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Summary

Geological processes produce structures at multiple scales. 
A discontinuity in the subsurface can occur due to layering, 
tectonic activities such as faulting, folding and fractures. 
Traditional approaches to invert geophysical data employ 
smoothness constraints. Such methods produce smooth 
models and thefore sharp contrasts in the medium such as 
lithological boundaries are not easily discernible. The 
methods that are able to produce non-smooth models, can 
help interpret the geological discontinuity. In this paper we 
examine various approaches to obtain non-smooth models 
from a finite set of noisy data. Broadly they can be 
categorized into approaches: (1) imposing non-smooth 
regularization in the inverse problem and (2) solve the 
inverse problem in a domain that provides multi-scale 
resolution, such as wavelet domain. In addition to applying 
non-smooth constraints, we further constrain the inverse 
problem to obtain models within prescribed physical 
bounds. The optimization with non-smooth regularization 
and physical bounds is solved using an interior point 
method. We demonstrate the applicability and usefulness of 
these methods with realistic synthetic examples and 
provide a field example from crosswell radar data. 

Introduction

Given a finite amount of noisy data a common practice in 
many inversion algorithms is to apply smoothness 
constraints. The goal is largely driven by the desire to 
obtain simplest model that can explain the data – the 
Occam’s razor principle. Regularization technique such as 
Tikhonov’s approach uses a combination of first or second 
derivative of the model to impose flatness or smoothness 
constraint subject to fitting the data (Tikhonov and Arsenin, 
1977; Oldenburg, 1990). Typically in the smoothness world 
an L2 norm of the model derivatives are penalized. 

Smooth regularization techniques using L2 norm have 
certainly produced very stable results when faced with 
inadequate noisy data to produce simple geologic scenario. 
In addition, the objective functions designed with L2 norm 
are computationally easier to solve since their derivative (in 
the optimization process) produces a linear system of 
equations. One attractive feature of the smoothness 
constraint is that it allows us to capture the large length 
scale behavior of the model. However, earth properties are 

not always smooth and sharp jumps in material property is 
a geologic reality. Sharp jumps such as distinct layering or 
formation of localized bodies in the subsurface can occur 
due to various geological processes. Examples include
different episode of sedimentation to produce layering, 
hydrothermal alterations to form mineral bodies, structural 
entrapment of hydrocarbons in a localized region of the 
subsurface, flow processes that produces sharp fronts; these 
distinct jumps are realistic outcome of geologic processes. 
Fundamentally these processes in the subsurface produce 
multi-scale structures and it is likely that these scales have 
long range correlations.  Thus inversion methods that 
preserve non-smooth nature of the model are attractive 
from a practical point of view. 

The research for inverting non-smooth models from noisy 
data have broadly evolved in two directions: (a) impose 
non-smooth regularization operators in the inversion 
algorithm and (b) chose appropriate basis functions that 
effectively honors the sharp discontinuity of the models. In 
the first category, non-smooth regularization operators such 
as Lp norm (Oldenburg et. al, 1983; Sacchi and Liu, 2005; 
Farquharson and Oldenburg, 1998; Routh et. al., 2003), 
total variation regularization (Bertere-Aguirre et. al, 2002; 
Farquharson and Oldenburg, 1998) and compactness 
operators (Last and Kubik, 1983; Portniaguine and 
Zhadanov, 1999; Ajo-Franklin and Minsley, 2005) have 
demonstrated much success in many geophysical inversion 
problems. In this paper in addition to the non-smooth 
regularization penalty we impose physical bounds on the 
model to obtain meaningful solutions. 

In the second category, the inverse problem is solved in a 
different domain so that the projection of the model onto 
the basis functions in this domain preserves the 
discontinuity and honors the multiscale nature of the 
model. Wavelet basis is a natural choice due to its 
localization property and the ability to represent the model 
with a sparse representation. Several geophysical 
applications of inversion in the wavelet domain have shown 
its usefulness (Li et. al., 1996; Kane et. al., 2001; Kane and 
Herrmann, 2002; Zhu and Li, 2004; Qu and Routh, 2004).  
In this paper we formulate our inverse problem in the 
wavelet domain using a mixed norm criteria and solve for a 
sparse set of wavelet coefficients. 
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Inversion for non-smooth models

Inversion with Non-Smooth Regularization Operators

In many inverse problems, models are piecewise smooth 
separated by lower dimensional interfaces. For these 
problems, it is important to choose a regularization 
technique that will respect and preserve the discontinuities 
of the function values, as well as control the geometric 
regularity of the interfaces. Notable examples of this class 
of regularization include minimizing the Lp norm, total 
variation (TV) of the function (Vogel and Oman, 1996) or 
compact representation of the model by minimum support 
functions. Consider the inverse problem where we 
minimize the objective function given by

  2
)()(min mgdWmR obs

d       ,    (1) 

where the model objective function is denoted by )(mR and 

the second term is the data misfit between observed data 
obsd and predicted data )(mg and 

dW  is a data weighting 

matrix. There can be several choices of the model objective 
function )(mR to produce non-smooth models. For example, 

the Lp norm regularization functional is denoted by
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where 1p  denotes L1 norm. The total variation (TV) 

regularization is given by

  dvmmR )(  .                                 (3)

And for minimum support constraints it is given by
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where the integration is carried over the model space. In all 
three cases the inverse problem (even for a linear forward 
map) is nonlinear and is solved iteratively. Different 
variants of eqs (2), (3) and (4) are used in practical 
implementation to avoid instabilities. The Lp type 
regularization in eq(2) can be solved using iterative re-
weighted least squares (IRLS) approach where the model 
from the previous iteration is used to weigh the model 
perturbations (Farquharson and Oldenburg, 1998). Most 
commonly used norm in this category is an L1 norm which 
has the ability to produce a sparse model. This is 
commonly used in reflectivity inversion or deconvolution 
problem. The TV regularization in eq(3) can also be solved 
using IRLS procedure where we replace the model with its 
derivative. Thus if one has an algorithm to solve eq(2), 
eq(3) can also be implemented. However, the details of 
how IRLS is implemented need to be tuned. The TV 

regularization is quite common in the image processing 
community especially in denoising problems. In a strict 
sense the bounded variation is given by m ; however to 

make the TV functional differentiable a small threshold 

parameter 
2 is added. Thus the TV objective function in 

eq(2) is approximated by 22
)(  mmR . The 

minimization of the total objective function for a linear 
forward problem leads to the solution of the following 
equation
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Equation (5) is a nonlinear system which can be solved 
iteratively using a gradient based search technique 
(Bertere-Aguirre et. al, 2002). Figure 1 clearly shows the 
advantage of using TV regularization. It is easier to 
segment and interpret the image in the bottom panel in 
Figure 1 compared to the smooth model. In the hydrology 
problem, TV regularization will be valuable in identifying 
the zones of distinct litho-facies. The minimum support 
regularization function in eq(4) is well suited to produce 
compact models commonly encountered in potential field 
problem (Last and Kubik, 1983; Minsley et. al, 2005) and 
in time lapse problems where small localized changes in 
physical propertes are important (Ajo-Franklin and 
Minsley, 2005).  The practical implementation of this 
functional can also be carried out using IRLS method. A 
variant of this approach was introduced by Portniaguine 
and Zhadanov (1999) where they use the gradient of model 
in eq(4) instead of the model m. This produces minimum 
support or compactness for the gradient of model with the 
ability to produce sharp images.

The physical bounds i.e. upper and lower bounds on the 
model parameters ( MAXMIN mmm  ) are introduced using 
a primal interior point method (Li and Oldenburg, 2000; 
Routh et. al, 2005). Thus in addition to minimizing eq(1) 
we also minimize a log barrier function. Thus the objective 
function to be minimized is given by 

  B
obs
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Inversion with Wavelet Basis

Wavelet-based methods have become a powerful tool to 
deal with inhomogeneous objects since they can adapt to 
various ranges of unknown degrees of smoothness. The 
particular attraction of wavelet-based methods lies in the 
simple and efficient implementation using Discrete 
Wavelet Transform (DWT). The most important feature of 
the wavelet-based methods is the sparse representation of 
functions expanded in the orthonormal wavelet bases. That 
is, for a function belonging to a very wide function space, 
such as Besov space, the vast majority of the wavelet 
coefficients are zero if the function is expanded in terms of 
the wavelet bases (Donoho, 1995).

The sparseness has more profound implications than 
smoothness.  One of the goals of this paper is to propose a 
new approach for the linear inverse problems utilizing the 
notion of sparseness. By penalizing the L1 norm of the 
wavelet coefficients of m , we get a sparse solution of m  in 
the wavelet domain. Consequently, this gives us an 
improved estimate of m compared to the approach based 
on smoothness for certain function classes.  Donoho 
presented wavelet-vaguelet (WVD) decomposition for 
solving a class of linear inverse problems in which the 
kernel is a homogeneous operator such as integration, 
convolution and radon transform. Under the condition that 
noise level is small and kernel matrix is invertible, WVD 
with thresholding offers significant advantage over 
traditional SVD when the model is non-smooth. Kane et al. 
(2001) proposed a generalized WVD thresholding by 

replacing 1G  with   T
m

T
m

T GWWGG
1

  in the WVD. 

They solve the linear inverse problem in wavelet domain. 
They generalize the traditional L2 norm to Besov norm. 
Both data misfit and model objective function use the 
Besov norm. In this approach it is important to determine 
how one should chose the parameters of the Besov norm. 

We pose the inversion in wavelet domain by minimizing 
the L1 norm of the wavelet coefficients subject to fitting 
the data using L2 norm. For a linear problem  Gmd
we transform the problem to  WmGWd T where 
W represents the matrix that performs the wavelet 
transform. We represent the new system by 

 mGd ~~ where TGWG 
~ and Wmm ~ . For discrete 

wavelet transform m~  is given by the wavelet coefficients in 
the expansion
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kjc ,0
 corresponds to weighted mean of the model over the 

support of scaling function )(,0
xkj  at the coarsest scale 

0j .  The inverse problem in wavelet domain can be 

written as

  2

1
~~~min mGdWmD obs

d        (9)

where we penalize a L1 norm on the wavelet coefficients. 
The mixed norm problem is solved using the IRLS 
procedure. The wavelet weighting matrix D  is a diagonal 
matrix that contains scale dependent weights. Typically the 
coarse scale information is less penalized compared to fine 
scale information since the noise is likely to occur in fine 
scale. Formulating the problem in this manner produces a 
sparse set of wavelet coefficients that has the ability to 
capture non-smooth nature of the model. After finding the 
wavelet coefficients the model is obtained by applying 
inverse wavelet transform, given by mWm T ~ . 

Tomography Examples

We first present a synthetic study using non-smooth 
regularization functionals followed by a field example. We 
consider a crosswell tomography example with the source 
receiver configuration geometry from a downhole radar 
field experiment at Boise Hydrogeophysical Research site 
(BHRS). 

Figure 1:  Synthetic tomography example using blocky model to 
demonstrate the non-smooth regularization inversions. The true 
model (ns/m) is shown in (a) and the smooth model inversion in 
(b). (c) represents the model using TV regularization and (d) is the 
model obtained from minimum support regularization.  
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Inversion for non-smooth models

The variability in dielectric property beneath the water 
table at BHRS is small. This somewhat validates using rays 
to invert the travel time data to obtain slowness 
distribution. The two block synthetic model shown in 
Figure 1(a). There are 1700 data values and the medium is 
discretized into 2160 cells. Synthetic data are contaminated 
with noise with a standard deviation of 1% of the maximum 
amplitude of the data. 

The model in Figure 1(c) is obtained by imposing 
smoothness constraint where we penalize the first 
derivative of the model in x- and z- directions. Although 
we see the indication of the two blocks, but due to 
smoothing operator the bodies are not sharply defined. 
Figure 1(b) shows the result from TV regularization. The 
recovered model indicates the blocky nature of the model 
and clutter due to smoothing operator is significantly less. 
Fig. 1(d) shows the result of minimum support 
regularization. As expected the minimum support will 
produce compact bodies that will reproduce the data. Note 
that we obtain very different models using different 
regularization schemes. This demonstrates the inherent 
non-uniqueness of the inverse problem and implies that 
depending on what kind of model is expected from 
geological consideration, the choice of appropriate 
regularization is crucial. We note that TV provides the best 
representation of a blocky model.  

Figure 2 shows the results from field data from the BHRS. 
Here 3500 data are inverted using three different 
regularization methods. Figure 2(b) clearly indicate the 
sharp boundary due to layering in the sedimentary 
environment at BHRS. 

              
Figure 2:  Field example of crosswell radar from Boise 
Hydrogeophysical Research Site. The smooth model inversion is 
shown in (a). (b) represents the model using TV regularization. 
Color scale for slowness is is 9 (blue) -13 (brown) ns/m.

1D Synthetic Example 

Using a 1D model with sharp discontinuity we compare 
results from the wavelet domain inversion with TV 

regularization and the smooth L2 norm constraints. The top 
panel in Figure 3 is obtained with signal to noise ratio 
(SNR) of 8 and the bottom panel is obtained when SNR=2. 
For SNR=8 we note that the models recovered using all 
three methods are comparable with wavelet domain and TV 
model performing slightly better than smooth L2 norm 
model. However for SNR=2 we clearly see that the wavelet 
domain inversion shows better representation of the true 
model compared to TV and L2 norm models. The wavelet 
chosen to perform the inversion in wavelet domain is a 
Haar wavelet. 

Figure 3:  1D Synthetic example with sharp discontinuity to 
compare the wavelet domain inversion with other methods. The 
top panel are the models using SNR=8 and the bottom panel is 
with SNR=2. In all panels blue is the true model and red is the 
inverted model. 

Conclusions

In this paper we discuss various techniques to image sharp 
discontinuities in a model using non-smooth regularization 
operators and inversion in wavelet domain by scale based 
regularization of wavelet coefficients. We introduce 
physical bounds on solutions using an interior point method 
to obtain realistic solutions. Synthetic and field examples 
presented in this paper demonstrate significant 
improvement in the inverted models compared to those 
obtained with traditional smoothness based inversion. 
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