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Abstract — The bandwidth and power consumption of dynamic 
random access memory (DRAM), used as the main memory of a 
computer system, impacts computer execution rates. DRAM 
manufacturers focus on density increases, due to the innate price 
per bit decline of main memory, while processor manufacturers 
continually focus on boosting performance. This leads to a 
performance gap between the two technologies. Proximity 
communication promises to increase the off/on chip bandwidth of 
DRAM products while reducing the power consumption of the 
main memory system. The design of a memory system employing 
4 Gb DRAM chips with a 64-bit wide communication bus using 
proximity communication is proposed. Technological roadblocks 
are analyzed and novel solutions are proposed. The proposed 4 
Gb DRAM architecture can reduce the power consumption of a 
main memory system by 50% while increasing the bandwidth by 
100%. The 4 Gb chip architecture measures 68.88 mm2 and has 
an array efficiency of 59.9%. The estimates are comparable to 
2012 International Technology Roadmap for Semiconductors’ 
(ITRS) estimates of 74 mm2 and 56%, respectively. 

Keywords – DRAM, proximity communication, chip-to-chip, 
server memory, main memory, bandwidth, power consumption. 

I.  INTRODUCTION 
The performance gap between the computer's processor and 

its main memory has been growing over the past two decades 
[1]. Density and die size are the figures of merit for main 
memory manufacturers. Increasing these performance 
measurements places a physical limit on the latency of the main 
memory array due to the parasitics [2]. The limitations keep 
memory latency scaling at roughly 7%, while processor 
performance has been scaling at roughly 50%. This 
performance differential is termed the “memory gap”, and 
refers to the growing performance disparity between the 
processor core and its main memory. 

Processor manufacturers have made several architecture 
changes that enable computer performance to scale with 
Moore's Law (double the performance every two years). 
Multiple cores, increased cache levels, multiple threads, and 
speculative accessing, have made memory stalls almost 
transparent to the computer user [3]. Main memory 
manufacturers increase their density per unit area by 
developing longer bitlines, longer wordlines, decreased unit 
cell size, and feature size scaling [4]. Main memory 
manufacturers alleviate bandwidth limitations by using DRAM 
pre-fetch. Unfortunately, the pre-fetch architectures did not 

begin taking hold until 2000 [5]. This places memory 
bandwidth scaling decades behind processor bandwidth 
scaling. 

Proximity communication is an input/output (I/O) 
technology that uses capacitors to electrically connect two 
chips [6]. The off/on chip communication technique has the 
ability to substantially increase the memory bandwidth and not 
impact the power consumption [7]. This work develops a 
memory architecture that utilizes proximity communication to 
substantially increase bandwidth, while reducing power 
consumption.  This is achieved by allowing a single DRAM 
chip to provide a full cache line of memory (64 Bytes).   

II. PROXIMITY COMMUNICATION 
Capacitive coupled proximity communication is a chip-to-

chip interface technology that uses the top level of metal on an 
integrated circuit to form the parallel plates of a capacitor. Two 
chips are placed face to face and their top level of metal is 
allowed to come within close proximity (1 µm – 20 µm) of 
each other without touching. This arrangement creates a 
parallel plate capacitor.  

A. Advantages 
The advantages of proximity communication allow for a 

significant reduction of parasitics in the transmission channel, 
which increases bandwidth and lowers power relative to other 
chip-to-chip interconnects. Fig. 1 depicts a cross sectional view 
of two chips using proximity communication as the I/O 
interface. 

 
Figure 1.  Cross section view of placing two chips face-to-face and within 

close proximity of each other [6]. 
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The removal of off chip wires allows for a 
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III. DRAM TRENDS 
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Registered, fully buffered, and load reduced DIMMs were 
developed for server applications to increase the number of 
DIMMs per memory channel. These innovations have a cost 
and power premium associated with them. 

IV. X64 DRAM ARCHITECTURE 
A 4 Gb DRAM architecture utilizing proximity 

communication was developed that is realizable with existing 
technology and meets 2012 ITRS predictions [12]. Challenges 
associated with incorporating proximity communication into 
DRAM were characterized and several innovations were 
developed that alleviated these challenges.  A novel global I/O 
routing structure was discussed that promises to increase the 
number of data signals that can be read and written to a 
memory array.  The slice architecture was developed to 
increase the modularity of memory systems.   

A. Moving the Pads 
Moving the communication channel to the edge of the 

DRAM chip creates several interesting challenges when 
performing an architectural feasibility study. The bank 
structure used in this research alleviates the initial challenges. 
Once the communication channel is moved to the edge of the 
die additional circuitry is required to buffer the signals into the 
memory chip. Limiting the number of rows per bank creates a 
“short” bank that reduces global data and command signals, 
eliminating the need for additional buffers. 

The inexpensive process technology of DRAM chips 
utilizes 2 – 3 layers of metal above the memory capacitor. This 
places an intrinsic limit to the number of global I/O tracks over 
each bank. Due to this, the half-bank structure used in this 
proposal has 64k columns and 8k rows. This half-bank 
structure must decode the 64k columns into eight 8k pages. A 
by 64 DRAM chip operating with a pre-fetch of eight requires 
512 bits to be accessed at once. Accessing 512 bits from one 
bank requires the use of a half-bank to reduce the total metal 
usage. Each half-bank supplies 256 bits of data. This allows the 
global I/O track to be spread across the chip, limiting metal 
usage for the global I/O bus. The challenges of buffering the 
signals into the array and limited routing channels are 
circumvented by using the proposed bank and segmented page 
structures. Fig. 3 shows the block diagram of the 4 Gb DRAM 
die. The half-bank structure can be thought of as dividing each 
bank horizontally, and firing a wordline in each half-bank. 

 
Figure 3.  A 4 Gb DRAM architecture incorporating proximity 

communication and centralized row and column circuitry. 

B. Local I/O Routing 
 

 
Figure 4.  Space and data mapping of the local input/output routing within a 

half-bank. 

The by 16 and by 32 proximity configurations will not 
require any significant innovation, but the by 64 configuration 
will require additional innovation for local I/O routing. The 
large number of global I/O tracks (256 per half-bank) requires 
32 data signals from each 256 kb memory array. Moving 32 
data signals from the bitline sense amplifiers to the global I/O 
track is a major challenge due to the limited routing space 
above the bitline sense amplifiers. Increasing the page size will 
alleviate this challenge but will also increase the power 
consumption. Instead, these signals can be routed to the top and 
bottom of each 256 kb memory segment, as seen in Fig. 4. An 
additional avenue for architectural research consists of routing 
the data signals through adjacent inactive bitlines (above and 
below). 
 

C. New Global I/O Routing 
As mentioned above the memory array operates at a 

maximum frequency of 200 MHz due to the parasitics of the 
memory array. The global I/O route does not share the 
parasitics of the memory array and can operate at a higher 
frequency. Insertion muxes, and additional latches can be used 
to keep the global I/O bus fully occupied with data. A column 
path protocol can be developed that allows for multiple banks 
to be accessed and data stored in the local I/O channels. Busy, 
ready, and data insertion requests can be used to allow the 
global I/O routing to operate at a higher frequency, while the 
memory array remains operating at frequencies below 200 
MHz.    

D. Modular Architecture 
Main memory DRAM chips use a large number of repeated 

structures and symmetry.  The proposed modular architecture 
speeds up design verification. Each modular architecture 
contains all circuitry required for one data pin to read and 
write. Combining many of these modular structures together 
will create the entire chip. A data, command, and clock 
modular architecture was developed during this research. 

The first advantage of this architecture is that the time 
required for chip verification can be reduced significantly. Due 
to the sheer number of transistors on a modern DRAM chip, 
simulating an extracted netlist can take several weeks to 
complete. Using smaller modular blocks to fully verify the 
data, command, and clock paths within the chip will reduce the 
time required to perform validation on the extracted netlist 
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because each block is self contained. The second advantage of 
this modular structure is that varying densities of memory chips 
can be easily constructed for varying applications. DRAM 
chips utilizing both proximity communication and this modular 
structure can simply be glued directly over their application 
with the correct density and I/O count.  This has the possibility 
of revolutionizing the way chips access off-chip data. Instead 
of driving data requests away from the central circuitry of an 
integrated circuit to the memory channel, it is possible to 
simply send signals up towards the memory chip. This 
approach provides the exact memory requirement at the exact 
place it is required, reducing the access latency considerably. 

V. SUMMARY 
Developing a wide I/O DRAM architecture that is suitable 

for proximity communication necessitates the communication 
channel to be moved to the side of the DRAM chip. This 
enables a proximity communication DRAM chip with 8 or 16 
data pins. This modification requires limited design changes 
from current DRAM architectures. 

A distributed page and bank structure was developed to 
enable the possibility of using proximity communication with 
32 data pins. The architecture utilized the standard main 
memory page size specification of 8k, which allows the array 
power consumption to remain competitive with current and 
future DRAM architectures.  

Reaching the use of 64 data pins required architectural 
changes that would not increase the manufacturing cost 
compared to current DRAM architectures. Three levels of 
metal above the memory capacitor is the projection for DRAM 
densities greater than 2 Gb. The wide I/O architecture allows 
the metal stack to remain at two levels of metal above the 
memory capacitor without increasing the chip size. The 
reduction of projected metal usage enables a significant cost 
advantage when compared to other DRAM architectures. A 
new column structure was introduced that will aide in the 
development of a proximity communication enabled DRAM 
architecture that utilizes ≥ 64 data pins. 

The wide I/O DRAM architecture utilizing proximity 
communication enables several technological advantages over 
existing DRAM architectures. Fixing the page size and 
increasing the I/O count through the wide I/O DRAM 
architecture allows for an energy efficient DRAM architecture. 
Fig. 5 shows the relative energy per bit estimates for DRAM 
chips utilizing proximity communication.  

 
Figure 5.  Energy per bit comparison. 

 
Figure 6.  Module bandwidth comparison of current and future main memory 

compared to a main memory chips using proximity communication. 

Current commodity DRAM chips have poor energy 
efficiency due to only using 64 data bits of the 8k bits accessed 
per page. The wide I/O architecture increases the number of 
bits accessed per page to 512, which significantly increases the 
energy efficiency of DRAM chips.  

Although it is possible to only access one proximity 
communication DRAM chip to supply the full 64 bytes of data 
to the memory controller, it is also possible to increase the 
amount of data accessed by increasing the memory channel 
width. The projected bandwidth trend shown in Fig. 6 clearly 
shows the advantage of using proximity communication 
DRAM over current and future DRAM technologies.  
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