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Abstract 
 

Many hypotheses attempt to explain why younger, less experienced birds have 

relatively low reproductive output.  We evaluated reproductive patterns of marked 

American Kestrels Falco sparverius nesting in boxes in southwestern Idaho from 

1992 to 2006 to test predictions of these hypotheses.  Results were consistent with the 

selection (differential mortality) hypothesis and did not support the constraint, 

restraint or recruitment hypotheses.  Most known-age Kestrels nested in their first 

year of life, and there was no apparent short-term or long-term reproductive 

advantage to delayed breeding.  The number of years that Kestrels nested in study 

area boxes ranged from 1 to 6 years, with most Kestrels nesting in only 1 year.  

Reproductive rates were higher for birds with at least 1 year of nesting experience 

than for birds nesting in boxes for the first time.  After 2 years of nesting, 

reproductive rates leveled off; there was no evidence for additional improvement or 

for senescence.  Differences in reproductive output with experience/age were due to 

variation among and not within individuals.  Individuals that nested in more than 1 

year had similar reproductive rates in their first and second years.  Poor producers 

either died or dispersed after 1 year of nesting in study area boxes.  Successful 

females that nested early in the season and successful males that had been produced 

locally had the highest probability of returning to nest in a subsequent year.   

 

Keywords:  age, experience, Falco sparverius, life history, population dynamics, raptor, reproductive 

success 

 

Age-specific patterns of survival and reproduction are important in understanding behavioural strategies, 

life histories, population dynamics and evolutionary ecology (Forslund & Pärt 1995), and they are also 

relevant to population management and conservation (Martin 1995).  Survival and reproduction vary with 

the age and experience of individuals in most bird species (Martin 1995), with age accounting for much of 

the total variation in reproductive success among individuals (Village 1986, Forslund & Pärt 1995).  In 

most bird species, productivity increases with experience, and some species exhibit reduced productivity 

associated with senescence in later years (e.g., Newton & Rothery 1998, 2002, Nielsen & Drachmann 

2003).  The reproductive output of first-time breeders tends to be lower than that of more experienced 

individuals in many species (Forslund & Pärt 1995, Low et al. 2007).  Hypotheses (Table 1) to explain why 

younger breeders have low reproductive output (Forslund & Pärt 1995, Martin 1995, Mauck et al. 2004, 

Low et al. 2007) include: 1) optimization of reproductive effort with increased reproductive investment in 

later years as the residual reproductive value declines (the restraint or effort hypothesis), 2) age-related 

improvements in competence (the constraint or experience hypothesis), 3) the progressive appearance of 

good producers that delay their first breeding (the recruitment hypothesis) and 4) the progressive 

disappearance of poorly producing individuals (the selection or differential mortality hypothesis).  The last 

hypothesis suggests that poor breeders die at a younger age than better breeders.  However, disappearance 

of inferior breeders from open populations in a finite study area may be due to either mortality or dispersal 

(Haas 1998, Bregnballe 2006).   

 

The predictions of the four hypotheses are not mutually exclusive (Forslund & Pärt 1995, Laaksonen et al. 

2002; Table 1), and some studies have found evidence for more than one explanation in the same 

population (Nol & Smith 1987, Espie et al. 2000, Laaksonen et al. 2002, Reid et al. 2003, Bregnballe 2006, 

Low et al. 2007).  The restraint and recruitment hypotheses predict high rates of delayed breeding within 
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populations and higher longevity or lifetime reproduction for individuals that delay breeding.  The restraint 

and constraint hypotheses predict that individuals improve their reproductive output as they age, whereas 

the selection hypothesis predicts that older cohorts have higher reproductive output only because poor 

producers disappear from the nesting population at a young age.  Thus, differences in reproductive output 

within individuals as they age would provide evidence for the constraint or restraint hypotheses, whereas 

differences among individuals would support the selection hypothesis (Newton & Rothery 1998, Espie et 

al. 2000).  The constraint hypothesis predicts an inverse relationship between survival and reproductive 

output in the preceding year, whereas the selection hypothesis predicts a positive relationship between 

reproductive output and subsequent survival.  A positive relationship between longevity and early success, 

particularly in the first nesting year, would support the selection hypothesis; a negative relationship would 

support the restraint hypothesis, and no relationship might support the constraint hypothesis (Mauck et al. 

2004).  

 

Most studies of birds have shown that individuals improve their reproductive performance with age or that 

survival is not related to reproductive performance in the previous year (Martin 1995, Nielsen & 

Drachmann 2003).  Fewer have supported the selection hypothesis (Martin 1995), and even fewer have 

identified the phenotypic characteristics of inferior breeders that are lost from the population early in life.  

Support for the selection hypothesis has come from studies of sparrows (Nol & Smith 1987), seabirds 

(Wooller et al. 1990, Mauck et al. 2004, Barbraud & Weimerskirch 2005) and relatively small, short-lived 

raptors.  Eastern Screech-owl Otus asio females that survived to nest in more than 1 year had higher nesting 

success rates in their first year than female owls that nested only once (Gehlbach 1989).  Age-specific 

variation in Merlin Falco columbarius reproduction was probably due to a combination of disproportionate 

mortality of inferior female breeders and improved competency of males with experience (Espie et al. 

2000).  Male Tengmalm’s Owls Aegolius funereus that nested late were less likely to survive and return 

during the decrease phase of the vole cycle (Laaksonen et al. 2002).  At least three studies have suggested 

that late dates of clutch initiation are a characteristic of poor producers that disappear (Espie 2000, 

Laaksonen et al. 2002, Low et al. 2007).  One reason for late nesting might be late pairing (Village 1985).  

In populations where some individuals are year-round residents, locally produced residents may have an 

advantage over migrants or immigrants in securing nesting territories, obtaining mates and initiating 

nesting attempts early in the nesting season.   

 

In this paper we examined whether reproductive output was related to age, years of nesting experience, or 

natal origin in a population of marked American Kestrels Falco sparverius nesting in boxes in 

southwestern Idaho.  American Kestrels are small, socially monogamous and sexually dimorphic raptors 

that occur throughout North and South America (Smallwood & Bird 2002).  They occur commonly in 

habitats used and modified by humans and, as secondary cavity nesters, they readily use nestboxes.  Males 

provide most of the food for females during courtship, incubation and early brood-rearing, and both adults 

provide food to nestlings older then 10 days of age (Balgooyen 1976).  In southwestern Idaho, Kestrels 

have a prolonged nesting season (March-August), and many, if not most, individuals remain on the nesting 

grounds through the winter (Henny & Brady 1994, K. Steenhof, unpubl. data).  Yearling males may acquire 

territories as early as the autumn of their hatching year (Smallwood & Smallwood 1998, K. Steenhof, 

unpubl. data,).   We evaluated reproduction and longevity for 89 breeding Kestrels (55 males and 34 

females) marked as nestlings in or near study area boxes (‘known-age’ birds that could be considered local 

recruits) and 893 (355 males, 538 females) individuals first encountered as adults nesting in boxes from 

1992 to 2005 (‘unknown-age’ birds, which had not been produced in study area boxes).  We tested 

hypotheses that attempt to explain age-specific differences in reproduction, and we identified factors 

associated with the probability of Kestrels returning to nest in more than 1 year. 

 

Methods 

 
The study area included nest boxes in southwestern Idaho (43° N 116° W) that had been erected from 

1986-1992.  Approximately 20% of boxes were on signs along an interstate highway, 20% were on trees in 

rural residential properties near Kuna, and 60% were wooden poles in agricultural and exurban areas south 

of Boise and Meridian.  The irregularly shaped study area encompassed approximately 1000 km
2  

and
 
was 

approximately 65 km long on its longest axis (northwest-southeast) and 22 km wide.  Nearest neighbor 

distances between boxes averaged 886 ± 43 m (range: 178-2574 m).  Old trees and buildings occurred 
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throughout the study area, so the nest boxes we monitored were not the only locations where Kestrels could 

nest within the study area.  In addition, other investigators erected nestboxes within and on the periphery of 

our study area from 1998 to 2002.   

 

Our field procedures followed Animal Care Protocol guidelines approved by Boise State University 

(IACUC Numbers 006-01-006 and 006-05-004).  Each year from 1986 to 2006, we checked, cleaned and 

added fresh wood-shavings to all boxes in March, and each year we replaced and repaired some boxes.  We 

re-visited all boxes in April, May and June to check for occupancy, and we removed nests of European 

Starlings Sturnus vulgaris to keep boxes suitable for Kestrels.  We re-visited boxes with Kestrel eggs or 

young as often as necessary to capture adults, estimate ages of young and ascertain nesting success and 

number of young produced.  We caught most adults while they were incubating in boxes.  At sites where 

we had been unable to catch adults in boxes during incubation or early brood-rearing, we used a mist-net 

with a live Great Horned Owl Bubo virginianus during late brood-rearing (Steenhof et al. 1994).   

 

We banded nestlings and unmarked adults with aluminum USGS bands and recorded band numbers of 

adults that already had bands.  We assigned median hatching dates to all broods based on the ages of 

nestlings estimated from a photographic ageing key (Griggs & Steenhof 1993).  We used nest discovery 

dates (dates when eggs were first found) as an index to nest initiation dates because they correlated well 

with hatching dates (r  = 0.89, n = 577, P  < 0.001).  To account for variation in breeding chronology 

among years, we calculated a standardized nest initiation date by dividing the date eggs were found by the 

median date that all first clutches were found in the same year.  We considered nesting attempts to be 

successful when young reached 80% of fledging age (75% feathered or approximately 22 days; Griggs & 

Steenhof 1993).  Mean nesting success was calculated separately for each gender and was defined as the 

proportion of individuals that produced at least one young that reached 22 days of age. We considered 

broods with young > 22 days to be the number of young that fledged.  Most young were banded at 23-25 

days of age.  We excluded broods from analyses if counts were incomplete or if they were based on counts 

of young before they reached 22 days of age.  We did not assess nesting success or productivity in 2006, 

the final year of our study.  We defined local lifetime reproduction of a bird to be the number of fledging-

age young produced in all years that the individual nested in study area boxes.  We excluded individuals 

that were still nesting in 2006 from estimates of local lifetime reproduction.  We also excluded individuals 

from assessments of lifetime reproduction if we had incomplete information on their nesting success or 

brood size at fledging in one or more years that they nested in boxes.  Although we banded some adults and 

most nestlings in boxes from 1986 to 1991, we did not make a concerted effort to capture all adults until 

1993.  Therefore, our analyses include only those individuals marked or re-encountered in 1992 or later.   

 

We considered only known-age nesters to assess the frequency of delayed breeding in Kestrels and 

compared age at first known nesting by gender using a likelihood ratio test (G-test; Sokal & Rohlf 1998).   

We compared nest initiation dates, numbers of eggs laid and number of fledglings produced by birds that 

began nesting in their first year after hatching to birds that began nesting in the second or third year after 

hatching with nonparametric Wilcoxon 2-sample tests.  We compared nesting success of these two groups 

using likelihood ratio tests, and we used Wilcoxon 2-sample tests to compare their breeding longevity and 

lifetime reproduction. 

 

We evaluated how reproductive rates varied with years of nesting experience for all nesting adults in the 

sample using a generalized linear model (GLMM) with bird included as a repeated subject.  This analysis 

detected differences among cohorts of birds but did not model intra-individual changes.  We grouped birds 

with 3, 4 and 5 years of experience in the category 3+ years of nesting experience and performed separate 

analyses for males and females.  We used different null distributions for each response variable.  Nest 

initiation dates fit a normal distribution; we used a logit-link function with a binomial distribution to 

analyse nesting success; and we used a log-link function with a Poisson distribution to analyse numbers of 

eggs and fledglings produced.  We used paired t-tests to assess within-bird differences in reproduction over 

time, comparing reproduction of individuals in their first and second years of nesting.  We used logistic 

regressions to examine factors that affected the probability of male and female Kestrels returning to nest in 

a study area box after 1 year of nesting.  Descriptive statistics are reported as mean ± se.     
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Results 

 

Of 944 Kestrels that nested in boxes from 1992 to 2005, 780 (83%) were encountered nesting in only 1 

year.  Excluding birds still nesting in 2006, 393 males nested for an average of 1.3 ± 0.04 years, and 551 

females nested for 1.2 ± 0.03 years (Table 2).  One male and one female nested in study area boxes for 6 

years between 1992 and 2005.  The observed lifespan of Kestrels nesting in boxes, defined as the difference 

between year of hatching and year of last known nesting, ranged from 1 to 6 years for known-age males 

and 1 to 3 years for known-age females.  The minimum lifespan for unknown-age birds, defined as the 

difference between year of first known nesting and year of last known nesting +1, ranged up to 7 years for 

males.  A female at least 8 years old was still nesting in 2006, the final year of our study. 

  

The Frequency and Consequences of Delayed Reproduction    
 

Most Kestrels that we had banded as nestlings and re-captured as breeding adults nested in their first year 

after hatching.  The difference between sexes (88% of 56 males and 82% of 34 females) was not significant 

(G2 = 0.45, P = 0.51).  Ten per cent first nested in study area boxes during their second year.  One female 

and three males were not encountered nesting in boxes until their third year.  Because we did not capture all 

Kestrels nesting in boxes, some apparent first time nesters might have bred in the area in previous years 

without being detected (Wyllie & Newton 1991).  Alternatively, some may have bred elsewhere in their 

first or second year.  Thus the observed rate of nesting in the first year should be considered a minimum. 

 

Kestrels that nested in study area boxes for the first time as 2- or 3- year olds had similar nest initiation 

dates and they produced similar numbers of eggs and fledglings as Kestrels that nested as yearlings (Table 

3).  Patterns were similar for both sexes (all P > 0.09).  Nesting success rate of 2- and 3-year olds nesting in 

boxes for the first time (54%) was lower than that of Kestrels nesting as yearlings (84%; G1 = 4.2, P  = 

0.04), and lower than those of 2-year-olds nesting in boxes for the second time (81%; G1 = 9.3, P  = 0.002).  

Mean number of years that Kestrels nested in study area boxes did not differ with age at first known 

nesting, and age at first known nesting was unrelated to local lifetime reproduction (Table 3).  

 

Reproductive Rates and Nesting Experience   
 

Female American Kestrels in their first known year of nesting produced fewer eggs and fledglings than 

those with one or more years of nesting experience in the study area (Fig. 1a, 1b).  Nesting success rates 

were higher for individuals with at least 1 year of experience than for first time nesters (Fig. 1c).  After 2 

years of nesting, success rates and productivity of females leveled off (Fig. 1b, 1c).  There was no evidence 

for decreased productivity in older birds, and there was no clear improvement in nesting success and 

number of young fledged after 2 years of nesting.  Three of four females with 4 or 5 years of experience 

nested successfully.  Nest initiation dates did not vary with number of years of nesting experience in 

females (F3, 129 = 2.04, P  = 0.11).    

 

The number of fledglings produced was related to the number of years that males had nested (Fig. 1b), but 

the number of eggs produced by their mates was unrelated to male nesting experience (Fig.  1a). Nesting 

success rates were higher for males with at least 1 year of experience than for first-time nesters (Fig. 1c).  

After 2 years of nesting, success rates and productivity of males levelled off (Fig. 1b, 1c).  There was no 

evidence for decreased productivity in older birds, and there was no clear improvement in nesting success 

and number of young fledged after 2 years of nesting.  All males with 4 or 5 years of experience (n = 5) 

nested successfully.  Nest initiation dates did not vary with number of years of nesting experience in males 

(F3, 121 = 1.13, P = 0.34). 

 

Paired tests on birds that nested in the study area in more than 1 year showed that the number of young 

fledged by individual Kestrels in their first year of nesting did not differ from the number fledged in their 

second year (males: t78 = 1.1, P  = 0.28; females: t87 = 0.77, P  = 0.45).  Nest initiation dates did not change 

between the first and second year of nesting for males (t95 = 0.43, P  = 0.67) or females (t97 = 0.90, P  = 

0.37).  Females laid similar numbers of eggs in their first and second known years of nesting (t96 = 0.76, P  

= 0.45), and mates of males laid similar numbers of eggs in the male’s first and second year of nesting (t95 

= 0.43, P  = 0.67).  
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Factors Associated with the Probability of Nesting in Multiple Years 

 

Females were more likely to die or disperse (83%) from study area boxes after their first nesting season 

than were males (76%; G1 = 5.8, P  = 0.016).  Kestrels of both genders that failed in their first nesting 

attempt were more likely to die or disperse by the following nesting season (Table 4).  Successful females 

were 4.9 times (CI: 2.5 - 9.7) more likely to return than unsuccessful females, and male Kestrels were 2.3 

times (CI: 1.2 - 4.4) more likely to return if they were successful the first year.  Birds that failed in their 

first year nested in boxes for fewer years (mean = 1.1 years, n  = 269) than birds that nested successfully in 

their first year (mean = 1.4 years, n  = 700, Wilcoxon Z  = 5.13, P  < 0.001).  This difference was due 

mainly to birds dying or dispersing after the first nesting year.  Among Kestrels that nested in the study 

area for at least 2 years, number of years nesting did not differ between Kestrels that nested successfully in 

the first year (mean = 2.6 years, n  = 171) and Kestrels that failed in their first year (mean = 2.5 years, n  = 

23, Wilcoxon Z  = 2271, P  = 0.896).  

 

Other factors associated with whether a bird would return to nest in study area boxes differed for female 

and male Kestrels.  The probability of a female Kestrel returning to nest in a second year was related 

inversely to her nest initiation date (Table 4).  Early nesting females were more likely to return than later 

nesters.  For every unit (standardized day) decrease in nest initiation date, the odds of a female returning 

increased by 0.17 times (CI: 0.04 - 0.78).  Known-age females (local recruits) and unknown-age females 

returned at similar rates (Table 4).  In contrast, males that had hatched in study area boxes were 5.3 times 

(CI: 2.9 - 9.8) more likely to nest in a second year than males hatched elsewhere (Table 4). 

 

Discussion 

 

We found no evidence to support the restraint or recruitment hypotheses.  Most Kestrels bred as yearlings, 

and age at first nesting was unrelated to breeding lifespan or local lifetime reproduction.  In other species, 

individuals tend to breed at an early age when prey is especially abundant or when numbers of older birds 

are low (Newton 1979:123, Steenhof et al. 1983).  For example, age at first breeding in Eurasian 

Sparrowhawks Accipiter nisus was lower in populations that were increasing after being reduced by 

organochlorine pesticides (Wyllie & Newton 1991).  Because Kestrels are relatively short-lived, the 

number of older individuals is always low, and it is advantageous for birds to try to raise as many young as 

possible in their first year.   

 

We found no evidence to support the constraint hypothesis.  The probability of surviving and returning to 

nest in a second year was positively related to reproductive output in the previous year, and individuals that 

did return had similar reproductive rates in their first and second years of nesting.  We found no evidence 

that individual Kestrels became more productive with age or additional years of breeding experience.     

 

Our results were consistent with predictions of the selection hypothesis. Differences in Kestrel reproduction 

associated with years of nesting experience were related mainly to differences among individuals rather 

than differences within individuals.  Longevity, as measured by the number of years nesting, was positively 

related to nesting success in the first year.  This suggests that higher productivity of experienced birds was 

due to fewer poorly producing and unsuccessful birds in the experienced sample rather than individual 

increases in productivity associated with age or experience.   

 

Our results differ from studies of many other raptors including Eurasian Sparrowhawks, Northern 

Goshawks Accipiter gentilis and Tengmalm’s Owls (Newton & Rothery 1998, 2002; Laaksonen et al. 

2002, Nielsen & Drachmann 2003), which showed that individuals improved their reproductive 

performance as they aged.  American Kestrels appear similar to Merlins in that higher quality individuals 

(i.e., those that produced most young) were more likely to survive and return the year following their first 

breeding season, and the disappearance of less productive individuals resulted in higher average production 

of experienced birds (Espie et al. 2000).   

 

Most studies that have confirmed differential mortality as important in explaining age-dependent 

reproduction have involved closed populations that nest on islands (e.g., Nol & Smith 1987, Barbraud & 

Weimerskirch 2005, Low et al. 2007).  However, American Kestrels that nested in southwestern Idaho 
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were free to move to adjacent areas or other substrates within the study area.  Thus Kestrels that 

disappeared may have died or they may have dispersed from study area boxes to find other nesting 

opportunities elsewhere.  In most cases, it is difficult if not impossible to distinguish mortality from 

dispersal (Haas 1998). 

Unsuccessful birds may be more likely to die (Pugasek & Diem 1990) or disperse (Haas 1998) after their 

first nesting season.  Dispersing after failure may be advantageous.  A greater tendency to disperse after 

nesting failure has been demonstrated in many birds, including raptors (Newton & Marquiss 1982, Beletsky 

& Orians 1987, Pärt & Gustafsson 1989, Village 1990, Newton 1993, Haas 1998, Forero et al. 1999). 

There is less evidence for increased mortality of raptors that nest unsuccessfully. Gender differences 

suggest many American Kestrels that disappear after their first nesting season probably disperse rather than 

die.  Male Kestrels were more likely to nest in > 1 year than females, supporting Greenwood’s (1980) 

resource competition hypothesis that females disperse to acquire mates and males are more philopatric to 

increase their chances of acquiring a territory (Johnson & Gaines 1990).  If male American Kestrels have 

similar survival rates as females, then differential dispersal of the sexes may have been more important than 

differential mortality in this population.   

 

The fact that locally produced males were five times more likely to nest in a second year than males 

produced elsewhere also suggests that differential dispersal may be as important as differential mortality 

for Kestrels.  Few of the nesting adults in the Kestrel population had been raised locally in boxes, 

consistent with the fact that most local avian nesting populations consist mainly of immigrants (Lambrechts 

et al. 1999, Martin et al. 2000).  However, locally produced males tended to stay in the area even after 

nesting failure, suggesting that the tendency for natal dispersal may be related to the tendency for breeding 

dispersal in male Kestrels.  Familiarity with resources within a nesting area may be critically important for 

the sex that defends the territory and provides most of the food for nestlings (Greenwood 1980).  The sex 

that defends the territory and its resources would be more likely to be philopatric, and the sex that selects 

the mate would be more likely to disperse.  For birds that nest in cavities, the nest site is an important 

resource that may affect a male’s mating and subsequent nesting success.  We suggest that disappearance of 

males, especially locally produced males, was due mostly to mortality and not to dispersal, whereas the 

disappearance of females was due to a combination of dispersal and mortality. 

 
This study began as a co-operative effort between the Idaho Department of Fish and Game, the Idaho 

Department of Transportation and the Boise District Bureau of Land Management.  Funding in recent years 

was provided by U.S. Geological Survey Forest and Rangeland Ecosystem Science Center and Boise State 

University.  The study could not have been completed without the dedicated work of Brit Peterson, who 

collected much of the data as principal field technician.  We thank Jim Bednarz, George Carpenter, Craig 

Groves and Michelle Drysdale, who were instrumental in getting the study started.  We also thank Leah 

Dunn and Erica Schutter who worked as technicians and to numerous individuals who volunteered their 

time.  We are especially indebted to the landowners who graciously allowed us to set up and check boxes 

on their property.  The National Geographic Society donated a ladder to the study.  We thank Nate 

Chelgren who conducted preliminary analyses that provided important insights, and we thank Laura Bond 

for assistance with the SAS code. Chuck Henny, Carl Marti, Matthias Leu and two anonymous reviewers 

commented on earlier drafts of the manuscript and provided helpful suggestions.  

 

 

 

 

 

 

 

 



 

7 
 

This is an author-produced, peer-reviewed version of this article.  The definitive version is available at 
http://onlinelibrary.wiley.com/. Copyright restrictions may apply.  DOI: 10.1111/j.1474-919X.2009.00930.x 

 

References 

Balgooyen, T.G. 1976.  Behavior and ecology of the American Kestrel (Falco sparverius L.) in the Sierra 

Nevada of California. Univ. of Calif. Publ. Zool. 103: 1-83.  

Barbraud, C. & Weimerskirch, H.  2005.  Environmental conditions and breeding experience affect costs 

of reproduction in Blue Petrels.  Ecology 86: 682-692. 

Beletsky, L.D. & Orians, G.H.  1987.  Territoriality among male Red-winged Blackbirds. I. Site fidelity 

and movement patterns.  Behav. Ecol. and Sociobiol. 20: 21-34. 

Bregnballe, T.  2006.  Age-related fledgling production in Great Cormorants Phalacrocorax carbo: 

influence of individual competence and disappearance of phenotypes.  J. Avian Biol. 37: 149-157. 

Espie, R.H.M., Oliphant, L. W., James, P.C., Warkentin,  I.G. & Lieske, D.J.  2000. Age-dependent 

breeding performance in Merlins (Falco columbarius). Ecology 81: 3404-3415. 

Forero, M.G., Donázar, J.A., Blas, J. & Hiraldo, F.  1999. Causes and consequences of territory change 

and breeding dispersal distance in the Black Kite.  Ecology 80: 1298-1310. 

Forslund, P. & Pärt, T.  1995.  Age and reproduction in birds—hypotheses and tests.  Trends Ecol.Evol. 

10: 374-378.  

Gehlbach, F.R. 1989. Screech-owl.   In Newton, I.  (ed), Lifetime Reproduction in Birds: 315-326. San 

Diego, CA: Academic Press. .  

Greenwood, P. J.  1980.  Mating systems, philopatry and dispersal in birds and mammals. Anim. 

Behav. 28: 1140-1162. 

Griggs, G.R. & Steenhof, K.  1993. Photographic Guide for Aging Nestling American Kestrels.  Boise, 

ID: U.S. Department of the Interior and Bureau of Land Management. 

Haas, C.A.  1998.  Effects of prior nesting success on site fidelity and breeding dispersal:  an experimental 

approach.  Auk 115: 929-936. 

Henny, C.J. & Brady. G.L.  1994. Partial migration and wintering localities of American Kestrels nesting 

in the Pacific Northwest. North West. Nat. 75: 37-43. 

Johnson, M.L. & Gaines, M.S. 1990.  Evolution of dispersal: theoretical models and empirical tests using 

birds and mammals. Annu. Rev. Ecol. Syst.  21: 449-480. 

Laaksonen, T., Korpimäki, E. & Hakkarainen, H.  2002. Interactive effects of parental age and 

environmental variation on the breeding performance of Tengmalm's Owls. J. Anim. Ecol. 71: 23-

31. 

Lambrechts, M.M., Blondel, J., Caizergues, A., Dias, P.C., Pradel, R. & Thomas, D.W.  1999.  Will 

estimates of lifetime recruitment of breeding offspring on small-scale plots help us to quantify 

processes underlying adaptation?  Oikos 86: 147-151.   

Low, M., Pärt, T. & Forslund, P.  2007.  Age-specific variation in reproduction is largely explained by 

the timing of territory establishment in the New Zealand Stitchbird Notiomystis cincta.  J. Anim. 

Ecol. 76: 459-470. 

Martin, K.  1995.  Patterns and mechanisms for age-dependent reproduction and survival in birds.  Am. 

Zool. 35: 340-348. 

Martin, K., Stacey, P. B. & Braun, C. E.  2000.  Recruitment, dispersal, and demographic rescue in 

spatially-structured White-tailed Ptarmigan populations.  Condor 102: 503-516. 

Mauck, R. A., Huntington, C. E. & Grubb, T.C. Jr.  2004.  Age-specific reproductive success: evidence 

for the selection hypothesis.  Evolution 58: 880-885.   

Newton, I.  1979. Population Ecology of Raptors. Berkhamstead: T. & A.D. Poyser. 

Newton, I.  1993.  Age and site fidelity in female Sparrowhawks, Accipiter nisus.  Anim. Behav. 46: 161-

168.  

Newton, I. & Marquiss, M.  1982.  Fidelity to breeding area and mate in Sparrowhawks Accipiter nisus. 

 J. Anim. Ecol. 51: 327-341. 

Newton, I. & Rothery, P.  1998. Age-related trends in the breeding success of individual female 

Sparrowhawks Accipiter nisus. Ardea 86: 21-31.  

Newton, I. & Rothery, P.  2002. Age-related trends in different aspects of the breeding performance of 

individual female Eurasian Sparrowhawks (Accipiter nisus). Auk 119: 735-748.   

Nielsen, J.T. & Drachmann, J.  2003. Age-dependent reproductive performance in Northern Goshawks 

Accipiter gentilis. Ibis 145: 1-8.  

Nol, E. & Smith, J.N.M.  1987.  Effects of age and breeding experience on seasonal reproductive success 

in the Song Sparrow.  J. Anim. Ecol. 56: 301-313. 



 

8 
 

This is an author-produced, peer-reviewed version of this article.  The definitive version is available at 
http://onlinelibrary.wiley.com/. Copyright restrictions may apply.  DOI: 10.1111/j.1474-919X.2009.00930.x 

 

Pärt, T. & Gustafsson, L.  1989.  Breeding dispersal in the Collared Flycatcher (Ficedula albicollis):  

Possible causes and reproductive consequences.  J. Anim. Ecol. 58: 305-320. 

Pugasek, B.H. & Diem, K.L. 1990.  The relationship between reproduction and survival in known-aged 

California Gulls.  Ecology 71: 811-817.  

Reid, J. M., Bignal, E. M, Bignal, S., McCracken, D.I. & Monaghan, P.  2003.  Age-specific 

reproductive performance in Red-billed Choughs Pyrrhocorax phyrrocorax:  patterns and 

processes in a natural population.  J. Anim. Ecol. 72: 765-776. 

Smallwood, J.A. & Bird, D.M.  2002. American Kestrel (Falco sparverius).  In Poole, A. & Gill, F. (eds) 

 The Birds of North America, no. 602:32. Philadelphia: Academy of Natural Sciences; 

Washington, DC: American Ornithlogists’ Union.   

Smallwood, P.D. & Smallwood, J.A.  1998. Seasonal shifts in sex ratios of fledgling American Kestrels 

(Falco sparverius paulus); the early bird hypothesis. Evol. Ecol. 12: 839-853. 

Sokal, R. R. & F. J. Rohlf, F.J.  1998.  Biometry: The Principles and Practice of Statistics in Biological 

Research. 3
rd

 edn. New York: W. H. Freeman.  

 Steenhof, K., Kochert, M.N. & Doremus, J.H. 1983. Nesting of subadult Golden Eagles in southwestern 

Idaho.  Auk 100: 743-747. 

Steenhof, K., Carpenter, G.P. & Bednarz, J.C.  1994.  Use of mist nets and a live Great-Horned Owl to 

capture breeding American Kestrels.  J. Raptor Res. 28:194-196. 

Village, A.  1985.  Spring arrival times and assertive mating of kestrels in south Scotland.  J. Anim. Ecol. 

54: 857-868. 

Village, A.  1986. Breeding performance of kestrels at Eskdalemuir, south Scotland. J. Zool. 208: 367-378.  

Village, A.  1990.  The kestrel. Calton: T & A D Poyser.  

Wheelwright, N.T. & Mauck, R. A.  1998.  Philopatry, natal dispersal, and inbreeding avoidance in an 

island population of Savannah Sparrows.  Ecology 79: 755-767. 

Wooller, R.D., Bradley, J.S. Skira I.J. & Serventy, D.L.  1990.  Reproductive success of Short-tailed 

Shearwaters Puffinus tenuirostris in relation to their age and breeding experience.  J. Anim. Ecol. 

59: 161-170. 

Wyllie, I. & I. Newton. 1991. Demography of an increasing population of Sparrowhawks. J. Anim. 

Ecol. 60: 749-766. 



 

 

9 
 

This is an author-produced, peer-reviewed version of this article.  The definitive version is available at 

http://onlinelibrary.wiley.com/. Copyright restrictions may apply.  DOI: 10.1111/j.1474-919X.2009.00930.x 

 

Table 1.  Predictions of hypotheses that attempt to explain why older (or more experienced) birds have higher reproductive success. 

 

Title Hypothesis 

Predictions 

Improvement is 

Delayed 

breeding Reproduction & survival 

Restraint  Optimize effort vs. survival probability  Within individual Yes Negative relationship 

Constraint  Improvements in competence Within individual No No relationship 

Recruitment Good breeders are recruited Within cohorts Yes ? 

Selection  Poor breeders die or disperse Within cohorts No Positive relationship 
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Table 2.  Number of years that marked American Kestrels nested in boxes in southwestern Idaho, 1992-

2005.   

 

 Number of Years Nesting 

 1 2 3 4 5 6 

Males       
  Known-age 23 9 6 5 1 1 

  Unknown-age 288 45 11 3 1 0 

Females       

  Known-age 23 3 0 0 0 0 

  Unknown-age 446 49 20 7 2 1 
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Table 3.  Reproductive rates of American Kestrels that first nested in study area boxes as yearlings 

compared with those that were first encountered nesting in boxes as 2- or 3-year olds.  Nest initiation dates 

and numbers of eggs and fledglings are compared for the first year of nesting. 

 

 Age at First Known Nesting   

 One Year Two or Three Years U P 

Nest initiation date (standardized) 1.04 ± 0.02 (77) 1.04 ± 0.05 (13) 569.5 0.81 

Total number of eggs 4.97 ± 0.13 (77) 4.76 ± 0.41 (13) 608 0.81 

Total number of fledglings 3.35 ± 0.24 (65) 2.38 ± 0.66 (13) 416.5 0.18 

Number of years nesting in study area 1.71 ± 0.12 (77) 1.46 ± 0.22 (13) 536.5 0.47 

Local lifetime reproduction
a 
 6.30 ± 0.68 (64) 3.46 ± 1.02 (13) 372.5 0.06 

 
a 
the number of fledging-age young produced in all years that the individual nested in study area boxes, 

excluding birds still nesting in 2006. 



 

12 
 

This is an author-produced, peer-reviewed version of this article.  The definitive version is available at 
http://onlinelibrary.wiley.com/. Copyright restrictions may apply.  DOI: 10.1111/j.1474-919X.2009.00930.x 

 

Table 4.  The probability of American Kestrels returning to nest in study area boxes for a second year, as 

determined by binary logistic regression analysis, by gender.  Factors in the model included nesting 

chronology, nesting success and productivity in the first year of nesting as well as natal origin (whether the 

individual hatched in a study area box or elsewhere).   * indicates a significant difference at P  < 0.05. 

 

Gender Predictor variable Estimate (β) S.E. Wald χ
2 

P 

Female Intercept -0.93 0.87 1.15 0.284 

 
Success in first nesting year 1.59 0.35 20.57 < 0.0001* 

 Standardized  nest initiation date -1.77 

0.78 5.18 

0.023* 

 Origin (local)  - 0.53 

 Number of  eggs laid  - 0.23 

 Number of young fledged  - 0.81 

Male Intercept -2.09 0.32 43.15 < 0.0001 

 
Success in first nesting year 0.81 0.34 5.73 0.017* 

 Standardized  nest initiation date  - 

- - 

0.08 

 Origin (local) 1.67 0.32 27.85 < 0.0001* 

 Number of  eggs laid  - 0.90 

 Number of young fledged  - 0.59 
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Figure Legend 

 

Figure 1.  Mean (± s.e.) number of eggs laid (a), number of fledglings produced (b) and nesting success (c) 

in relation to years of nesting experience of female and male American Kestrels nesting in boxes in 

southwestern Idaho 1992-2005.  Letters to the upper left of symbol represent significant differences within 

gender.  Females with ≥ 1 year of nesting experience laid significantly more eggs (F3,701 = 15.45, P  = 

0.0015), produced more young (F3,670 = 19.46, P  = 0.0002), and had a higher probability of nesting success 

(F3,697 = 14.10, P  = 0.0028) than females nesting for the first time.  Males with ≥ 1 year of nesting 

experience produced significantly more young (F3,509 = 15.02, P  = 0.0018), and had a higher probability of 

nesting success (F3,532 = 7.61, P  = 0.05) than males nesting for the first time.  Years of nesting experience 

was unrelated to the number of eggs laid by a male’s mate (F3,534 = 4.82, P  = 0.19). Sample sizes are to the 

left of the symbol. 
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