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Abstract—Fairly effective methods exist for finding new non-
coding RNA genes using search models based on known 
families of ncRNA genes (for example covariance models). 
However, these models only find new members of the existing 
families and are not useful in finding potential members of 
novel ncRNA families. Other problems with family-specific 
search include large processing requirements, ambiguity in 
defining which sequences form a family and lack of sufficient 
numbers of known sequences to properly estimate model 
parameters. An ncRNA search model is proposed which 
includes a collection of non-overlapping RNA hairpin structure 
covariance models. The hairpin models are chosen from a 
hairpin-model list compiled from many families in the Rfam 
non-coding RNA families database. The specific hairpin models 
included and the overall score threshold for the search model is 
determined through the use of a genetic algorithm. 

I. INTRODUCTION 
OVARIANCE models (CMs) [1, 2] have been quite 
effective in finding new non-coding RNA (ncRNA) 

genes in genomic databases. An example of this success is 
the Rfam ncRNA database [3-5], which uses the Infernal [6, 
7] implementation of covariance models for database search. 
However, the method used by Infernal is only capable of 
finding new members of known ncRNA families. The 
method requires a secondary-structure annotated multiple 
alignment of known family members in order to determine 
model structure and parameter values. 

Often there are an insufficient number of known 
sequences to reasonably estimate covariance model 
parameters. As a result, there is heavy reliance on the use of 
priors in CM parameter estimation. These priors are 
estimated from a large collection of known ncRNA 
sequences that are not specific to the family being modeled 
[8, 9]. In this sense, there is already some generic 
knowledge of how ncRNA structures evolve embedded in 
the search models. 

A significant drawback of covariance models is the very 
large computational burden that CM-based search requires. 
Since there are currently no good generic ncRNA gene 
search programs available, the entire genome of a newly 
sequenced organism needs to be searched with every family 
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model (1371 models as of December 2008 and growing 
rapidly) in order to fully annotate it with the ncRNA genes. 
In order to make this approach feasible, the genome needs to 
be pre-filtered to reduce the database portions searched by 
several orders of magnitude. This is done with primary 
structure based homology search algorithms such as BLAST 
[10, 11], which is fast but rejects true positives, or a lossless 
HMM-based [12] method that is slower and often does not 
reduce the database enough [13]. A relatively efficient 
generic ncRNA gene search algorithm would alleviate this. 

Determining which sequences belong in a family is 
problematic. Grouping several sub-families together results 
in more information, allowing better parameter estimates. 
The larger groups also allow modeling of the diversity 
observed between the sub-families and may allow new 
family members with different combinations of the diverse 
features than that observed in the original training set to be 
found. On the other hand, essential features of a particular 
sub-family may be diluted by mixing with other sub-families 
that do not require that feature. Attempting to form models 
of families and component sub-families expands the total 
number of family models and contributes to the already very 
large computational burden. 

Generic gene finding algorithms for protein-coding genes 
rely on a variety of signals such as the presence of promoter 
sequences, open reading frames of appropriate sizes and 
composition biases within the gene relative to the overall 
genome [14]. None of these signals are applicable to ncRNA 
genes. The primary aspect of ncRNA families used to find 
new genes is the presence of similar secondary structure 
patterns, with secondary reliance on primary structure (since 
sequence homology is much weaker for ncRNA genes than 
for protein-coding genes). A generic ncRNA gene search 
algorithm mostly likely will have to rely on finding 
secondary structure components that are similar to generic 
secondary structure components of known ncRNA genes. 

The common feature of most known ncRNAs is the 
existence of hairpins composed of a intramolecularly base 
paired stem and an unpaired loop [15]. It is possible to 
quantify the most common loop lengths and stem lengths. A 
search could then be undertaken to find locations in the 
genome capable of forming generic hairpin structures with 
reasonable stem and loop lengths. Unfortunately, it has 
already been shown that the number of such structures 
which are expected to occur at random is far too large for 
any reasonable false alarm rate [16]. 
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The tactic taken here is to try to split the difference 

between family-specific models and completely generic 
models. We will rely on finding groups of hairpin structures 
that are reshuffled pieces of known ncRNA families. As 
mentioned earlier, the use of priors already makes the 
models of some of these structures somewhat generic. We 
will reject those groupings of known hairpin structures that 
are too generic such that false alarm rates are too high. We 
will also reject those groupings that are too specific such 
that only members of families that contributed these 
structures are found. The hope is to get a more generic 
model that finds members of many of the known families as 
well as members of yet-unknown families in a single pass of 
the genome database. Further, this model should require no 
more computational search effort than using covariance 
model search for a single family. 

In the following section, we will describe the generic 
search model in more detail. This is followed by a 
description of the genetic algorithm used to select hairpin 
components and thresholds. Finally, some experimental 
results showing the potential of this method are presented 
before a few concluding remarks.  

 

II. GENERIC NCRNA SEARCH MODEL 
Rather than search for purely generic hairpin loops 

structures, which Rivas and Eddy [16] have already shown 
has insufficient specificity, we will search for combinations 
of known hairpin structures in hopes that some yet unknown 
ncRNA families have evolved from known families and 
therefore have pieces that have some small amount of 
primary and secondary structure homology to known 
ncRNA hairpin structures. Some of the known structures are 
already pretty close to generic due to the fact that few family 
members are known and parameter estimates relied heavily 
on generic priors. Other known structures are very specific 
due to large numbers of known family sequences with 
sufficient variation to get good parameter estimates with 
little reliance on generic priors. The genetic algorithm based 
model building of the next section will automatically choose 
models with a good balance between generic and specific 
structures. 

The search model is composed of a collection of hairpin 
structures, where hairpin sequence order in the searched 
database is not important. Each hairpin is a covariance 
model taken directly from a portion of an Rfam database 
family model. Each hairpin model has its own individual 
threshold. A segment of database is scored by scoring each 
of the search model hairpin models against the segment 
separately and then determining which combination of 
hairpin models are most representative of the segment. If the 
best placement of two search model hairpins within the 
database segment overlap or are too close together, then 
only the hairpin with highest excess score is used (too close 

is a user defined parameter). The excess score is defined as 
the difference between the individual hairpin score and its 
individual threshold. The excess score of an individual is set 
to zero if the value is negative. If the highest-scoring 
placement of two hairpin structures is too far apart (another 
user-defined parameter), then the hairpins are divided into 
groups such that each group is compact enough to not 
violate the maximum distance parameter. The excess score 
of the highest excess-scoring group becomes the overall 
segment excess score.  

Figure 1 shows an example search model and its scoring 
against a segment of database. The example search model 
has five hairpin structures.  The covariance models of each 
of these structures are individually scored against this 
database segment (perhaps using the Infernal package 
cmsearch program) and the best-scoring location within 
the segment of each hairpin structure recorded. In the figure, 
arrows show which database location best maps to each 
hairpin structure. Hairpin structure #4 has a score of 54.2, 
but this structure has a threshold of 60.8, so hairpin #4 is 
deemed not to be present in this database segment. 

The best mappings for hairpin #1 and #3 overlap in the 
database sequence. Since hairpin #3 has a higher excess 
score, hairpin #3 is deemed to be potentially present rather 
than hairpin #1. Hairpin #5 is too far away from the other 
hairpins (as determined by a user-selectable parameter), so 
we form multiple groups such the largest groups possible 
can be made without violating this distance constraint. A 

 
 
ACGGCUGCCUAUCAGCGGGUUUCAGGUUAACGUAUG 
 
 
GCGGGUUUCAGGUUGCCUAUCAGCGGUUAACGUAGG 
 
 
UUGCCUGCCUAUCAGCUUAACGUCAGGUUAA 
 
 
 
Hairpin #1  Hairpin #2  Hairpin #3   Hairpin #4     Hairpin #5 
 
Individual Score: 
 
 41.2   37.7     76.2      54.2      33.9  
 
Less Individual Threshold: 
 
 30.0   21.2     53.1      60.8      15.8 
 
Equals Excess Score Contribution  (set to 0.0 if negative): 
 
 11.2   14.7               23.1              0.0               18.1 
 
Overall Excess Score: 
 
     14.7     +        23.1     =     37.8 
 
 

Fig. 1.  Scoring a database segment with respect to a 
search model with five hairpins. 
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given hairpin may be a member of more than one group, but 
this is not shown in the example. The group composed of 
hairpin #2 and #3 has the highest sum of excess scores (14.7 
+ 23.1 = 37.8, versus the group with hairpin #5 only = 18.1), 
so 37.8 is the overall excess score. The overall excess score 
is then compared to a user-selectable overall excess score 
threshold to determine if this database segment is an ncRNA 
gene hit. 

The idea here is to select a subset of the search model's 
hairpin structures as potentially present and to choose scores 
and thresholds based only on this subset. However, if the 
selected subset is not powerful enough, the sum of scores 
will not exceed the fixed threshold. This will clearly make it 
difficult to find novel families of very short ncRNA genes, 
but not doing it would result in unacceptable false alarm 
rates. 

The covariance models for the individual hairpins are 
quite small. It can be shown that the computational 
complexity of using a covariance model for database search 
is between O(n2) and O(n3) [17], where n is the length of the 
consensus sequence of the structure being modeled.  The 
consensus sequences of the individual hairpins are very 
short (usually between about 10 and 25, compared to many 
Rfam family models that are in excess of 100), so even if the 
search model has five to ten of these individual hairpins, the 
computation time is comparable to running a single average-
sized Rfam family covariance model. 

 

III. GA METHOD TO BUILD SEARCH MODEL 
A list of hairpin covariance models is taken from the 

Rfam database (for the results below - version 9.1, released 
December 2008, containing 1371 families). Each model has 
a list of scores from the training sequences used to construct 

the model. The easiest way to obtain the hairpin models and 
scores is to select only those columns of the secondary-
structure annotated multiple alignment of training sequences 
that correspond to the hairpin of interest. Attempting to take 
apart the covariance model parameter files and renumber 
nodes and states is much more difficult. The cmbuild 
program in the Infernal package is used to create the 
covariance model parameter files and the cmsearch 
program of the same package used to find the scores of the 
training sequences. Infernal version 1.0.2 released October 
2009 was used in the experimental results below. 

An individual in the GA is composed of one or more 
fixed length genes. Complete genes are always created or 
destroyed by insertion or deletion events. Crossover always 
takes place at gene boundaries. Each gene is composed of 
two halves, the first half is a hairpin model index and the 
second is a training sequence score index. The model index 
selects a covariance model for inclusion in the set of 
hairpins in the search model and the score index is used to 
select a training sequence score which then becomes the 
individual hairpin threshold as described in the previous 
section. Figure 2 shows and example individual. 

In the example, there are six genes with ten bits each. The 
first six bits of each gene specify one of 64 possible hairpin 
structures (indexed 0 to 63) and the last four bits specify one 
of sixteen possible individual thresholds (indexed 0 to 15). 
If there are less than 64 hairpins in the hairpin list or less 
than sixteen scores associated with a particular hairpin, the 
index value is used in modulo the number of hairpins or 
scores, so it is never possible to have an invalid GA 
individual. If the hairpin list has 64 hairpins, then the GA 
individual shown represents a search model containing 
hairpins 17, 8, 34, 0, 5, and 63 from the hairpin list, with 
individual thresholds of 3.2, 14.7, 18.7, 7.8, 18.1, and 11.2 
respectively.  Since these six hairpins have score lists of 
length 4, 3, 8, 6, 11, and 3 respectively, some of the score 
indices had to recycle to the top of the score list (sometimes 
more than once). 

The fitness of an individual is calculated using the 
number of known ncRNA genes in the training set found 
(true positives) and the number of hits on one hundred 
reshuffled versions of the training set (false positives). The 
fitness function is then F = t - f * (s/2), where t is the 
number of true positives, f is the number of false positives, 
and s is the number of sequences in the training set. s is also 
the maximum possible number of true positives, so any 
individual with no false positives is always better than any 
individual with two false positives. In the experimental 
results that follow s = 595. 

 

IV. EXPERIMENTAL RESULTS 
A training set was built for 64 randomly selected families 

out of the 1371 families in version 9.1 of Rfam. If a family 
model did not include any hairpins (which is rare), then the 

 
010001  0010  001000  1100    100010  1001    000000  0000 
 
 
000101  1001  111111  0001 
 
 
Hairpin #17  Hairpin #8  Hairpin #34   Hairpin #0    Hairpin #5 
 
 11.2   14.7    23.1               7.8              18.1 
 8.8   15.2   18.7    9.8   23.1 
 3.2   11.1   22.5    12.3   19.2 
 7.1       19.2    11.4   19.2 
         15.9    10.7   19.2 
Hairpin #63      25.1    11.2   22.1 
         16.8        20.0 
 12.3       21.1        18.3 
 11.2                18.1 
 11.2                18.1 
                  15.4 
 
 

Fig. 2  Representation of search models for genetic 
algorithm. 
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selection was discarded and another family selected. When a 
family model contains more than one hairpin, exactly one 
hairpin is selected at random within the family. The result is 
a list of 64 hairpin structures each with a covariance model 
and a list of training sequence scores. If there were fewer 
than 16 family members used to build the covariance model 
(the 'seed' sequences in Rfam terminology), then scores were 
listed for every seed sequence. If there were more than 16 
seed sequences for a family, 16 sequences are selected at 
random. Therefore a four-bit score index is sufficient in each 
individual. If a family has fewer than 16 seed sequences, the 
list is simply reused from the top when the score index is too 
big. So, each gene in the GA has a length of ten bits, with 
six bits for the hairpin index and four bits for the score 
index. 

Three different test sets were examined. The first is a very 
incestuous test set composed of the sequences which 
generated the score lists for each of the 6 hairpins in the 
search model. The second set contained all of the sequences 
from all 64 hairpins in the hairpin list. The first two sets 
contained only those portions of the sequences associated 
with the hairpin structures in the hairpin structure list. The 
third test set used the full-length sequences of the sequences 
in the second test set. The fourth test set is a true test set in 
the sense that 64 families from the 1307 families not 
selected to build the search model are chosen at random 
(discarding any that do not contain any hairpin). Up to 16 
sequences within each family was chosen at random in the 
same manner as for the training set. The resulting test set is 
similar to the third test set in number of sequences and 
average length of sequences, but is guaranteed not to have 

any sequence information used to form the search model. 
A search model was found using the GA method 

described in the previous section using a population size of 
100 and 100 generations. Six hairpins were selected by the 
GA to form the search model. These are shown in Table I. 
Stems of lengths between four and eight pairs were selected 
and loops of lengths between three and twelve. Table II 
shows the consensus sequences for the six hairpins. 

The results of using the search model found on the four 
test sets described above is shown in Table III. There were 
78 sequences in the first test set since the six hairpins 
selected were associated with 8, 6, 16, 16, 16, and 16 seed 
sequences resulting in the same number of scores in the 
score lists. The 68 hits can easily be explained as the GA 
tending to select scores on the low end of the lists to be used 
as thresholds. Since the sequences were so short, there was 
never more than one non-overlapping hairpin hit and the 
best score was always for the hairpin in the search model 
that matched the family of the test set sequence. 

In test set 2, 294 of the 595 known hairpins were found. 
68 of these are the same as test set 1, but 226 of the hairpins 
in the 517 sequences that were not family members of the 
six search model hairpins were also found. This indicates 
some ability to generalize, although the GA's fitness 
function was designed to make this number as large as 
possible (without getting lots of false positives). 

In test set 3, 87 new hits occurred using the full length 
sequences. The additional sequence portions contain known 
hairpin structures that were not used by the GA to select the 
search model. Finally, the completely independent test set 4 
revealed 92 hits on 561 sequences. This number is 
remarkably similar to the 87 hits gained on the independent 
portions of the 595 sequences in test set 3. Possibly, the 
hairpin structures within a family are no more similar than 
the hairpin structures from different families. 

TABLE III 
TRUE POSITIVE AND FALSE NEGATIVE COUNTS IN TEST SETS 

Test 
Set 

Number of 
Sequences Over 

Threshold 

Number of 
Sequences in Test 

Set 

Number of Hits on 
Randomized 
Sequences 

1 68 78 0 

2 294 595 0 

3 381 595 1 

4 92 561 0 
 
Test set 1 is composed of the 78 sequences in the 6 families that 

form the search model (8 from RF00115, 6 from RF00340, and 16 
randomly selected from each of RF 01316, RF00552, RF00215, and 
RF1225). Test set 2 is composed of the 595 sequences in all 64 training 
families (the 6 that ended up in the search model plus the 58 that did 
not). Both sets 1 and 2 use only the multiple alignment columns 
associated with the single hairpin selected for the hairpin structure list. 
Test set 3 contains the same sequences as test set 2, but using the full-
length sequences. Test set 4 is generated in the same manner as test set 
3, but with families and sequences chosen randomly from those 
families not included in the training set. Test set 4 is the only true test 
set in the usual meaning of the term. 

 

TABLE I 
PROPERTIES OF FAMILIES INCLUDED IN SEARCH MODEL 

Accession 
Number 

Number of Seed 
Sequences 

Consensus 
Number of Stem 

Pairs 

Consensus Loop 
Length 

RF00115 8 5 12 

RF00340 6 5 6 

RF01316 20 (16 used) 4 3 

RF00552 18 (16 used) 6 6 

RF00215 28 (16 used) 8 8 

RF01225 26 (16 used) 4 8 
 

TABLE II 
CONSENSUS SEQUENCES OF FAMILIES INCLUDED IN SEARCH MODEL 

Accession 
Number Consensus Sequence (Stems Underlined) 

RF00115 GUUGCCAAUUUUCUUCAGUGAC 

RF00340 CAGGGCAGCCUCCCUG 

RF01316 ACAACUCUUGU 

RF00552 AGCUGCAGCGAAGCAGCU 

RF00215 ACAGACUCUUCCAGUCUGAGUUUGU 

RF01225 GGCCUUGACCGUGGCC 
 

elizabethwalker
Text Box
©2010 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. DOI: 10.1109/CIBCB.2010.5510341



 
 

 

 

V. CONCLUSION 
Truly generic non-coding RNA search models based on 

finding reasonable hairpin structures with acceptable false 
alarm rates are not achievable, as has been shown by Rivas 
and Eddy [16]. Since six out of sixteen possible 
combinations of two sequence positions can result in a 
Watson-Crick or a wobble base pair, there is a rather high 
probability that a random sequence will have two contiguous 
sub-sequences of lengths commensurate with those observed 
in known ncRNA molecules that are capable of forming 
nested base pairs and a distance between them that is a 
reasonable loop length. The alternative of forming family-
specific models has the problem of requiring very large 
amounts of computation resources for search and will not 
find members of novel ncRNA families. 

We have shown that it may be possible to find quite a few 
ncRNA genes without using a model targeted at a specific 
ncRNA family. This model requires far less computation 
time when compared to running the full set of family-
specific ncRNA models found in Rfam since it only needs a 
single pass of the database. More importantly, it has been 
shown that some members of families that do not form any 
part of the search model are found. As a result, it is plausible 
that members of yet unknown ncRNA families may be 
found. We believe that this method of attempting to find a 
compromise between fully family specific and fully generic 
search algorithms may be potentially useful. 

Reasons why this methodology might work is that not all 
feasible hairpin structures appear equally often in nature. It 
is known from laboratory thermodynamic studies that free 
energy changes in forming hairpins depends heavily on the 
specific nucleotides in the stem and loop end positions [18-
22]. Also, some loop lengths are statistically more common 
than others. It is also clear that many ncRNA families are the 
result of gene duplication and subsequent differentiation. 
Novel ncRNA families may have primary or secondary 
sequence similarity with known families as a result. 

The very preliminary nature of these results should, 
however, be stressed. The sixty four hairpin structures 
included in the list of possible structures in a search model 
were chosen randomly and the Rfam database contains 
many more structures than were in the list. The list size was 
small because a significant amount of non-automated human 
effort went into compiling this list. The testing is also very 
limited at this point. Only a single search model was tested 
due to time constraints. Ideally, the GA would be run many 
times and each resulting search model tested. The real test of 
this idea would be to run a large-scale database search using 
the search model and find and verify one or more ncRNA 
genes from novel families.  
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