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Synthesis of Higher-Order K-Delta-1-Sigma
Modulators for Wideband ADCs

Vishal Saxena, Student Member, IEEE and R. Jacob Baker, Senior Member, IEEE

Abstract—As CMOS technology shrinks, the transistor speed
increases enabling higher speed communications and more com-
plex systems. These benefits come at the cost of decreasing inher-
ent device gain, increased transistor leakage currents and device
mismatches due to process variations. All of these drawbacks
affect the design of high-resolution analog-to-digital converters
(ADCs) in nano-CMOS processes. To move towards an ADC
topology useful in nano-CMOS, the K-Delta-1-Sigma (KD1S)
modulator-based ADC was proposed. This paper extends the
KD1S to higher order topologies using a systematic synthesis
procedure. Second and third order KD1S modulator are designed
and simulated to demonstrate the synthesis method.

Index Terms—Analog to digital converter, delta-sigma modu-
lation, interleaved data converters, noise-shaping, parallel delta-
sigma, wideband ADC.

I. INTRODUCTION

CONTINUED CMOS scaling has enabled ever increasing
device speeds leading to numerous standards in wireless

and wireline segments. The integrated circuit technologies
used to manufacture analog-to-digital converters (ADCs) are
shrinking to include more system functionality in a smaller
chip area. This reduction in size comes at the cost of pro-
nounced manufacturing variances, including circuit (transistor)
characteristics, which limit the availability of precise com-
ponents often required in an ADC. In order to design high-
resolution wideband ADCs in nano-CMOS with significant
device variances, complex digital calibration algorithms are
required at the cost of area and power consumption. Thus
investigating novel ADC topologies which are inherently tol-
erant to device mismatches and nonlinearity is desirable [1].

It is known that the oversampling or delta-sigma ADCs
trade sampling frequency with the signal bandwidth to achieve
much higher signal-to-noise ratio (SNR). A delta-sigma ADC
constitutes of a delta-sigma modulator (DSM) followed by dig-
ital filters and decimation stages [1]. The modulator employs
oversampling, i.e. the sampling frequency is a multiple of
the input signal bandwidth, defined as the oversampling ratio
(OSR). The DSM loop shapes the quantization noise, Qe, and
moves it to higher frequency away from the baseband signal
bandwidth. The noise-shaping results in lower quantization
noise in the signal bandwidth and the modulated noise can
be filtered out digitally leading to significantly higher SNR.
Thus, much of the analog signal processing is transferred to
the digital domain which is favorable for continued CMOS
scaling. The delta-sigma feedback loop is insensitive to device
mismatches and nonlinearity in the forward path due to the
high loop gain at the lower frequencies. However, due to
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oversampling the delta-sigma ADCs are narrow-band and the
signal bandwidth is limited to BW ≤ fs/(2·OSR). Therefore,
the traditional delta-sigma ADCs can not achieve Nyquist-rate
sampling as desired for wideband data conversion. Also time-
interleaving of K delta-sigma modulators in parallel does not
result in true wideband noise-shaping [2].

II. THE K-DELTA-1-SIGMA MODULATOR

A new topology called the K-Delta-1-Sigma (KD1S) was
introduced in [1] to achieve wideband noise-shaping using
a switched-capacitor implementation. The KD1S, shown in
Fig. 1, employs K time-interleaved sampling paths with a
shared integrator [2]. Here, the KD1S modulator is clocked
by K-phases of a clock with a rate equal to fs. The effective
sampling rate of the modulator is set by the spacing between
the edges of the clock phases and is given as

fs,new = Kpath · fs (1)

The summing of the K-path outputs, yk[n], k =
0, 1, .., (K–1), using a fast adder leads to a path filter response
of (1–z−K)/(1–z−1), which acts as a decimation filter. Here,
the input sampling phase for a path lasts for Ts/Kpath time
while the integrating phase has duration equal to Ts/2. As we
can observe the integrator is connected to Kpath/2 distinct
paths at any given time, and thus spreading the sampled input
signal across Kpath/2 paths.

Since a single op-amp is shared across all the K paths, the
forward path mismatches are minimized. The offsets of each
of the comparators are desensitized by the large loop gain. It is
also expected that the spreading of signal across the K-paths
will average out the mismatch effects in the feedback paths. In
order to achieve true first-order noise-shaping, the comparator
in each of the paths must fully respond to the partial settling
of the integrator within Ts/(2Kpath) time interval. In other
words, the quantization noise in the modulator is differentiated
in every Ts/Kpath time-slice. The noise transfer spectrum for
the KD1S modulator is shown in Fig. 2 and compared with
the noise-shaping of a parallel DSM. Here, the quantization
noise is pushed out to frequencies as high as Kpath · fs/2
and thus achieving noise-shaping similar to a first-order delta-
sigma modulator operating with a Kpath · fs clock rate. The
the KD1S topology seen in Fig. 1 achieves a 1.5 bit gain
in resolution per doubling in the number of paths. In other
words, doubling of the number of paths has the same effect
as doubling the OSR.

The K-path Switched-Capacitor Integrator (K-SCI)
In a discrete-time realization of delta-sigma modulator, us-

ing switched-capacitor circuits, the maximum attainable over-
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Figure 1. The K-Delta-1-Sigma modulator topology.
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Figure 2. True wideband noise-shaping using a K-Delta-1-Sigma Modulator.

sampling clock rate is limited by the op-amp settling require-
ments. The op-amp settling error increases exponentially with
a decrease in fun/fs ratio. The K-path switched-capacitor
integrator increases the sampling rate of the conventional SC
Integrator by K times, without any increase in op-amp settling
requirements. In this integrator, for each of the switched-
capacitor the sampling and the integrating phases last for a
time interval equal to Ts/2, i.e. half the clock period. Here,
the unity-gain frequency, fun, of the op-amp can be as low as
3fs. The discrete-time dynamics of the SC K-path Integrator
can be understood as follows. The input signal for a path is
sampled on the falling edges of the 8-phase clock (say φ1−1for
the first path). This is followed by the rising edge of the phase
φ2−1, when the capacitor (CI ) with the charge proportional to
the sampled input is connected to the integrator. Note that, at a
particular instance four (i.e. Kpath/2) sampling capacitors are
connected to the integrator through the switches. Now, if the
time interval between the rising edges of the 8-phase clock is
much larger than the switched-capacitor charging time, charge
sharing will occur amongst the four capacitors connected to
the integrator’s input node (vx). After charge sharing, the
integrator’s output will move corresponding to the initial-push
delivered by the partial settling of the integrator. The charge
spreading effects are illustrated in Fig. 3.

The equivalent transfer function for the K-path integrator
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Figure 3. Illustration of charge-spreading and the equivalent filtering action
in a K-path SCI.

has been derived to be equal to

H1(z) =
CI
CF

z−1

1− z−1

1− α0

1− γ0z−1
(2)

where the op-amp settling factor α0 = e
−πβ fun

Kpathfs and the
additional pole location is given as γ0 =

(
K
2 −1

K
2

)
α0. This is

equivalent to an ideal discrete-time integrator response being
convolved with a filter given by the transfer function

W (z) =
1− α0

1− γ0z−1
(3)

III. SYNTHESIS PROCEDURE FOR KD1S MODULATORS

The KD1S concept can be extended to design higher or-
der noise-shaping modulators. An efficient method to design
higher-order traditional single-path DSMs is by utilizing the
popular Delta-Sigma Toolbox in MATLAB [3]. This toolbox
internally uses ABCD matrix to design the DSM loop filter
and for dynamic range scaling and modulator simulation.
The ABCD matrix is a combination of four matrices which
describe the dynamics of any discrete-time linear system. The
state-space equations for the DSM loop filter are described as

x[n+ 1] = Ax[n] +B

[
u[n]
v[n]

]
y[n] = Cx[n] +D

[
u[n]
v[n]

]
(4)

where x(n) ∈ RM×1 is the state vector at time n for an
M th-order modulator. The matrix A ∈ RM×M defines the in-
terconnections withing the loop filter. The matrix B ∈ RM×2

describes how the modulator input u[n] and the feedback DAC
output v[n] are applied to the loop filter H(z). The matrices
C ∈ R1×M and D ∈ R1×2 describe the computation of the
output y[n] from the states x[n] and the loop filter inputs
( u[n] v[n] )T [4].

The KD1S modulator can be designed by appropriately
modifying an equivalent single-path DSM and by incorporat-
ing the analytical results for the K-path switched-capacitor
integrator (K-SCI). It can be observed that in a KD1S mod-
ulator, there is always a delay of Ts/Kpath time-slice (or
z−1 delay for Kpathfs clock rate). Due to this, the KD1S
modulator can only be realized by using the CIFB (Cascade of
integrators, feedback form) and CIFF (Cascade of integrators,
feedforward form) topologies [4]. Now, we need to account for
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the charge-spreading filter in the K-SCIs used in the modulator
. This problem is analogous to the simulation of continuous-
time (CT) DSMs where op-amp non-idealities are an important
concern. A ‘lifting’ method has been devised for continuous-
time state-space of the CT-DSMs in [5]. This method has been
customized to the discrete-time case of KD1S to incorporate
the non-idealities (i.e. the additional pole at z = γ0 and gain
scaling by (1− α0)) of the K-SCI.

Let’s say that the input to all the integrators in the DSM
loop-filter is P[n] and the output of all the integrators is O[n].
This changes the state-space representation of the loop-filter
to

P[n] = x[n+ 1]− x[n] = (A− I)O[n] +BU[n]
y[n] = CO(n) +DU(n) (5)

where U[n] =
[
u[n] v[n]

]T
. The behavior of all the K-

SCIs in the loop-filter can be described by the discrete-time
state-space model

x[n+ 1] = Aintx[n] +BintP[n]
O[n] = Cintx[n] (6)

where x[n] is now the new state vector of the KD1S loop-filter
with the K-SCI non-idealities.

Combining Eqs. 5 and 6, we get the state-space model for
the overall KD1S modulator as

x[n+ 1] = [Aint +Bint(A− I)Cint]x(n) +BintBU[n]
y(n) = CCintx(n) +DU[n] (7)

From Eq. 2, for the first-order KD1S modulator, we have the
ABCD matrix for the integrators given by[

A B
C D

]
int

=

 1 0 1
1− α0 γ0 0
1− α0 γ0 0

 (8)

For a second-order KD1S modulator, the integrator ABCD
matrix is

[
A B
C D

]
int

=


1 0 0 0 1 0

1− α01 γ01 0 0 0 0
0 0 1 0 0 1
0 0 1− α02 γ02 0 0

1− α01 γ01 0 0 0 0
0 0 1− α02 γ02 0 0


(9)

Similarly the combined integrator ABCD matrix for any
order of modular can be easily obtained. The modified state-
space model for KD1S, as in Eq. 7, has been implemented in
Matlab by extending the delta-sigma toolbox functionality.

Finally, the procedure for designing a generalized KD1S
modulator can be summarized in Algorithm 1.

IV. RESULTS

In order to demonstrate the efficacy of the higher-order
KD1S modulator synthesis procedure, outlined in the last sec-
tion, a second-order CIFB and a third-order CIFF KD1S mod-
ulators have been synthesized. For these modulators Kpath =
8 so that the effective oversampling ratio is Kpath ·OSR = 64.

Algorithm 1 Using the modified delta-sigma toolbox,
1. Synthesize a NTF zero optimized, single-path modulator
for a given order with an effective oversampling ratio equal
to K ·OSR.
2. Apply dynamic range scaling on the ABCD matrix of the
synthesized loop-filter.
3. Map the scaled ABCD matrix to either CIFB or CIFF
modulator topology.
4. Find the ABCDint matrix to represent all the K-path SCIs
in the loop-filer.
5. Use the ABCDint matrix to find the overall ABCD matrix
for the KD1S modulator using Eq. 7.
6. Using simulations, estimate the effective gain of the quan-
tizer (k̂q) employed in the modulator as k̂q = E[|y|]

E[y2] .
7. Evaluate the NTF and STF for the synthesized KD1S
modulator using the estimated k̂q value.
8. Plot their pole-zero plot (root locus) and simulate the
modulator to test for its stability.
9. Iteratively adjust the fun of the op-amps to optimize the
power consumption and stability of the designed KD1S mod-
ulator.

An 8-phase clock operating at a frequency of fs = 100MHz
is used which results in an effective sampling frequency
fs,new = 800MHz. Here, the signal bandwidth in equal
to 6.25MHz. The comparators in the quantizer are assumed
to be able to settle completely in Ts/Kpath = 1.25ns with
negligible small-input metastability. However, the unity gain
frequency of each of the op-amps is constrained to a small
multiple of the clock frequency fs.

Second-order CIFB KD1S Modulator: A second-order
feedback-type KD1S modulator block diagram is shown in
Fig. 4. The synthesis procedure described in the last section is
applied to obtain the loop-filter parameter vectors a, b, c and
g. For this design, the op-amp gain-bandwidths are chosen
to be equal to 3fs (=3/8fs,new = 300MHz). The design is
dynamic range scaled (DRS) to bound the integrator state
within 0.6 times the supply voltage. The simulation results for
the designed modulator are illustrated in Fig. 5. The simulation
shows an SNR equal to 73.7 dB or a resolution of 11.94
bits. The maximum stable amplitude was found to be equal to
umax = 0.9.

DAC
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-g1

c1

-a1 -a2

u(n) x1(n) x2(n) y(n)
c2

v(n)

K-SCI K-SCI K-path 
Quantizer

z-1W1(z)
1–z-1

z-1W2(z)
1–z-1

Figure 4. The synthesized second-order, single-bit CIFB KD1S modulator.
Here a1 = 0.125, a2 = 0.1, b1 = 0.125, c1 = 0.223, c2 = 7.66 and
g1 = 0.04.

In order to verify the conformance of the state-space model
with the actual circuit implementation, the second-order KD1S
modulator was implemented at circuit level in Cadence (see
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Figure 5. Simulated PSD of the output and the NTF pole-zero plot for the
second-order CIFB-type KD1S modulator.

Fig. 6). The resulting Spectre simulation results are illustrated
in Fig. 7. The resulting noise transfer function, with finite op-
amp gain-bandwidth, is very close to the analytical modeling.
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Figure 6. A concise representation of the singly-ended, switched-capacitor
implementation of the second-order KD1S modulator seen in Fig. 5.
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Third-order CIFF KD1S Modulator: Feedforward type
(CIFF) modulators are have been widely employed to realize
wideband (low-OSR) data-conversion with lower signal distor-
tion. This results from the fact that the input to the modulator’s
loop-filter only consists of the quantization noise. However the
CIFF topologies require a fast, low-distortion adder at the input
of the quantizer [4]. A third-order KD1S modulator has been
synthesized and illustrated in Fig. 8 to further demonstrate the
efficacy of the synthesis algorithm. Here, in order to stabilize
the modulator the op-amps are designed with a gain-bandwidth
equal to 5fs = 500MHz to keep the poles well within the
unit circle.

The simulation for the third-order modulator shows an SNR
equal to 77.3 dB or a resolution of 12.55 bits. The maximum
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Figure 8. The synthesized third-order, single-bit CIFF KD1S modulator.
Here a1 = 2.85, a2 = 2.85, a3 = 2.35, b1 = 2.8, b4 = 1, c1 = 0.28,
c2 = 0.36, c3 = 0.18 and g1 = 0.08.

stable amplitude was estimated to be equal to umax = 0.4.
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Figure 9. Simulated PSD of the output and the NTF pole-zero plot for the
third-order CIFF-type KD1S modulator.

The higher-order KD1S modulators achieve lower perfor-
mance when compared to single-path delta-sigma modulators
with an effective oversampling rate of Kpath ·OSR, but they
still offer a reasonable trade-off with relaxed performance
requirements on the op-amps and the clock generation circuits.
Also, here only linear setting of the integrators has been
considered for rapid synthesis of KD1S modulators. The non-
linear effects of the synthesized loop-filter must be simulated
with behavioral circuit modeling of op-amp slewing.

V. CONCLUSION

A novel state-space based synthesis method has been pro-
posed to realize higher-order KD1S modulators with any
generalized topology. This method enables rapidly synthesis
wideband KD1S modulators without designing their circuit
level implementation and then simulating them to determine
their stability. Second and third order feedback and feedfor-
ward type KD1S modulators are designed demonstrate the
efficacy of the proposed synthesis method.
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