
early models of the Space Shuttle Main Rocket Engine’s
(SSME) High Pressure Turbo Pump system [18, 21]. In this
model, each task is defined as a major declared or state
variable equation. This example is being used to show how
tasks are pre-assigned to determine an execution schedule and
a hardware configuration that satisfies the design constraints.

The task system for the SSME Turbo Pump as shown in
Figure 2 contains 30 tasks. In this example, it was assumed
that there were to be two types of PCs present in the hardware
library. The execution time on PC type | was obtained by
profiling an existing SSME Turbo Pump simulation on a 25
MHz T805 transputer system [18]. The execution time for
each task was then divided by two because it was assumed that
reconfigurable hardware could now support a 50 MHz T805
compatible PC. This appears to be a conservative estimation
of performance considering the current state of FPGA



88

IJCA, Vol. 17, No. 2, June 2010

Figure 2: Space shuttle turbo pump task system

technology. The soft resource requirements for each task were
estimated based upon the actual object code size of the
software tasks when the simulation was compiled to run on the
original T805 system. This is only a loose approximation. PC
type 2 was derived directly from PC type 1. It was a version
that was to have essentially the same execution characteristics
as PC type 1, but with some additional hardware that
accelerated the computation of a few select operations and
reduced the soft resources required to complete these
operations. The program/data memory resources of PC type 2
were assumed to be less than PC type 1. This made for an
interesting trade off, since PC type 2 was a bit more powerful,
but could support fewer tasks than PC type 1. Table 1 contains
task execution times and required resources.

The hardware resource requirements for each TSC module
were obtained in a somewhat arbitrary manner. They were
synthetically generated by applying the v =At", 2-D VLSI
space/time trade-off equation presented earlier [8], where v is a
space/time trade-off constant, A is the hard resource utilization
for an implementation, T is the execution time of an
implementation, and x is a uniformly generated random value
that was in the range of 1 to 2. The procedure was to first
randomly generate the TSC execution time under the
constraint that the TSC execution time would be some value
less than the fastest PC execution time. Then the resource
utilization of the TSC was calculated using the v =At"
equation. The goal was to create a system that had a real-work
derived structure that would be constrained in a manner where
it is impossible for all task-specific components to exist within
reconfigurable hardware at the same time.

This 30-task example is used to show how pre-assigned
tasks can be beneficial in finding a better schedule with better
schedule length. Using the task system as shown in Figure 2, a
proper format text file was created for the RSDF tool. Forty
simulations (with different random seed) were completed for
each percentage of pre-assigned tasks. The results are shown
in Table 2. The resource constraints were set in a way that no
one functional unit can take on all the tasks. In fact, if all the
tasks are to be assigned to just one functional unit, 350 percent
of the resources will be needed.

Such resource constraints setup guarantees parallel
processing where PC1, PC2, and TSCs will be used together.
Table 2 shows the results when 0 percent, 10 percent, 20
percent, and 50 percent of the tasks are pre-assigned before
using the RSDF tool to find a feasible and legal task schedule
that will fit within the limited resources. For each row, 40
simulations (with different random seed) were completed. The
table contains the minimum, average, and maximum schedule
length of the 40 simulations.

We started the experiment by randomly pre-assigning the
tasks. Our findings of these simulations showed that when
none or a very small (less than 2 percent) number of tasks are
pre-assigned, the schedule lengths .found are better. When
more tasks are pre-assigned, the schedule length increased.
This is predictable as the number of pre-assigned tasks
increases, the number of “good solutions space” decreases.
Thus, worse schedules were found because the pre-assigned
location may not be the best assignment from the viewpoint of
schedule length and resource utilization. Another plausible
explanation for the schedule length is that the 30-task system
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Table 1: Shuttle turbo pump task information

PCI PC2 TSC
. ‘ Program . . Program :
Task name It::xei:th10‘n mer%mry I:Ixecutlo.n melilcry E_xecutlo_n FPGA resources
ime (unit .- time (unit 4 time (unit .
e required in Hme) required in ime) required (CLB)
bytes bytes

DTHFTI 72 2824 30 1158 5 4313
TFP2 17 727 17 727 12 2879
U CFT12 2 77 2 77 2 17856
CPA 16 634 16 634 3 7423
OFPI 2 77 2 77 2 13354
CPF2 11 474 11 474 3 8682
PFTII 5 180 5 180 2 11955
DTHFT?2 73 2973 20 855 6 5822
CP 7 261 7 272 4 4779
DWEFT]I 16 626 16 626 13 1556
SF2x 2 83 2 83 2 16168
DWFT2 163 5954 80 3452 12 2003
TFP1 15 649 15 649 14 2442
SE2 3 112 3 112 1 40000
PFD1 17 634 Lf 634 13 1475
TEF2 11 443 11 443 10 1475
SF1 3 122 3 122 2 10283

PRET2 56 2280 56 2280 44 218
TFT2DA 4 152 4 152 2 12572
TFTI 11 431 11 431 10 1627
TFT2D 4 153 4 153 3 5265
dFT2 10 420 10 420 2 10400
DWFD2 56 2153 30 1177 13 809
TFT2 11 403 11 403 10 692
A AMFV 20 786 20 786 8 1195
SF1x 2 85 2 85 2 15104
U CFTI 2 87 2 87 I 40000
FFP 2 82 2 82 2 19980
OFP2 2 85 2 85 2 19742
PFD2 17 613 17 613 14 1505

Total resource usage if all tasks are to assign to: PC1: 24580, PC2: 17329, TSC: 281575
Total of the available resource in the simulation: PC1: 6000, PC2: 5000, TSC; 50000
[f there is no resource limit, the schedule length of the critical path is; 67

Table 2: Pre-assigned turbo pump tasks example simulation results

% of'tasks  Schedule length (40 simulations for each %) Note: Pre-assigned tasks (task name, assigned functional unit)

pre-assigned Min Ave Max

0% 67 70.4 77

10% 67 67.6 71 (DWFT2, TSC), (U_CFTI, PC2), (SF2, PCI)

20% 67 67.3 69 (DWET2, TSC), (U_CFTI1, PC2), (SF2, PCl), (OFP2, PCI),
(DWFD2, TSC), (U_CFT2, PCI)

50% 73 78.5 86 (DWFT2, TSC), (U CFT1, PC2), (SF2, PCI), (OFP2, PCl),

(DWFD2, TSC), (U CFT2, PCl), (CPA, PC2), (DWFTI,
PC1), (A_AMFV, TSC), (FFP, PC2), (TFP1, TSC), (PFDI,
PC1), (dFT2, TSC), (SF1x, PCI), (TFT2D, TSC)

' Number of generations=1000, population size=25, mutation probability=3%, recombination probability = 100%, O-clitism,
proportional-roulette-wheel selection. The average is for 40 cases.
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has small solution space compared to a task system of 100
tasks. With the previous findings, we selectively pre-assigned
tasks, By selectively pre-assigning tasks, better schedules
(with better schedule length) can be found. The results are
shown in Table 2.

4.3 Search Space Complexity

Precedence and resource constraint scheduling problems
closest to the one being mvestigated in this work have been
shown to be NP-Complete [6]. The scheduling problem
addressed in this paper (and our previous publications [12-14])
is even more complex than most precedence and resource
constraint scheduling problems. The complication is due to
the use of scheduling theory to determine the configuration
(determine the schedule length, assign tasks to functional units,
and determine the resource utilization) of SoPC. The goal is to
find a configuration (high-level hardware system description)
that is realizable and has a schedule length that meets the
design constraints,

The search space that must be transversed for any
assignment or scheduling problem is extremely large. For
example, just to find the optimum assignment of tasks to
functional units in a system that conforms to the RSDF using
exhaustive techniques requires m" assignment operations,
where m is the number of functional units to which a task can
be targeted, and » is the number of tasks to be scheduled. This
is the problem without placing constraints on where a task
would be assigned. The scheduler will decide optimum
placement during the scheduling process. Thus, in order to
find an optimum assignment through an exhaustive search for
a 100-task system assuming an active set of hardware elements
that consists of three PCs and two TSCs per task, requires
(3+2)'"= 7.8886x10” operations. If each assignment
operation can be completed in 0.5 nanoseconds, it would take
1.2507x10™ years to find such an optimum assignment within
the available resources. This calculation does not include the
hard and soft resource constraint check time or the time it takes
to formulate a complete sequencing or scheduling of the tasks
on the individual PCs. From this analysis, it is obvious that
only a small subset of the search space can ever be transversed.
The key is to utilize a technique that can perform this search in
a highly efficient manner.

The version of the problem presented in this paper is where
the designer can selectively place the desired tasks at their
“optimum” execution location (pre-assigned!). The reasons for
placement can be as simple as the functional unit having the
suitable access to input/output interface or just that the
designer knows such placement will result in a better overall
SoPC configuration. With this pre-assigned scheduling feature
added to the allocation and scheduling process, the complexity
reduces to gm", where g is between 0 and 1. In this paper, we
set ¢ to 0.5, 0.8, 0.9, and 1.0; this is similar to pre-assigned 50
percent, 20 percent, 10 percent, and 0 percent of the tasks,
respectively. With such constraint, the scheduler has a smaller
legal search space and a better solution can be determined
more quickly.

LCA, Vol. 17, No. 2, Tune 2010

5 More Comprehensive Simulations and Results

In the previous section, we used a 30-task system to show
the working of the tasks pre-assigned technique. In this
section, we use synthetic task systems to test how well the
technique will stand up to pre-assigned tasks.

In parallel processing, it is common to evaluate the effect-
tiveness of competing assigning, mapping, and sequencing
heuristics by applying a common set of randomly-generated
task systems and comparing the performance of the resulting
assignments or schedules in a statistical manner [12-14]. Us-
ing synthetic task graph generation techniques and parameters
as described in [14], task systems were generated to test the
effectiveness of our genetic algorithm implementation when
some portion (0 percent, 5 percent, 10 percent, 15 percent, 20
percent, 25 percent, 30 percent, 35 percent, 40 percent, 45
percent, and 50 percent) of the tasks were pre-assigned.

The genetic algorithm was used to find a feasible allocation
within the available SoPC resources. Four hundred systems
were generated with 100 tasks per task system (40 task
systems [or each edge probability). The task graph generation
technique was presented in [14]. For each task system, cleven
simulations were completed for each category of pre-assigned
tasks (0 percent, S percent, 10 percent, 15 percent, 20 percent,
25 percent, 30 percent, 35 percent, 40 percent, 45 percent, and
50 percent). This meant that for each probability value, 440
simulations were completed. As for the target PCs, a
configuration of two soft-processor cores (based on Xilinx
Microblaze which utilizes 410 CLBs and 510 CLBs) were
chosen. Each processor core consists of 4 Kbyte and 8 Kbyte
of data memory, respectively. The number of CLBs used for
the simulation was set to 15,304. Tt is noted that for the task
systems to be implemented optimally, more than 2.5 times of
the resources will be required. The resources constraint
promotes space-time trade-off. The genetic algorithm searches
through which functional unit should be used for each task.
The characteristics of the task systems are shown in Figure 3.
Figure 3(a) shows that as the probability of an edge increases
between two nodes, the critical path time increases (or the best
possible parallel schedule length increases). This critical path
time is calculated by scheduling the tasks using as soon as
possible algorithm without resources constraints. The best
sequential time is for the tasks systems as shown in Figure
3(b). This is calculated by summing the shortest execution of
each task using the optimal functional unit (again these
numbers are determined without resources constraints being
introduced). The implementing of such a schedule is not
possible because it will require more than 250 percent of
available resources.

The simulations were completed using an Apple PowerMac
G5 (with Dual 2.5 GHz PowerPC G5 processors and 4 Gbyte
of memory) running OS X 10.4.8. Each simulation took seven
minutes with parameter settings as shown in Table 2. The
simulations were set to find (optimize) the best schedule length
within 1,000 generations (loops).

Figure 4 shows the best schedule length found. The results
show that when 0 percent to 25 percent of tasks are pre-
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Figure 3:

(b)

Synthetic task systems characteristics. (a) shows that parallel execution time increases as the number of edges

increases. There are 40 task systems per probability. (b) shows sequential execution time of task systems

assigned, better schedule can be found. There are two
instances when no task pre-assigned has the best solutions
(0.01, and 0.05, probability an edge exists between two nodes).
As shown in Figure 4, the schedule length found (out of 40
cases) gets worse with the increased percentage of tasks pre-
assigned, which is because a larger percentage of tasks pre-
assigned decreases the solution space. Comparing the results
to Figure 3, it can be seen that the best schedule length found
with resources constraints is better than the best sequential
schedule length without resources constraints. This shows the
flexible and capability of genetic algorithm in finding good

solutions within the confined resources constraints. It is noted
that the simulation runs achieved reconfigurable resources
utilization of over 93 percent.

[t is important to note that when the pre-assigned percentage
values are in the 40 percent to 50 percent range, there were up
to three simulations (out of 40) with no feasible schedule at the
end of 1000 iterations. Figure 5 shows the average schedule
length of each probability value from 0 to 50 percent tasks pre-
assigned, in 5 percent increments. (The average is calculated
from 40 schedule lengths when available; in a few cases, only
37 solutions were found). The plots show that the average
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Figure 4: The best schedule lengths found are presented in two plots for ease of reading. Each curve represents
the probability of an edge existing between two nodes. There are 40 task systems per probability
value. The pre-assigned percentage increases from 0% to 50% with 5% increment. Each dot on the
plots indicates the best schedule length among the 40 simulations

schedule length increases with the increasing percentage of
tasks locked at desired functional units.

6 Conclusions

This paper shows that pre-assigning a number of tasks can
help to determine a better schedule. It was shown that when 0
to 25 percent of tasks are pre-assigned, better schedules could
be found and take advantage of the limited reconfigurable
resource al the same time. Better schedule length can be easily

found because the search space has been reduced by the pre-
search task assignment phase. However, we also showed that
when a large percentage of tasks is pre-assigned (locked to an
execution unit), the execution schedule found is not as good as
when only a minor percentage of the tasks is pre-assigned. We
show that if the user decided to assign the tasks to the
desirable functional units, the tool can take such assignments
into consideration and determine a feasible schedule that can
be implemented within finite resource reconfigurable
hardware.
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