
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

7-16-2010

A Reconfigurable Pattern Matching Hardware
Implementation Using On-Chip RAM-Based FSM
Nader I. Rafla
Boise State University

Indrawati Gauba
Boise State University

©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE. DOI: 10.1109/MWSCAS.2010.5548558

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical
https://scholarworks.boisestate.edu/electrical
http://dx.doi.org/10.1109/MWSCAS.2010.5548558

Nader I. Rafla, Ph.D., P.E.
Electrical and Computer Engineering Department

Boise State University
Boise, Idaho

nrafla@boisestate.edu

Indrawati Gauba
Electrical and Computer Engineering Department

Boise State University
Boise, Idaho

indrawatigauba@u.boisestate.edu

Abstract — The use of synthesizable reconfigurable IP cores has
increasingly become a trend in System on Chip (SoC) designs
because of their flexibility and powerful functionality. The
market introduction of multi-featured platform FPGAs
equipped with embedded memory and processor blocks has
further expanded the possibility of utilizing dynamic
reconfiguration to improve overall system adaptability to meet
varying product requirements. In this paper, a reconfigurable
hardware implementation for pattern matching using Finite
State machine (FSM) is proposed. The FSM design is RAM-
based and is reconfigured on the fly through altering memory
contents only. An embedded processor is used for orchestrating
run time reconfiguration. Experimental results show that the
system can reconfigure itself based on a new incoming pattern
and perform the text search without the need of a host
processor. Results also proved that each search iteration was
executed in one clock cycle and the maximum achievable clock
frequency is independent of search pattern length.

I. INTRODUCTION
Finite State Machines (FSM) is one of the most vital

components of sequential digital systems. Reconfigurable
FSMs can be defined as a formal FSM, which has the ability
to change its output function and/or transition function during
operation [1]. Existing techniques of reconfigurations have
been researched and shown that it is applicable to any Field
Programmable Gate Array (FPGA) platforms [1, 2, 3, 4, 5].

An approach to implement reconfigurable hardware for
string matching using Knuth-Morris-Pratt (KMP) algorithm
[5] is described in [6]. In this approach, a multi context FPGA
is used and a different context needed to be computed for each
pattern. It also required direct manipulation of configuration
bits by a host processor.

In the proposed approach, the idea of reconfigurable FSM
is used to implement the KMP pattern matching algorithm on
hardware. An on-chip processor is used for reconfiguration
instead of a dedicated hardware logic block. At each reception
of a new search pattern, the FSM reconfigures itself to
optimize the pattern search. This implementation avoids the

need of reset, manipulation of configuration bit-stream, and
any configuration memory space.

In RAM-based FSM implementation, a combination of
current state and input vectors are used as an address to access
FSM memory contents [3]. These contents consist of all
possible next state transitions and output vectors. The FSM
can be reconfigured by reprogramming the memory with new
or updated state transition and output function tables.

With the used of an embedded soft or hard-core CPU,
reconfiguration can be done on the fly. The speed of
reconfiguration depends on the CPU clock cycle required to
update the FSM memory contents. This approach is more
generic than traditional reconfiguration approaches as it does
not depend on device specific features such as partial
reconfiguration or multi-context FGPAs [6, 7]. It also avoids
the need of a dedicated hardware design for configuration [1].

II. CASE STUDY: KNUTH-MORRIS-PRATT ALGORITHM
There exist several efficient software-based string-

matching algorithms for pattern matching. The KMP
algorithm is one of the most efficient pattern matching
algorithms that use an FSM for search execution [5].
Therefore, it is an ideal candidate for reconfigurable hardware
implementation using memory based FSMs.

The KMP algorithm bypasses the re-examination of
previously matched characters by employing the fact that
when a mismatch occurs, the pattern characters themselves
embed sufficient information to determine where the next
match would occur. It computes an array, often referred to as
the function π, such that π[h]=j where the first j characters of
a pattern (P) are the longest proper prefix that is also a suffix
of the first h characters of P. The π function is independent of
the searchable text and can be computed from the pattern only.

The information stored in π can be represented by a state
machine. Figure 1 shows the state transition diagram for
pattern “ababca” where each node represents a character in the
pattern. An edge is present between any two nodes i and j if
π[j] = i. A transition arrow is connected from any node j to

A Reconfigurable Pattern Matching Hardware Implementation
using On-Chip RAM-Based FSM

978-1-4244-7773-9/10/$26.00 ©2010 IEEE 49

node j+1 (for match) or backward to the overlap node (for
mismatch). The length of the prefix function (π[i]) is equal to
the pattern length. For this pattern the calculated array would
be π[i]={0, 0, 0, 1, 2, 0}.

Figure 1. State transition diagram for pattern “ababca”

String search with KMP algorithm is done in two phases.
In the first phase the function π is computed from the match
pattern. In the second phase it is used to speed up the pattern
search. At each step of computation index q moves to q+1 if a
match is found or else moves backward to the node π[q].

III. IMPLEMENTATION OF THE KMP ALGORITHM
The reconfigurable hardware design of KMP pattern

matching algorithm is implemented using a RAM-based FSM
and an embedded processor as shown in Figure 2. The FSM
and KMP logic blocks implement the KMP algorithm. The
KMP hardware is connected to a Processor Local Bus (PLB)
via an Intellectual Property Interface (IPIF). The PLB bus
connects peripheral devices to an on-chip soft-core processor
MicroBlaze®. This processor is used for receiving new search
patterns and performing the pattern specific prefix
computation. Result of this computation is used for
reconfiguring the FSM. An RS232 interface is used to connect
a host PC to the designed system. This host machine is used
for entering a new search pattern and for displaying the results
of the pattern search on a hyper terminal.

Two Embedded RAM blocks are used for FSM
implementation; one for storing encoded state transitions and
the other for storing the output vectors. The block diagram for
such FSM implementation is shown in Figure 3. Each memory
block has dual ports. A synchronous read-write port is used by
the embedded processor to access FSM state transition and
output data. The other port is used by the KMP hardware logic
during the execution of the KMP algorithm.

Figure 2. System block diagram Figure 3. RAM based FSM
implementation

The FSM output function is programmed in such a way
that at any stage of string comparison, the output vector is the
next pattern character to be compared with a text character.
The FSM state transition table for the pattern “ababca” is
shown in table 1. The calculated π[i] values are used to predict
next state transition after mismatch. The FSM output vector is

8 bits long where bits 6-0 contain the ASCII code of pattern
characters and bit 7 is set to logic 1 only when the pattern is
found within the text.

TABLE I. TRANSLATION FROM π[i] TO FSM NEXT STATE AND OUTPUT

Pattern
characters

π[i] Current
State

Next state
transition

(match=1)

Next state
transition
(match=0)

Output
function

 a 0 0 1 0 a
 b 0 1 2 0 b
a 0 2 3 0 a
b 1 3 4 1 b
c 2 4 5 2 c
a 0 5 0 0 a

During string search, the text memory address counter
increments to fetch the next text character from text memory.
The FSM outputs the pattern characters and traverses through
states 0 to 5 as the pattern characters matches with the text
characters. If FSM reaches at state 5, and a match is found, it
transits to state 1. The MSB of FSM output is set to ‘1’ for one
clock cycle and the rest of the bits (6:0) contain the ASCII
code of the first pattern character. The location of the matched
pattern within the text is calculated by simply subtracting the
current state value (when match is found), from text memory
address counter and decrementing it by one.

To support search of two overlapping patterns as in text
string “ababcababca”, a modified state diagram is used as
shown in Figure 4. The state transition diagram is similar to
the previous one except at the final node ‘a’, the transition
arrow connects to second node ‘b’ for match instead of first
node ‘a’ The FSM state transition table for this FSM remains
the same except the last line of the table is modified to
traverse the FSM into state ‘1’ instead of state ‘0’ if pattern
match is found.

Figure 4. Modified state transitiion diagram for pattern “ababca”

The implementation of the designed system involves
hardware/software co-design. The hardware partition consists
of processor-based system description and the implementation
of KMP algorithm while the software part involves pattern
specific prefix function computation, conversion of prefix
function to FSM, and software to update RAMS of FSM.
Figure 5 shows the KMP hardware implementation.
Comparison of text characters with pattern characters is done
through a 7-bit hardware comparator that compares the FSM
output vector with the text memory output and generates a
match signal. This signal is fed to the KMP combinational
logic which controls the text memory address counter based
on the match signal and current state. The match signal

50

concatenated with the current state function forms an address
vector for FSM memory. Since FSM memory can be accessed
at FSM clock frequency, search iterations ran at the same
speed. The search result, address locations of the matched
pattern, and match count are stored in internal memory blocks.

Figure 5. Block Diagram of KMP hardware logic

IV. EXPERIMENTAL ENVIRONMENT
A Xilinx Spartan 3E prototyping board [7] is used for

hardware implementation of the proposed design. The EDK
10.1 Xilinx tool chain [10] is used for implementation of the
reconfigurable KMP block using VHDL, while the ‘C’
programming language is used for coding the application that
computes the pattern specific prefix function and maps it to an
FSM state transition table.

Since Spartan 3E FPGA does not have a built-in hard core
processor, a customized soft-core processor (MicroBlaze®) is
used instead. It is customized to include UART peripheral for
serial communication with a host processor.

The soft-core processor is instantiated as a top module in
the system. The system also includes two separate entities for
the FSM and KMP phase 2 search. The Processor Local Bus
(PLB 4.6) is chosen to facilitate communication among these
components. The PLB bus provides a memory-mapped
interface to the user core via user accessible slave registers.

The processor boot code, software to calculate FSM state
transition table and FSM memory updates, is stored in internal
block RAM. No external memory is used for this
implementation.

V. EXPERIMENTAL RESULTS
System behavior is verified via simulation using

ModelSim PE Student Edition 6.5b [11]. Experimentation is
done by generating and downloading the configuration bit-
stream onto the Spartan 3E Starter board, and then testing it
with various search patterns.

Test bench is designed to provide and generate various test
patterns to the designed system. Simulation waveform of the
pattern search of ‘ababca’ is shown in Figure 6. The ASCII
code corresponding to the characters making the pattern is
‘0x61, 0x62, 0x61, 0x62, 0x63, and 0x61’. The signal
‘configure’ is raised until FSM is updated then search is
initiated at its de-assertion. As the text characters match with
pattern characters, FSM traverses through states 0 to 5. When
the match pattern is found, MSB of FSM output signal is set to
‘1’. As shown in waveform, FSM output at state ‘5’ is 0xE1
(0x80 | 0x61), Logic operation OR of the logic 1 concatinated

with zeros and the ASCII code of the first pattern character.
The waveform also shows that the designed logic is capable of
searching two consecutive patterns without loss of clock
cycles. Signal ‘match_found’ is asserted to indicate a
pattern match and signal ‘match_addr’ points to the
location of pattern within the text.

Figure 6. Simulation waveform of KMP search run for pattern “ababca”

The implemented logic is also capable of searching for
overlapped patterns without any loss of clock cycle time.
Figure 7 shows simulation waveform of such search
execution. The text string fused for testing contains the pattern
“ababcababce” and pattern to be searched is “ababca”. The
simulation waveform shows that search execution found two
matches at addresses 0x4 and 0x9, the location of first and
second pattern, which proves that system can locate
overlapped patterns.

Figure 7. Simulation waveform for two overlapping patterns

To test the pattern search functionality on the physical
hardware, a text file is stored in FPGA’s block RAM. A
VHDL source file is coded to instantiate a block ‘RAM’ entity
using ‘RAMB16_S9’ tool construct. A tool written in ‘C’
takes the text file as input and populates the ASCII code of
text characters as an initialization code for the ‘RAM’ entity.
This VHDL file is compiled and loaded into the FPGA along
with the design source files. This scheme eliminated the need
of storing the text in external memory.

A small ‘C’ application is developed to establish serial
communication between embedded processor and the host
machine using UART peripheral of the soft-core. The match
pattern is furnished by typing on the hyper terminal. The
system prints search results back on the terminal. These
results are verified using the ‘word count’ utility. Testing is
done by searching different patterns of various sizes (3 to 20
characters) and for varying number of repetitions.

The string search with KMP algorithm requires, worst case
scenario, m+n iterations (m: pattern length ; n: text length)
With the proposed design, each search iteration executes
within one clock cycle and requires m+n clock cycles, worst
case. The design translates the count of search iterations into
number of clock cycles.

51

A number of tests were executed with pattern length
varying from 3 to 20 characters. In every case, a linear
relationship between number of characters and clock cycles
after the first match is found as shown in Figure 8.

Figure 8. Clock cycles vs pattern length after hitting first match

The time required for computing the state transition and
output vector tables of the FSM depends upon the software
implementation technique and the FSM reconfiguration time
depends on PLB bus communication speed. With the ‘C’
implementation using XPS SDK tools chain, approx. 300
clock cycles were consumed for updating the state transition
and the same amount for the output function for the pattern of
five characters length. The number of clock cycles required
increases by 50 cycles per increase of a pattern character.
These results are summarized in Table II.

TABLE II. CLOCK CYCLE REQUIRED FOR FSM UPDATE

S. No. FSM update function Clock cycles
1 State transition function 300
2 Output function 300

3 Clock cycle increase per character 50

Performance of the implemented design is compared with
the multi context FPGA implementation described in [6].
Table III lists the reconfiguration time and search execution
time for various values of m and text size of 104 characters.
The TCLK is FPGA clock frequency, TME is FSM
reconfiguration time and TE is the search execution time.
Columns ‘A’ list the performance with multi context FPGA
and columns ‘B’ correspond to the proposed approach. The
time required for prefix computation and translation is not
compared since it depends on clock speed of the soft-core
processor and the efficiency of software coding. As seen in
the table, a significant performance improvement is obtained.
The maximum operational frequency with this implementation
is independent of the pattern length and is 97.656MHz for
SPARTAN 3E 500 FPGA.

TABLE III. PERFORMANCE COMPARISON FOR VARIOUS VALUES
 OF M WITH N=104

m TCLK(ns) TME(µs) TE(µs) Total Time (µs)

 A B A B A B A B
4 81.6 20 0.7 11 1428 204 1428 215

8 97.6 20 2.1 18 1830 208 1841 226

16 129.6 20 5.8 34 2511 216 2539 250

This technique requires less hardware area as opposed to
other implementations since it does not need to store the
pattern in internal memory. It also saves reconfiguration time
since it only needs to update the FSM for reconfiguration in
contrast with other approaches that require storage of pattern
characters and back-edge lookup (π[i]) onto memory.

VI. CONCLUSION

A new approach to FSM-based reconfigurable hardware for
KMP algorithm implementation is presented. The RAM-
based FSM is reconfigured on the fly by altering its memory
contents using an on-chip processor. The functionality of the
designed system was verified using functional simulation and
tests that were run on physical hardware.

Results show that the suggested approach increases the
performance of pattern matching applications since the used
clock frequency does not depend on pattern length. search
iterations are also translated into clock cycles. Further
improvement in the performance can be achieved by using an
FPGA with higher clock speeds.

Employing an on-chip processor to dynamically
reconfigure implemented hardware increases the system’s
versatility and allows the usage of low-cost FPGAs as a self-
reconfigurable platform. Since no FPGA specific feature is
used, the design is platform independent and portable.

The present implementation of pattern matching searches
only exact pattern matches. This design can be modified to
search for non exact matches as well. This approach can also
be applied to other efficient FSM-based algorithms.

VII. REFERENCES

[1] Markus Koester and Jürgen Teich, “(Self-)reconfigurable finite state
machines: Theory and implementation,” in Proceedings of the
International Conference on Design, Automation and Test in Europe
Conference and Exhibition, 2002, pp. 559-566. IEEE Computer Society
Press, 2002.

[2] E.M. Sad, M.K Ahmed and M.M Abutaleb, “Optimization of
Reconfiguration Transitions for (Self-)reconfigurable FSM Using
Decomposition” in Radio Science Conference, 2005. NRSC 2005.
Proceedings of the Twenty-Second National, 2005, pp.445-454.

[3] Graeme Milligan and Wim Vanderbauwhede, “Implementation of
Finite State Machines on a Reconfigurable Device,” in Second
NASA/ESA Conference on Adaptive Hardware and Systems (AHS
2007), 2007, pp. 386 – 396.

[4] V. Sklyarov, “Reconfigurable models of finite state machines and their
implementation in FPGAs,” in Journal of Systems Architecture: the
EUROMICRO Journal, 2002, pp. 1043–1064.

[5] Donald Knuth, James H. Morris and Jr. Vaughan Pratt, "Fast pattern
matching in strings," in SIAM Journal on Computing, 1977, pp.323–
350.

[6] R. P. S. Sidhu, A. Mei, and V. K. Prasanna, “String matching on
multicontext Fpgas using self-reconfiguration,” in ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, 1999,
pp. 217–226.

[7] Eric J. McDonald, “Runtime FPGA Partial Reconfiguration,” in
Aerospace and Electronic Systems Magazine, IEEE, 2008, pp. 10-15.

[8] Xilinx Corp, Spartan 3E Starter Kit board user Guide, March 9, 2006
[9] Christian Charras and Thierry Lecroq, “EXACT STRING MATCHING

ALGORITHMS,” Laboratoire d'Informatique de Rouen Université de
Rouen Faculté des Sciences et Technique,
http://www-igm.univ-mlv.fr/~lecroq/string/

[10] Xilinx, “EDK Concepts, Tools, and Techniques A hands on Guide to
Effective Embedded System Design,”, UG683 EDK 11, Ver 11.4.

[11] Xilinx, Embedded System Tools Reference Manual Embedded
Development Kit, EDK 10.1, September 2008.

[12] Mentor Graphics Corporation, “ModelSim® User’s Manual,” Software
Version 6.6b, 2010.

52

	Boise State University
	ScholarWorks
	7-16-2010

	A Reconfigurable Pattern Matching Hardware Implementation Using On-Chip RAM-Based FSM
	Nader I. Rafla
	Indrawati Gauba

	untitled

