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Abstract — The use of synthesizable reconfigurable IP cores has 
increasingly become a trend in System on Chip (SoC) designs 
because of their flexibility and powerful functionality. The 
market introduction of multi-featured platform FPGAs 
equipped with embedded memory and processor blocks has 
further expanded the possibility of utilizing dynamic 
reconfiguration to improve overall system adaptability to meet 
varying product requirements. In this paper, a reconfigurable 
hardware implementation for pattern matching using Finite 
State machine (FSM) is proposed. The FSM design is RAM-
based and is reconfigured on the fly through altering memory 
contents only. An embedded processor is used for orchestrating 
run time reconfiguration. Experimental results show that the 
system can reconfigure itself based on a new incoming pattern 
and perform the text search without the need of a host 
processor. Results also proved that each search iteration was 
executed in one clock cycle and the maximum achievable clock 
frequency is independent of search pattern length. 

I. INTRODUCTION 
Finite State Machines (FSM) is one of the most vital 

components of sequential digital systems. Reconfigurable 
FSMs can be defined as a formal FSM, which has the ability 
to change its output function and/or transition function during 
operation [1]. Existing techniques of reconfigurations have 
been researched and shown that it is applicable to any Field 
Programmable Gate Array (FPGA) platforms [1, 2, 3, 4, 5].  

An approach to implement reconfigurable hardware for 
string matching using Knuth-Morris-Pratt (KMP) algorithm 
[5] is described in [6]. In this approach, a multi context FPGA 
is used and a different context needed to be computed for each 
pattern. It also required direct manipulation of configuration 
bits by a host processor. 

In the proposed approach, the idea of reconfigurable FSM 
is used to implement the KMP pattern matching algorithm on 
hardware. An on-chip processor is used for reconfiguration 
instead of a dedicated hardware logic block. At each reception 
of a new search pattern, the FSM reconfigures itself to 
optimize the pattern search. This implementation avoids the 

need of reset, manipulation of configuration bit-stream, and 
any configuration memory space. 

In RAM-based FSM implementation, a combination of 
current state and input vectors are used as an address to access 
FSM memory contents [3]. These contents consist of all 
possible next state transitions and output vectors. The FSM 
can be reconfigured by reprogramming the memory with new 
or updated state transition and output function tables.  

With the used of an embedded soft or hard-core CPU, 
reconfiguration can be done on the fly. The speed of 
reconfiguration depends on the CPU clock cycle required to 
update the FSM memory contents. This approach is more 
generic than traditional reconfiguration approaches as it does 
not depend on device specific features such as partial 
reconfiguration or multi-context FGPAs [6, 7]. It also avoids 
the need of a dedicated hardware design for configuration  [1]. 

II. CASE STUDY: KNUTH-MORRIS-PRATT ALGORITHM 
There exist several efficient software-based string-

matching algorithms for pattern matching. The KMP 
algorithm is one of the most efficient pattern matching 
algorithms that use an FSM for search execution [5]. 
Therefore, it is an ideal candidate for reconfigurable hardware 
implementation using memory based FSMs. 

The KMP algorithm bypasses the re-examination of 
previously matched characters by employing the fact that 
when a mismatch occurs, the pattern characters themselves 
embed sufficient information to determine where the next 
match would occur. It computes an array, often referred to as 
the function π, such that π[h]=j where the first j characters of 
a pattern (P) are the longest proper prefix that is also a suffix 
of the first h characters of P. The π function is independent of 
the searchable text and can be computed from the pattern only.  

The information stored in π can be represented by a state 
machine. Figure 1 shows the state transition diagram for 
pattern “ababca” where each node represents a character in the 
pattern. An edge is present between any two nodes i and j if 
π[j] = i. A transition arrow is connected from any node j to 
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node j+1 (for match) or backward to the overlap node (for 
mismatch). The length of the prefix function (π[i]) is equal to 
the pattern length. For this pattern the calculated array would 
be π[i]={0, 0, 0, 1, 2, 0}. 

 
Figure 1.  State transition diagram for pattern “ababca” 

String search with KMP algorithm is done in two phases. 
In the first phase the function π is computed from the match 
pattern. In the second phase it is used to speed up the pattern 
search. At each step of computation index q moves to q+1 if a 
match is found or else moves backward to the node π[q].  

III. IMPLEMENTATION OF THE KMP ALGORITHM  
The reconfigurable hardware design of KMP pattern 

matching algorithm is implemented using a RAM-based FSM 
and an embedded processor as shown in Figure 2. The FSM 
and KMP logic blocks implement the KMP algorithm. The 
KMP hardware is connected to a Processor Local Bus (PLB) 
via an Intellectual Property Interface (IPIF). The PLB bus 
connects peripheral devices to an on-chip soft-core processor 
MicroBlaze®. This processor is used for receiving new search 
patterns and performing the pattern specific prefix 
computation. Result of this computation is used for 
reconfiguring the FSM. An RS232 interface is used to connect 
a host PC to the designed system. This host machine is used 
for entering a new search pattern and for displaying the results 
of the pattern search on a hyper terminal. 

Two Embedded RAM blocks are used for FSM 
implementation; one for storing encoded state transitions and 
the other for storing the output vectors. The block diagram for 
such FSM implementation is shown in Figure 3. Each memory 
block has dual ports. A synchronous read-write port is used by 
the embedded processor to access FSM state transition and 
output data. The other port is used by the KMP hardware logic 
during the execution of the KMP algorithm. 

 

Figure 2.  System block diagram Figure 3.  RAM based FSM 
implementation 

The FSM output function is programmed in such a way 
that at any stage of string comparison, the output vector is the 
next pattern character to be compared with a text character. 
The FSM state transition table for the pattern “ababca” is 
shown in table 1. The calculated π[i] values are used to predict 
next state transition after mismatch. The FSM output vector is 

8 bits long where bits 6-0 contain the ASCII code of pattern 
characters and bit 7 is set to logic 1 only when the pattern is 
found within the text. 

TABLE I.  TRANSLATION FROM  π[i] TO FSM NEXT STATE AND OUTPUT  

Pattern 
characters 

π[i] Current 
State 

Next state 
transition 

(match=1) 

Next state  
transition 
(match=0) 

Output 
function 

 
 a 0 0 1 0 a 
 b 0 1 2 0 b 
a 0 2 3 0 a 
b 1 3 4 1 b 
c 2 4 5 2 c 
a 0 5 0 0 a 

During string search, the text memory address counter 
increments to fetch the next text character from text memory. 
The FSM outputs the pattern characters and traverses through 
states 0 to 5 as the pattern characters matches with the text 
characters. If FSM reaches at state 5, and a match is found, it 
transits to state 1. The MSB of FSM output is set to ‘1’ for one 
clock cycle and the rest of the bits (6:0) contain the ASCII 
code of the first pattern character. The location of the matched 
pattern within the text is calculated by simply subtracting the 
current state value (when match is found), from text memory 
address counter and decrementing it by one.  

To support search of two overlapping patterns as in text 
string “ababcababca”, a modified state diagram is used as 
shown in Figure 4. The state transition diagram is similar to 
the previous one except at the final node ‘a’, the transition 
arrow connects to second node ‘b’ for match instead of first 
node ‘a’ The FSM state transition table for this FSM remains 
the same except the last line of the table is modified to 
traverse the FSM into state ‘1’ instead of state ‘0’ if pattern 
match is found.  

 
Figure 4.  Modified state transitiion diagram for pattern “ababca” 

The implementation of the designed system involves 
hardware/software co-design. The hardware partition consists 
of processor-based system description and the implementation 
of KMP algorithm while the software part involves pattern 
specific prefix function computation, conversion of prefix 
function to FSM, and software to update RAMS of FSM. 
Figure 5 shows the KMP hardware implementation. 
Comparison of text characters with pattern characters is done 
through a 7-bit hardware comparator that compares the FSM 
output vector with the text memory output and generates a 
match signal. This signal is fed to the KMP combinational 
logic which controls the text memory address counter based 
on the match signal and current state. The match signal 
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concatenated with the current state function forms an address 
vector for FSM memory. Since FSM memory can be accessed 
at FSM clock frequency, search iterations ran at the same 
speed. The search result, address locations of the matched 
pattern, and match count are stored in internal memory blocks.  

 
Figure 5.  Block Diagram of KMP hardware logic 

IV. EXPERIMENTAL ENVIRONMENT 
A Xilinx Spartan 3E prototyping board [7] is used for 

hardware implementation of the proposed design. The EDK 
10.1 Xilinx tool chain [10] is used for implementation of the 
reconfigurable KMP block using VHDL, while the ‘C’ 
programming language is used for coding the application that 
computes the pattern specific prefix function and maps it to an 
FSM state transition table. 

Since Spartan 3E FPGA does not have a built-in hard core 
processor, a customized soft-core processor (MicroBlaze®) is 
used instead. It is customized to include UART peripheral for 
serial communication with a host processor. 

The soft-core processor is instantiated as a top module in 
the system. The system also includes two separate entities for 
the FSM and KMP phase 2 search. The Processor Local Bus 
(PLB 4.6) is chosen to facilitate communication among these 
components. The PLB bus provides a memory-mapped 
interface to the user core via user accessible slave registers.  

The processor boot code, software to calculate FSM state 
transition table and FSM memory updates, is stored in internal 
block RAM. No external memory is used for this 
implementation. 

V. EXPERIMENTAL RESULTS 
System behavior is verified via simulation using 

ModelSim PE Student Edition 6.5b [11]. Experimentation is 
done by generating and downloading the configuration bit-
stream onto the Spartan 3E Starter board, and then testing it 
with various search patterns.  

Test bench is designed to provide and generate various test 
patterns to the designed system. Simulation waveform of the 
pattern search of ‘ababca’ is shown in Figure 6. The ASCII 
code corresponding to the characters making the pattern is 
‘0x61, 0x62, 0x61, 0x62, 0x63, and 0x61’. The signal 
‘configure’ is raised until FSM is updated then search is 
initiated at its de-assertion. As the text characters match with 
pattern characters, FSM traverses through states 0 to 5. When 
the match pattern is found, MSB of FSM output signal is set to 
‘1’. As shown in waveform, FSM output at state ‘5’ is 0xE1 
(0x80 | 0x61), Logic operation OR of the logic 1 concatinated 

with zeros and the ASCII code of the first pattern character.  
The waveform also shows that the designed logic is capable of 
searching two consecutive patterns without loss of clock 
cycles. Signal ‘match_found’ is asserted to indicate a 
pattern match and signal ‘match_addr’ points to the 
location of pattern within the text.  

 
Figure 6.  Simulation waveform of KMP search run for pattern “ababca” 

The implemented logic is also capable of searching for 
overlapped patterns without any loss of clock cycle time. 
Figure 7 shows simulation waveform of such search 
execution. The text string fused for testing contains the pattern 
“ababcababce” and pattern to be searched is “ababca”. The 
simulation waveform shows that search execution found two 
matches at addresses 0x4 and 0x9, the location of first and 
second pattern, which proves that system can locate 
overlapped patterns. 

 

Figure 7.  Simulation waveform for two overlapping patterns  

To test the pattern search functionality on the physical 
hardware, a text file is stored in FPGA’s block RAM. A 
VHDL source file is coded to instantiate a block ‘RAM’ entity 
using ‘RAMB16_S9’ tool construct. A tool written in ‘C’ 
takes the text file as input and populates the ASCII code of 
text characters as an initialization code for the ‘RAM’ entity. 
This VHDL file is compiled and loaded into the FPGA along 
with the design source files. This scheme eliminated the need 
of storing the text in external memory. 

A small ‘C’ application is developed to establish serial 
communication between embedded processor and the host 
machine using UART peripheral of the soft-core. The match 
pattern is furnished by typing on the hyper terminal. The 
system prints search results back on the terminal.  These 
results are verified using the ‘word count’ utility. Testing is 
done by searching different patterns of various sizes (3 to 20 
characters) and for varying number of repetitions.  

The string search with KMP algorithm requires, worst case 
scenario, m+n iterations (m: pattern length ; n: text length) 
With the proposed design, each search iteration executes 
within one clock cycle and requires m+n clock cycles, worst 
case. The design translates the count of search iterations into 
number of clock cycles.  
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A number of tests were executed with pattern length 
varying from 3 to 20 characters. In every case, a linear 
relationship between number of characters and clock cycles 
after the first match is found as shown in Figure 8. 

 
Figure 8.  Clock cycles vs pattern length after hitting first match 

The time required for computing the state transition and 
output vector tables of the  FSM depends upon the software 
implementation technique and the FSM reconfiguration time 
depends on PLB bus communication speed. With the ‘C’ 
implementation using XPS SDK tools chain, approx. 300 
clock cycles were consumed for updating the state transition 
and the same amount for the output function for the pattern of 
five characters length. The number of clock cycles required 
increases by 50 cycles per increase of a pattern character. 
These results are summarized in Table II.  

TABLE II.  CLOCK CYCLE REQUIRED FOR FSM UPDATE 

S. No.      FSM update function Clock cycles 
1 State transition function 300 
2 Output function 300 

3 Clock cycle increase per character 50 

Performance of the implemented design is compared with 
the multi context FPGA implementation described in [6]. 
Table III lists the reconfiguration time and search execution 
time for various values of m and text size of 104 characters. 
The TCLK is FPGA clock frequency, TME is FSM 
reconfiguration time and TE is the search execution time. 
Columns ‘A’ list the performance with multi context FPGA 
and columns ‘B’ correspond to the proposed approach. The 
time required for prefix computation and translation is not 
compared since it depends on clock speed of the soft-core 
processor and the efficiency of software coding.  As seen in 
the table, a significant performance improvement is obtained. 
The maximum operational frequency with this implementation 
is independent of the pattern length and is 97.656MHz for 
SPARTAN 3E 500 FPGA. 

TABLE III.  PERFORMANCE COMPARISON FOR VARIOUS VALUES 
 OF M WITH N=104 

m TCLK(ns) TME(µs) TE(µs) Total Time (µs) 

 A B A B A B A B 
4 81.6 20 0.7 11 1428 204 1428 215 

8 97.6 20 2.1 18 1830 208 1841 226 

16 129.6 20 5.8 34 2511 216 2539 250 

This technique requires less hardware area as opposed to 
other implementations since it does not need to store the 
pattern in internal memory. It also saves reconfiguration time 
since it only needs to update the FSM for reconfiguration in 
contrast with other approaches that require storage of pattern 
characters and back-edge lookup (π[i]) onto memory. 

VI. CONCLUSION 

A new approach to FSM-based reconfigurable hardware for 
KMP algorithm implementation is presented.  The RAM-
based FSM is reconfigured on the fly by altering its memory 
contents using an on-chip processor. The functionality of the 
designed system was verified using functional simulation and 
tests that were run on physical hardware. 

Results show that the suggested approach increases the 
performance of pattern matching applications since the used 
clock frequency does not depend on pattern length. search 
iterations are also translated into clock cycles. Further 
improvement in the performance can be achieved by using an 
FPGA with higher clock speeds.  

Employing an on-chip processor to dynamically 
reconfigure implemented hardware increases the system’s 
versatility and allows the usage of low-cost FPGAs as a self-
reconfigurable platform. Since no FPGA specific feature is 
used, the design is platform independent and portable.  

The present implementation of pattern matching searches 
only exact pattern matches. This design can be modified to 
search for non exact matches as well. This approach can also 
be applied to other efficient FSM-based algorithms. 
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