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Copula density estimation by total variation penalized likelihood with

linear equality constraints

Leming Qu, Wotao Yin

Abstract

A copula density is the joint probability density function (PDF) of a random vector with uniform
marginals. An approach to bivariate copula density estimation is introduced that is based on
a maximum penalized likelihood estimation (MPLE) with a total variation (TV) penalty term.
The marginal unity and symmetry constraints for copula density are enforced by linear equality
constraints. The TV-MPLE subject to linear equality constraints is solved by an augmented
Lagrangian and operator-splitting algorithm. It offers an order of magnitude improvement in
computational efficiency over another TV-MPLE method without constraints solved by log-barrier
method for second order cone program. A data-driven selection of the regularization parameter is
through K-fold cross-validation (CV). Simulation and real data application show the effectiveness
of the proposed approach. The MATLAB code implementing the methodology is available online.

Keywords: Copula density estimation; Total variation; Maximum penalized likelihood
estimation; Augmented Lagrangian method

1. Introduction

Dependence modeling consists of finding a model that describes dependencies between vari-
ables, which is a fundamental task of multivariate statistics (Cox and Wermuth (1996)). Statistical
approaches to dependence modeling describes an underlying random process in terms of a mul-
tivariate distribution. Multivariate probability density estimation based on observed data from
a random process is a long standing and active research area in statistics (Scott (1992)). In a
linear, Gaussian world stochastic dependencies are captured by correlations. In more general set-
tings, copula (otherwise known as dependence function) has emerged as a useful tool for modeling
stochastic dependence. Some recent review papers on copulas include Embrechts et al. (2003);
Kolve et al. (2006); Mikosch (2006); Embrechts (2009) and Patton (2009). Some recent books
on copulas include Cherubini et al. (2004); Nelsen (2006) and Trivedi and Zimmer (2007). In
essence, a copula is a multivariate probability distribution with uniform marginals. One of the
main advantages of copula over full probability function is that copula allows the separation of
dependence modeling from the marginal distributions. The last decade or so has witnessed an
explosion of papers on the application of copulas, especially to financial problems (Patton (2009),
Genest et al. (2009), Haug et al. (2011)). In the introduction to their book, Cherubini et al. (2004)
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state that “the copula function methodology has become the most significant new technique to
handle the co-movement between markets and risk factors in a flexible way”. Balakrishnan and
Lai (2009) lists many applications of copulas in several categories. Specifically in finance, copulas
have attracted much attention in the analysis of contagion between financial markets (Rodriguez
(2007); Chen and Poon (2007)), the analysis of risky portfolios of stocks (Malevergne and Sornette
(2003); Junker and May (2005)) or the modeling of credit default (Li (2000)). For a statistical
introduction to copula, see Nelsen (2006).

The copula density estimation has been mostly studied in a parametric framework, whereby
a bivariate copula density c(u, v) is assumed to be a member of a copula family determined by a
few parameters (for example, Shih and Louis (1995)). The parametric copula density estimation
problem is then essentially reduced to estimate the few parameters that determine the copula.
Choros et al. (2010) provide a brief survey of parametric, semiparametric and nonparametric
estimation procedures for copula models. We propose here to estimate the bivariate copula density
nonparametrically. For practitioners, nonparametric estimates could be used as the first step
toward selecting the right parametric family.

Nonparametric estimation of copula and its density does not assume a specific parametric form
for the copula and the marginals and thus provides great flexibility and generality. Nonparametric
estimators of a bivariate copula density using kernels have been suggested by Gijbels and Miel-
niczuk (1990) and Fermanian and Scaillet (2003). The advantage of kernel based copula density
estimation is that it provides a smooth (differentiable) reconstruction of the copula function with-
out putting any particular parametric a priori on the dependence structure between margins and
without losing the usual parametric rate of convergence (Fermanian and Scaillet (2003)). Ker-
nel estimators have a severe drawback as they require a very large amount of data (page 195,
Malevergne and Sornette (2006)) and suffer from a corner bias. Nonparametric estimator of a
copula using splines was proposed in Shen et al. (2008) for a new class of copulas called linear
B-spline copulas. The linear B-spline copula estimation can be regarded as a semiparametric
approach for copula estimation. While it is still defined in terms of a parametric form, it shares
the same flexibility as that exhibited by a nonparametric approach. For a sub-family of copulas
named Archimedean, Lambert (2007) proposed to use B-splines for a ratio approximation of the
generator and of its first derivative, and estimated the associated parameters using Markov chains
Monte Carlo methods. Sancetta and Satchell (2004) employed techniques based on Bernstein
polynomials. Bernstein copula family belongs to the family of polynomial copulas (Nelsen (2006))
and can be used as an approximation to any copula. Nonparametric estimators of a copula density
using wavelets were proposed in Hall and Neumeyer (2006) and Autin et al. (2010). These wavelet
methods can better adapt to nonsmooth regions such as corners of a copula density.

What does a copula density c(u, v) look like? In one extreme, when U and V are independent
of each other, c(u, v) = 1. When U and V are dependent, c(u, v) can be smooth, have sharp
boundaries, or even be unbounded. It is reasonable to assume that the total variation (TV) of
c(u, v), or at least its discrete version, is bounded. In practice, we often estimate and display the
density in a finite grid. We propose a maximum penalized likelihood estimation (MPLE) with TV
penalty method. This method is capable of capturing sharp changes in the target copula density,
suffering less from edge effects when the copula density can be unbounded at boundaries in some
statistically important cases, whereas conventional kernel or spline techniques have difficulties in
nonsmooth regions.

The TV penalty based MPLE for copula density was proposed in Qu et al. (2009), where
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the penalty term is the TV of the log density, and the unity requirement for a density function
is imposed. However, the marginal unity and symmetrical properties for a copula density are
not enforced. In fact, we are not aware of any method that explicitly imposes all the essential
properties for a copula density. The main reason behind this is probably related to the difficulty
of the induced estimation or optimization procedure. In this paper, we enforce the properties
of marginal unity and symmetry as linear equality constraints for the discretized copula density.
We solve the problem of minimizing penalized negative log likelihood with TV penalty subject
to linear equality constraints by an augmented Lagrangian and operator-splitting algorithm. The
effectiveness of our method is illustrated through numerical experiments.

Density estimation by TV penalized likelihood has been proposed by several groups of re-
searchers. Koenker and Mizera (2007) used the TV of the derivative of the log density as the
penalty in the univariate case and TV of the log density defined in a triogram in the bivariate
case. Sardy and Tseng (2010) and Mohler et al. (2010) used the TV of the density itself as the
penalty. Mohler et al. (2010) presented a fast and accurate numerical method, based upon the
Split Bregman L1 minimization technique (Goldstein and Osher (2009)).

The rest of the paper is organized as follows: In Section 2, we formulate the problem. In
Section 3, we present the Augmented Lagrangian and operator–splitting algorithm. In Section 4,
we discuss the regularization parameter selection, and in Section 5 show the experimental results.
We apply the method to a real data set in Section 6. Finally, Section 7 concludes the paper.

2. Problem Formulation

A bivariate copula density c(u, v), [u, v] ∈ [0, 1]2 can be regarded as the joint probability
density function (PDF) of a bivariate standard uniform random variable (U, V ). Most copulas
are exchangeable, thus implying c(u, v) is symmetric. The c(u, v) must satisfy the following four
properties:

(P1) c(u, v) ≥ 0, for [u, v] ∈ [0, 1]2 ;

(P2)
∫ 1
0 c(u, v)du = 1, for 0 ≤ v ≤ 1;

(P3)
∫ 1
0 c(u, v)dv = 1, for 0 ≤ u ≤ 1;

(P4) c(u, v) = c(v, u).

Note that (P2) and (P4) implies (P3), so (P3) is redundant.
A bivariate copula C(u, v) defined on the unit square [0, 1]2 is a bivariate cumulative distribu-

tion function (CDF) with univariate standard uniform margins:

C(u, v) =
∫ u

0

∫ v

0
c(s, t)dsdt.

Sklar’s Theorem (Sklar (1959)) states that the joint CDF F (x, y) of a bivariate random variable
(X,Y ) with marginal CDF FX(x) and FY (y) can be written as F (x, y) = C(FX(x), FY (y)), where
copula C is the joint CDF of (U, V ) = (FX(X), FY (Y )). This indicates a copula connects the
marginal distributions to the joint distribution and justifies the use of copulas for building bivariate
distributions.
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Let (X1, Y1), . . . , (Xn, Yn) be a random sample from the unknown distribution F of (X,Y ). We
wish to estimate aspects of the joint distribution of X and Y , in particular, the copula density
function c(u, v).

When the two marginal distributions are continuous, the copula density c(u, v) is the unique
bivariate density of (U, V ) = (FX(X), FY (Y )) as implied by Sklar’s theorem. As copulas are not
directly observable, a nonparametric copula density estimator has to be formed in two stages:
obtaining the observations for (U, V ) first and then estimating the copula density based on these
observations.

In the first stage, the original data set (Xi, Yi) for i = 1, . . . , n is converted to (Ûi, V̂i) =
(F̂X(Xi), F̂Y (Yi)), where F̂X and F̂Y are conventional estimators of FX and FY . If models are
available for the marginal distributions of X and Y but not for the joint distribution, one can use a
technique such as maximum likelihood to estimate the marginal distribution functions. Otherwise,
some nonparametric univariate distribution estimation methods or simply the following empirical
CDFs (ECDFs) can be used:

F̂X(x) =
1

n

n
∑

i=1

I(Xi ≤ x), F̂Y (y) =
1

n

n
∑

i=1

I(Yi ≤ y), (1)

where I(·) is the indicator function. When ECDFs are used as the marginal CDF estimators (e.g.,
in Autin et al. (2010)), {(Ûi, V̂i)}ni=1 is nothing but the standardized ranks. In the second stage,
we estimate the copula density c(u, v) based on the observations {(Ûi, V̂i)}ni=1.

Here we do not assume any parametric form for c(u, v) and instead, obtain an estimate of it
that satisfies properties (P1-P4) and is defined on a unit rectangle grid. The grid is made by
equally dividing domain of c(u, v), [0, 1]2, into N = m2 rectangle cells with cell size (1/m)× (1/m)
. A reasonable grid size is 64×64 (i.e., m = 64) for sample size n = 2000 and m = 32 for n = 500.
A much finer discretization will slow down computation unnecessarily. In most numerical scheme,
one fixes a grid resolution of 1/m much smaller than 2−Jn with Jn = ⌊1

2
log2(

n

logn
)⌋ (page 207 of

Autin et al. (2010)).
Let us use i, j = 1, . . . ,m to index all the N cells of this grid. On each cell (i, j), i, j = 1, . . . ,m,

let xij denote the constant estimate of c(u, v) over the cell and set pij to the number of observations

{(Ûi, V̂i)}ni=1 falling in this cell.
The marginal integral of c(u, v) can be approximated by the Riemann sum

∫ 1

0
c(u, v)du ≈ 1

m

m
∑

i=1

xij = 1, j = 1, . . . ,m

and
∫ 1

0
c(u, v)dv ≈ 1

m

m
∑

j=1

xij = 1, i = 1, . . . ,m.

TV of x is defined as

TV(x) =
m
∑

i=1

m
∑

j=1

√

(xi+1,j − xi,j)2 + (xi,j+1 − xi,j)2 ≈
∫ ∫

‖D (c(u, v))‖2 ,

where we set the Nuemann boundary conditions for TV, namely, xm+1,j ≡ xm,j, j = 1, . . . m, and
xi,m+1 ≡ xi,m, i = 1, . . . ,m.
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In Qu et al. (2009), by defining zij = logxij, the TV-MPLE is to solve :

min
z

Tλ(z) = −
m
∑

i=1

m
∑

j=1

pijzij + λTV(z), s.t.
1

N

m
∑

i=1

m
∑

j=1

exp(zij) = 1,

where λ is a smoothing parameter controlling the smoothness of the estimate. The above con-
strained minimization problem is equivalent to the following unconstrained minimization problem:

min
z

Tλ(z) =
∑

i,j

[

−pijzij +
n

N
exp(zij)

]

+ λTV(z).

Even though this unconstrained minimization formulation is attractive, it does not impose the
properties (P2) and (P4).

In terms of z = logx, the property (P2) requires the nonlinear constraints

m
∑

i=1

exp(zij) = m, j = 1, . . . ,m.

Nonlinear constraints are more difficult to work with than linear constraints, so it is preferable to
minimize with respect to x instead of z if properties (P2) and (P4) are to be imposed.

Imposing the marginal unity (P2) and symmetry (P4) properties, we estimate a copula density
as a m×m digital image by solving:

min
x

Tλ(x) = −
∑

i,j

pijlogxij + λTV(x),

s.t.
m
∑

i=1

xij = m, j = 1, . . . ,m, and

xij = xji, i, j = 1, . . . ,m.

The linear equality constraints in the above minimization problem can be written in the form
Ax = b by forming the m(m + 1)/2×N matrix A and m(m + 1)/2-vector b as follows:

A(i, j) = 1, i = 1, . . . ,m, j = (i− 1)m + 1, . . . , im;

b(i) = m, i = 1, . . . ,m;

and

A(m + (i− 1)(i− 2)/2 + j, (j − 1)m + i) = 1, i = 2, . . . ,m, j = 1, . . . , i− 1;

A(m + (i− 1)(i− 2)/2 + j, (i− 1)m + j) = −1, i = 2, . . . ,m, j = 1, . . . , i− 1;

b(i) = 0, i = m + 1, . . . ,m(m + 1)/2;

and
A(i, j) = 0, otherwise.

The matrix A is very sparse.
Let f(x) = −∑i,j pijlogxij, then ∇xf(x) = −p./x, where ∇x denotes the gradient opera-

tor with respect to x and ./ denotes element-wise division. This gradient will be used in the
optimization algorithm discussed in the next section.

Our proposed copula density estimate solves:

min
x

Tλ(x) = f(x) + λTV(x), s.t. Ax = b. (2)
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3. Augmented Lagrangian and operator–splitting algorithm

This section describes how to efficiently solve problem (2) by the augmented Lagrangian and
operator–splitting techniques with modifications. The so-called augmented Lagrangian of (2) is

L(x,y) = f(x) + λTV(x) +
α

2
||Ax− b||2− < y,Ax− b >,

where y contains the Lagrange multipliers. The traditional augmented Lagrangian algorithm is
the iteration of

(1) x← arg minx L(x,y);

(2) y ← y + α(b−Ax),

which avoids solving the original constrained problem and only requires a moderate penalty pa-
rameter α for quick convergence. However, because of the nonsmooth TV term and matrix A in
(2), it is a time consuming task to complete step (1) above. A good way to get around the com-
putational complexity of step (1) above is through linearization, which is related to the classical
work of augmented Lagrangian and alternating direction methods in Glowinski and Tallec (1989).

Introducing the gradient vector

g(x) = ∇x

(

f(x) +
α

2
||Ax− b||2− < y,Ax− b >

)

.

For the problem formulated in the last section, g(x) = −p./x + αAT (Ax − b) − AT y. The
one-step operator-splitting iteration is

x← R(x− βg(x)), (3)

where R(z) = arg minx

1
2
||z−x||2+λTV(x) (“arg min” is well-defined because the strong convexity

of ‖z−x‖2 guarantees solution existence and uniqueness). This step together with the update to
y can be written as

Step 1: xk+1 ← arg minx

1
2
||(xk − βg(xk))− x||2 + λTV(x).

Step 2: yk+1 ← yk + γα(b−Axk+1).

The algorithm starts with y0 = 0 and an initial x0, then iterates through steps 1 and 2 until
certain convergence criteria are met. As pointed out by a reviewer, step 1 makes a compromise
between a steepest descent update (that aims to minimize the augmented Lagrangian) and sparsity
(through the TV(x) term).

Before discussing parameter selection and the implementation of Step 1, we note that Step 1
above is different from the so-called alternating direction method (ADM, Glowinski and Tallec
(1989)) or the recent algorithm TVAL3 in Li et al. (2009). To minimize a function in the form of
a(Bx)+b(x) where B is a certain operator, ADM introduces an unknown vector z and constraints
Bx = z and uses an augmented Lagrangian L(x,z,y) to relax these constraints. However, ADM
has a different Step 1. In Step 1, ADM computes x← arg minx L(x,z,y) and uses the updated x

to obtain z ← arg minz L(x,z,y). TVAL3 is similar to ADM as it splits TV(x) =
∑

ij ‖(Dx)ij‖2
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into
∑

ij ‖zij‖2 and constraints z = Dx, where z is an unknown vector. In Step 1, however, TVAL3
does not exactly minimize with respect to x but updates x by one or more gradient descents.
Different from ADM and TVAL3, our approach does not split TV(x) or exactly minimizes any
term involving f(x) in Step 1.

It is sometimes tricky to set appropriate penalty parameter α and step length β. One usually
has a bound beforehand and tries different values in practice. An excessive large α overweighs the
penalty term (1/2)‖Ax− b‖2, causing a slowly convergent or even non-convergent algorithm. We
found that α = 0.05 worked well and fixed it throughout our simulations. According to Glowinski
and Tallec (1989), γ must be strictly less than (

√
5 + 1)/2 for ADM to converge, but one can

simply try with different values. We set γ as 1 in our simulations.
The step length β should be smaller than 2/||J(g(x))||, where J(g(x)) denotes the Jacobian of

g(x), to essentially guarantee that update (3) and thus Step 1 above are non-expansive. Loosely
speaking, ||J(g(x))|| is basically the max curvature of the graph of f(x) + α/2||Ax − b||2− <
y,Ax−b > around the current x. The larger the curvature, the smaller a step should be because
the gradient information is accurate in a smaller perimeter. The log function has unlimited
curvature but locally, it is bounded. In our numerical study, we fix β as 0.1 and it works well for
all our experiments. Line search techniques can be applied to automate β choice.

The problem in Step 1 above is a so-called ROF/TV-L2 denoising problem, for which a few
efficient algorithms exist in the literature. They include the latest graph-cut/max-flow algorithms
(Chambolle (2005), Darbon and Sigelle (2006), Goldfarb and Yin (2009)). We use the parametric
max-flow code from Yin (2010). Next, we discuss how to choose the regularization parameter λ
in a data adaptive way.

4. Data-Driven Selection of λ

It is well known that the choice of the regularization parameter λ is one of the most important
steps of the MPLE. It has to be tuned for practical applications. In this work we use the popular
K-fold cross-validation (CV) method for density estimation to select the tuning parameter. Liu
et al. (2009) gave a brief review of this method in its section 5.1. For completeness, we give details
of K-fold CV below in the context of copula density estimation.

We randomly divide all the samples {(Ui, Vi)}ni=1 into K disjoint subsets (folds) of approxi-
mately the same size. Let Sk be the index set of the kth subset, k = 1, ..., K, ĉλ(u, v) be the copula
density estimate based on the entire data set, and ĉλ,−k(u, v) be the the copula density estimate
based on all data points except those in the kth subset.

The quality of a copula density estimator ĉλ(u, v) is measured by E(Loss(ĉλ, c)) where Loss(ĉλ, c)
is a Loss function or distance measure between ĉλ(u, v) and the true copula density estimator
c(u, v). Two commonly used distance measure between two densities are integrated squared error

ISE(ĉλ, c) =
∫ 1

0

∫ 1

0
(ĉλ(u, v)− c(u, v))2 dudv,

and Kullback-Leibler distance

KLD(ĉλ, c) =
∫ 1

0

∫ 1

0
log

(

c(u, v)

ĉλ(u, v)

)

c(u, v)dudv. (4)

Given a data set {(Ui, Vi)}ni=1 generated from c(u, v), we aim to find the λ which minimizes
Loss(ĉλ, c).
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Least squares CV represents a data-driven attempt at constructing ĉλ(u, v) so as to minimize
ISE(ĉλ, c). By expanding ISE, we have

ISE(ĉλ, c) =
∫ 1

0

∫ 1

0
ĉλ(u, v)2dudv − 2

∫ 1

0

∫ 1

0
ĉλ(u, v)c(u, v)dudv +

∫ 1

0

∫ 1

0
c(u, v)2dudv.

The term
∫ 1
0

∫ 1
0 c(u, v)2dudv does not depend on λ, so it can be dropped for the purpose of searching

for λ. The term
∫ 1

0

∫ 1

0
ĉλ(u, v)c(u, v)dudv = E(ĉλ(U, V ))

may be estimated approximately by

1

K

K
∑

k=1

1

|Sk|
∑

i∈Sk

ĉλ,−k(Ui, Vi),

where |Sk| is the cardinality of Sk. Hence, the least squares CV score LS(λ) is defined as

LS(λ) =
∫ 1

0

∫ 1

0
ĉλ(u, v)2dudv − 2

K

K
∑

k=1

1

|Sk|
∑

i∈Sk

ĉλ,−k(Ui, Vi). (5)

Likelihood CV represents a data-driven attempt at constructing ĉλ(u, v) so as to minimize
KLD(ĉλ, c) (Hall (1987)). By expanding KLD, we have

KLD(ĉλ, c) =
∫ 1

0

∫ 1

0
(logc(u, v)) c(u, v)dudv −

∫ 1

0

∫ 1

0
(logĉλ(u, v)) c(u, v)dudv.

The first term on the right hand side above can be dropped for the purpose of searching for λ.
The term

∫ 1

0

∫ 1

0
(logĉλ(u, v)) c(u, v)dudv = E (logĉλ(U, V ))

may be approximated by
1

K

K
∑

k=1

1

|Sk|
∑

i∈Sk

logĉλ,−k(Ui, Vi).

Hence, the likelihood CV score KL(λ) is defined as

KL(λ) = − 1

K

K
∑

k=1

1

|Sk|
∑

i∈Sk

logĉλ,−k(Ui, Vi). (6)

Then, we choose λCV = arg min CVλ∈G(λ) as the best tuning parameter, where G is a pre-
specified discrete or continuous set in which λ is searched over, and CV score is either LS score or
KL score. For simplicity, one usually pre-specifies G as a fine finite grid, where λCV is found by a
simple grid search. For CVλ∈G(λ) over a continuous region G, λCV may be found by some simple
single variable minimization methods such as bisection method or golden section search method.
One should make sure that λCV is not at the boundaries of the set G. In case λCV is located at
the boundaries of the set G, one needs to enlarge the G and includes the added portion into the
search.
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Van der Laan et al. (2004) studied the choice of K. They established asymptotic optimality
of K-fold CV, in the sense that the CV selector performs asymptotically as well (w.r.t. to the
Kullback-Leibler distance to the true density) as an optimal benchmark model selector which
depends on the true density. Crucial conditions of their theorem are that the size of the validation
sample n/K goes to infinity, which excludes leave-one-out CV, and that the candidate density
estimates are bounded away from zero and infinity. Some copula densities may not be bounded
away from infinity, but it is not a concern for finite sample studies.

5. Simulations

We report results from simulation studies which were designed to demonstrate the effectiveness
of the MPLE with TV penalty subject to linear equality constraints for copula density estimation
and the K-fold CV regularization parameter selector.

The stopping criteria of our augmented Lagrangian and operator-splitting algorithm were
||xk+1−xk||/||xk|| <= 10−5 or total number of iterations reaching 20, where each iteration includes
going through steps 1 and 2 once.

In the simulation, the marginal distributions FX and FY were estimated by ECDFs (1). This
amounts to use the standardized ranks of the sample {(Xi, Yi)}ni=1 as estimates of {(Ui, Vi)}ni=1

(remind that Ui = FX(Xi) and Vi = FY (Yi)). The CDF of a continuous random variable is
continuous and increasing within its domain, which implies that the ranks of Xi’s are the same as
the ranks of Ui’s, so are the ranks of Yi’s and those of Vi’s. Therefore it is unnecessary to explicitly
specify the FX and FY in our simulation for copula density estimation. One can first generate
{(Ui, Vi)}ni=1 from an underlying copula density c(u, v), then use their standardized ranks as their
estimates.

The setting of our simulation study is mostly the same as the one in Autin et al. (2010) as we
intend to make a comparison with their wavelet thresholding estimates. We tested five parametric
families of copulas: Gaussian, Student, Clayton, Frank and the Gumbel families. For each copula
model, independent and identically distributed (i.i.d.) standard uniform bivariate random vari-
ables {(Ui, Vi)}ni=1 were generated from the specified copula with parameter θ using MATLAB’s
copularnd() function. That was, {Ui}ni=1 was a sample from a Uniform(0,1) distribution, and so
was the {Vi}ni=1. The joint pdf of (U, V ) was the specified copula density c(u, v) with parameter
θ. The sample sizes considered were n = 125, n = 500 and n = 2000. The grid sizes used were
m = 16 for n = 125, m = 32 for n = 500 and m = 64 for n = 2000. In Autin et al. (2010), the
rule for setting the grid size m in terms of the sample size n is m = 4× 2Jn .

Various error measures were evaluated over the equally spaced grid points within [0, 1]2 where
the copula densities were estimated. For one data set, the quality of an estimate ĉλ(u, v) of the
true copula density c(u, v) was measured by an error measure Loss(ĉλ, c), which can be either
relative errors

REq(λ) =
||ĉλ − c||N,q

||c||N,q

, for q = 1, 2, ∞, (7)

or the KLD (4). The sample average of an error measure Loss(ĉλ, c) over replications of random
data set approximates the population mean of the error measure E(Loss(ĉλ, c)) for the proposed
estimator ĉλ(u, v). We replicated 100 times for each experiment setting and report the sample
average, the associated standard errors (in parentheses) and boxplots of these 100 error measures
in Tables 2, 3, 4 and Figs. 5, 6, respectively.
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The regularization parameter λ was chosen from the grid G = {0.01 × 102(i−1)/27}28i=1, i.e., 28
equally spaced numbers in [0.01, 1] in a log10 scale. All the best regularization parameters were
found near the central portion of this G. For the error measure Loss(ĉλ, c), the best regularization
parameter λLoss = arg minλ∈G Loss(ĉλ, c) and the best estimate is Loss-best=ĉλLoss

. The CV data
driven regularization parameter λCV = arg minλ∈G CV(ĉλ, c) and the data adaptive estimate TV-
CV = ĉλCV

. The closer the λCV is to λLoss, the better a TV-CV is in terms of Loss(ĉλ, c).
For the number of folders in CV, we used K = 10. To see the effectiveness of the 10-fold

CV regularization parameter selector, in Fig. 1, we plotted the curves of some Loss(ĉλ, c) and
CV(λ) vs. λ respectively for a typical run of the case: Gaussian copula with θ = 0.5, sample size
n = 2000, and grid size m = 64. In this specific case, the λRE2 which minimized RE2(ĉλ, c) for
λ ∈ G coincided with λKLD which minimized KLD(ĉλ, c). The λLS which minimized LS(λ) was
1 grid below λRE2; The λKL which minimized KL(λ) was 1 grid above λKLD. Fig. 2 shows the
scatter plots of (a)the original data {(Xi, Yi)}ni=1 with standard Gaussian marginals; (b)the original
data {(Ui, Vi)}ni=1 with standard Uniform marginals; and (c)the standardized ranks {(Ûi, V̂i)}ni=1.
Note the close similarity of (b) and (c). Table 1 summarizes the shorthand notations for different
estimates. Fig. 3 display the surface plots on the left column and contour plots on the right
column of the true and estimated copula densities. For comparison, we computed a 2D kernel
density estimate using the kde2D program (Botev et al. (2010); Botev (2011)). Obviously, there
is an oversmoothing by KDE. The RE2-best catches the two peaks in the front and back corners
well. Both the TV-LS and TV-KL are close to RE2-best.

Table 1: Shorthand notations for different estimates

RE2-best estimate with the λ chosen to minimize the RE2(λ) [equation (7) with q = 2]
TV-LS estimate with the λ chosen to minimize the LS(λ) [equation (5)]
TV-KL estimate with the λ chosen to minimize the KL(λ) [equation (6)]
KDE kernel density estimate by the kde2D MATLAB program [Botev (2011)]

10
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RE2
KLD
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KL−CV

Figure 1: Loss and CV curves in a typical run of the case: Gaussian copula with θ = 0.5, sample size n = 2000,
grid size m = 64.
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Figure 2: scatter plots of (a) Y vs. X; (b) V vs. U ; and (c)the standardized ranks of Y vs. X in a typical run of
the case: Gaussian copula with θ = 0.5, sample size n = 2000, and grid size m = 64.

To have a sense of the speed of the algorithm, for the data set used for Fig. 1, Fig. 4 plot
the times in seconds needed to obtain the solution ĉλ from the full data set for a sequence of λ
and the times in seconds needed to obtain both the LS(λ) and KL(λ) for the 10-fold CV for a
sequence of λ. For a fixed λ, 10-fold CV took 3.42 seconds on average to finish, while it took
only 0.4 seconds on average to obtain ĉλ for the full data set. This computational efficiency is
an order of magnitude improvement over another TV-MPLE method in Qu et al. (2009) solved
by log-barrier method for second order cone program (SOCP) which took 2 minutes to solve the
similar problem. We did not compare our proposed method in this paper with the method in Qu
et al. (2009) because of the low computational efficiency of the latter.

The side-by-side boxplots in Figs. 5 and 6 show that both TV-LS and TV-KL are close to
TV-best. In general, TV-LS is closer to REq-best than TV-KL; and TV-KL is closer to KL-best
than TV-LS which is what we should expect because the goal of TV-LS is to minimize RE2 and
the goal of TV-KL is to minimize KLD. All the TV-estimators outperform the conventional kernel
density estimator.

Tables 2, 3 and 4 list Monte Carlo approximations to E(Loss(ĉλ, c)) over 100 replications
for (1) n = 125, m = 16; (2) n = 500, m = 32; and (3) n = 2000, m = 64 respectively.
Comparing the mean REq of our TV-LS with those of WaveThresh-Local in Table A.3 and A.4
of Autin et al. (2010), we observe that (1) the mean RE1 of TV-LS is mostly smaller than those
by WaveThresh-Local; (2) the mean RE2 of TV-LS is all larger than those by WaveThresh-Local
except for the Gumbel copula with θ = 8.3; (3) the mean RE∞ of TV-LS is all smaller than those
by WaveThresh-Local except for the Frank copula with θ = 4.0.

5.1. Selecting a Parametric Copula from Several Parametric Families

Our MPLE-TV copula density estimate can serve the purpose to select a parametric copula
from several parametric families. A parametric copula cθ is wholly determined by its parameter θ.
The parameter θ can be estimated by classical parameter estimation methods such as maximum
likelihood. We measure the distance between our nonparametric estimate ĉλ and the parametric
estimate cθ̂ by their relative errors

REq(θ̂) =
||ĉλ − cθ̂||N,q

||cθ̂||N,q

, for q = 1, 2, ∞.
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Figure 3: True and estimated copula densities in a typical run of the case: Gaussian copula with θ = 0.5, sample
size n = 2000, grid size m = 64.
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Figure 5: Boxplots of errors of different estimates for the Gaussian copula with θ = 0.5.

The selected parametric copula is the one with the smallest REq(θ̂) among all parametric candi-
dates.

A simulation study was to illustrate this. The true underlying copula density was Gaussian
with θ = 0.5. An i.i.d. standard uniform bivariate random sample {(Ui, Vi)}ni=1 was generated
from it with n = 500. MPLE-TV estimate ĉλ was constructed based on the data {(Ûi, V̂i)}ni=1 with
grid size m = 32 and λ selected by 10-fold CV. The θ was estimated by the Canonical Maximum
Likelihood (CML) method using MATLAB’s copulafit() function based on the data {(Ûi, V̂i)}ni=1.
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Figure 6: Boxplots of errors of different estimates for the Gumbel copula with θ = 1.25.

Table 5 reports the REq(θ̂) for 4 different candidates. MPLE-TV estimate was closest to the
Gaussian estimate in terms of relative errors. We correctly selected the Gaussian model among
four parametric families considered.

Table 6 reports the number of successes of MPLE-TV estimate for selecting a parametric
copula out of 4 different parametric candidates over 100 replications. For example, when n = 500
observations were generated from Frank copula with θ = 4.0, TV-LS correctly selected Frank
copula as the underlying density out of Clayton, Frank, Gaussian and Gumbel families 92 times
in terms of the RE1 criterion over 100 replications. The simulation results indicate that this
parametric copula selection strategy is reliable with moderate and large sample sizes. There is
no clear winner among RE1, RE2 and RE∞ error measures, but RE∞ tends to perform poorly
because it uses only a single number (the maximum) of an estimate. RE2 outperforms RE1 in
the Frank(4) case only. A close look at the true copula density reveals that the sharp peaks at
the corners of the Frank(4) copula density are much lower than those of the other three. The
high peak regions are harder to be estimated accurately than the low peak ones. Squares of
the differences in RE2 enlarge the error measure RE2 in comparison to RE1 when the estimated
peak regions between the nonparametric estimate ĉλ and parametric estimate cθ̂ disagree greatly,
which partly contribute to the under-performance of the RE2 relative to RE1 in the Clayton(0.8),
Gaussian(0.5) and Gumbel(1.25) cases. In general, RE1 seems to be a more robust error measure.

6. Application to Real Data

We apply our MPLE-TV method to a subset of the Framingham Heart study data (http:
//www.framingham.com/heart/). We focus on the dependence structure underlying the diastolic
(DBP) and the systolic (SBP) blood pressures (in mmHg) measured on 663 male subjects at their
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Table 2: Monte Carlo approximations to E(Loss(ĉλ, c)) over 100 replications for n = 125, m = 16

Copula par. Method RE1 RE2 RE∞ KLD
Gaussian 0.00 TV-best 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Gaussian 0.00 TV-LS 0.013 (0.039) 0.022 (0.065) 0.109 (0.356) 0.003 (0.010)
Gaussian 0.00 TV-KL 0.010 (0.032) 0.018 (0.053) 0.090 (0.289) 0.002 (0.008)
Gaussian 0.00 KDE 0.230 (0.004) 0.281 (0.004) 0.613 (0.034) 0.280 (0.005)
Gaussian 0.50 TV-best 0.160 (0.023) 0.210 (0.034) 0.370 (0.125) 0.030 (0.008)
Gaussian 0.50 TV-LS 0.178 (0.036) 0.234 (0.048) 0.489 (0.163) 0.044 (0.066)
Gaussian 0.50 TV-KL 0.177 (0.035) 0.231 (0.045) 0.472 (0.149) 0.050 (0.072)
Gaussian 0.50 KDE 0.235 (0.027) 0.385 (0.030) 0.782 (0.027) 0.271 (0.028)
Gaussian 0.90 TV-best 0.299 (0.034) 0.321 (0.051) 0.332 (0.108) 0.149 (0.027)
Gaussian 0.90 TV-LS 0.311 (0.037) 0.334 (0.054) 0.409 (0.124) 0.346 (0.155)
Gaussian 0.90 TV-KL 0.329 (0.048) 0.353 (0.060) 0.466 (0.124) 0.186 (0.074)
Gaussian 0.90 KDE 0.463 (0.057) 0.595 (0.026) 0.838 (0.018) 0.355 (0.053)
Student 0.50 TV-best 0.324 (0.031) 0.448 (0.065) 0.488 (0.134) 0.142 (0.023)
Student 0.50 TV-LS 0.348 (0.044) 0.480 (0.069) 0.638 (0.117) 0.159 (0.031)
Student 0.50 TV-KL 0.345 (0.043) 0.475 (0.066) 0.632 (0.111) 0.156 (0.030)
Student 0.50 KDE 0.398 (0.031) 0.700 (0.018) 0.920 (0.014) 0.461 (0.045)
Clayton 0.80 TV-best 0.154 (0.026) 0.227 (0.051) 0.278 (0.132) 0.033 (0.009)
Clayton 0.80 TV-LS 0.174 (0.040) 0.254 (0.060) 0.411 (0.180) 0.044 (0.031)
Clayton 0.80 TV-KL 0.167 (0.034) 0.244 (0.058) 0.397 (0.181) 0.039 (0.016)
Clayton 0.80 KDE 0.243 (0.019) 0.444 (0.021) 0.868 (0.017) 0.289 (0.025)
Frank 4.00 TV-best 0.182 (0.027) 0.213 (0.033) 0.348 (0.096) 0.030 (0.009)
Frank 4.00 TV-LS 0.203 (0.037) 0.237 (0.045) 0.481 (0.195) 0.056 (0.075)
Frank 4.00 TV-KL 0.200 (0.035) 0.233 (0.040) 0.465 (0.173) 0.047 (0.047)
Frank 4.00 KDE 0.255 (0.034) 0.377 (0.031) 0.722 (0.030) 0.255 (0.029)

Gumbel 8.30 TV-best 0.534 (0.048) 0.697 (0.025) 0.785 (0.022) 0.729 (0.067)
Gumbel 8.30 TV-LS 0.564 (0.050) 0.711 (0.028) 0.794 (0.024) 0.785 (0.094)
Gumbel 8.30 TV-KL 0.579 (0.055) 0.716 (0.030) 0.797 (0.025) 0.777 (0.085)
Gumbel 8.30 KDE 0.843 (0.031) 0.878 (0.008) 0.941 (0.005) 1.320 (0.072)
Gumbel 1.25 TV-best 0.123 (0.020) 0.187 (0.037) 0.315 (0.145) 0.019 (0.006)
Gumbel 1.25 TV-LS 0.150 (0.039) 0.227 (0.055) 0.514 (0.186) 0.028 (0.013)
Gumbel 1.25 TV-KL 0.148 (0.039) 0.224 (0.055) 0.501 (0.193) 0.028 (0.013)
Gumbel 1.25 KDE 0.220 (0.011) 0.358 (0.019) 0.831 (0.021) 0.280 (0.017)

first visit. The scatterplot of the log-blood pressures and the scatterplot of the standardized ranks
of the log-blood pressures can be found in Fig. 7. It is evident that there is a strong positive
dependence between the two responses. Lambert (2007) analyzed this data set assuming the
copula density of the log-blood pressures was a sub-family of copulas named Archimedean with
unknown (strict) generator. Lambert (2007) proposed a ratio approximation of the Archimedean
copula generator and of its first derivative using B-splines, estimated the associated parameters
using Markov chains Monte Carlo methods, and found that Gumbel copula was appropriate for
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Table 3: Monte Carlo approximations to E(Loss(ĉλ, c)) over 100 replications for n = 500, m = 32

Copula par. Method RE1 RE2 RE∞ KLD
Gaussian 0.00 TV-best 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Gaussian 0.00 TV-LS 0.005 (0.017) 0.009 (0.025) 0.066 (0.226) 0.000 (0.001)
Gaussian 0.00 TV-KL 0.004 (0.015) 0.007 (0.022) 0.047 (0.140) 0.000 (0.001)
Gaussian 0.00 KDE 0.179 (0.008) 0.245 (0.006) 0.771 (0.033) 0.201 (0.002)
Gaussian 0.50 TV-best 0.118 (0.012) 0.167 (0.020) 0.351 (0.111) 0.018 (0.003)
Gaussian 0.50 TV-LS 0.125 (0.017) 0.177 (0.027) 0.473 (0.182) 0.034 (0.037)
Gaussian 0.50 TV-KL 0.122 (0.015) 0.175 (0.023) 0.469 (0.149) 0.022 (0.009)
Gaussian 0.50 KDE 0.171 (0.013) 0.343 (0.012) 0.869 (0.012) 0.185 (0.009)
Gaussian 0.90 TV-best 0.209 (0.018) 0.235 (0.035) 0.255 (0.105) 0.103 (0.016)
Gaussian 0.90 TV-LS 0.213 (0.018) 0.239 (0.036) 0.323 (0.126) 0.236 (0.075)
Gaussian 0.90 TV-KL 0.264 (0.027) 0.299 (0.040) 0.434 (0.128) 0.127 (0.042)
Gaussian 0.90 KDE 0.265 (0.022) 0.528 (0.010) 0.888 (0.008) 0.192 (0.013)
Student 0.50 TV-best 0.225 (0.018) 0.358 (0.053) 0.423 (0.111) 0.074 (0.008)
Student 0.50 TV-LS 0.230 (0.020) 0.372 (0.056) 0.520 (0.115) 0.081 (0.023)
Student 0.50 TV-KL 0.231 (0.020) 0.374 (0.056) 0.524 (0.114) 0.078 (0.010)
Student 0.50 KDE 0.266 (0.021) 0.681 (0.011) 0.948 (0.007) 0.279 (0.019)
Clayton 0.80 TV-best 0.112 (0.012) 0.187 (0.039) 0.228 (0.104) 0.019 (0.004)
Clayton 0.80 TV-LS 0.120 (0.017) 0.199 (0.041) 0.346 (0.164) 0.032 (0.038)
Clayton 0.80 TV-KL 0.116 (0.013) 0.199 (0.042) 0.359 (0.167) 0.022 (0.007)
Clayton 0.80 KDE 0.179 (0.012) 0.434 (0.012) 0.924 (0.009) 0.199 (0.011)
Frank 4.00 TV-best 0.129 (0.017) 0.152 (0.022) 0.319 (0.088) 0.016 (0.004)
Frank 4.00 TV-LS 0.136 (0.021) 0.162 (0.030) 0.426 (0.219) 0.040 (0.055)
Frank 4.00 TV-KL 0.134 (0.019) 0.159 (0.023) 0.398 (0.165) 0.018 (0.006)
Frank 4.00 KDE 0.181 (0.018) 0.307 (0.015) 0.805 (0.022) 0.174 (0.008)

Gumbel 8.30 TV-best 0.388 (0.021) 0.679 (0.016) 0.788 (0.014) 0.388 (0.024)
Gumbel 8.30 TV-LS 0.394 (0.022) 0.685 (0.017) 0.793 (0.014) 0.437 (0.045)
Gumbel 8.30 TV-KL 0.429 (0.036) 0.697 (0.019) 0.799 (0.015) 0.403 (0.033)
Gumbel 8.30 KDE 0.541 (0.022) 0.858 (0.004) 0.959 (0.002) 0.689 (0.024)
Gumbel 1.25 TV-best 0.095 (0.016) 0.157 (0.030) 0.259 (0.125) 0.012 (0.003)
Gumbel 1.25 TV-LS 0.104 (0.020) 0.170 (0.035) 0.391 (0.196) 0.016 (0.012)
Gumbel 1.25 TV-KL 0.102 (0.021) 0.167 (0.035) 0.393 (0.192) 0.015 (0.009)
Gumbel 1.25 KDE 0.171 (0.009) 0.339 (0.011) 0.913 (0.012) 0.198 (0.008)

this data without being fully satisfactory.
We applied our estimation procedure to this data set, and used 10-fold LS and KL CV to select

the regularization parameter λ. The grid size m was set to 38. This (m,n) pair is roughly the
linear interpolation between (m,n) = (32, 500) and (m,n) = (64, 2000). We estimated parametric
copula densities by assuming Gumbel, Gaussian, Clayton and Frank copula respectively for the
data. Table 7 lists relative errors REq(θ̂). We found that Gumbel copula was closet to our TV-LS
estimate. This is in agreement with Lambert (2007)’s finding that Gumbel copula is appropriate
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Table 4: Monte Carlo approximations to E(Loss(ĉλ, c)) over 100 replications for n = 2000, m = 64

Copula par. Method RE1 RE2 RE∞ KLD
Gaussian 0.00 TV-best 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) -0.000 (0.000)
Gaussian 0.00 TV-LS 0.005 (0.015) 0.009 (0.022) 0.088 (0.284) 0.000 (0.001)
Gaussian 0.00 TV-KL 0.004 (0.011) 0.007 (0.016) 0.052 (0.198) 0.000 (0.001)
Gaussian 0.00 KDE 0.131 (0.005) 0.189 (0.003) 0.678 (0.034) 0.126 (0.001)
Gaussian 0.50 TV-best 0.087 (0.008) 0.131 (0.013) 0.346 (0.100) 0.013 (0.003)
Gaussian 0.50 TV-LS 0.092 (0.010) 0.137 (0.014) 0.456 (0.132) 0.063 (0.036)
Gaussian 0.50 TV-KL 0.096 (0.012) 0.152 (0.019) 0.534 (0.116) 0.016 (0.007)
Gaussian 0.50 KDE 0.127 (0.007) 0.283 (0.007) 0.846 (0.011) 0.107 (0.003)
Gaussian 0.90 TV-best 0.153 (0.008) 0.181 (0.021) 0.195 (0.074) 0.098 (0.010)
Gaussian 0.90 TV-LS 0.156 (0.012) 0.184 (0.025) 0.246 (0.092) 0.162 (0.031)
Gaussian 0.90 TV-KL 0.264 (0.017) 0.317 (0.071) 0.480 (0.278) 0.111 (0.022)
Gaussian 0.90 KDE 0.183 (0.009) 0.459 (0.009) 0.858 (0.009) 0.096 (0.005)
Student 0.50 TV-best 0.159 (0.009) 0.315 (0.037) 0.417 (0.085) 0.042 (0.004)
Student 0.50 TV-LS 0.165 (0.011) 0.320 (0.038) 0.472 (0.087) 0.093 (0.047)
Student 0.50 TV-KL 0.162 (0.010) 0.335 (0.038) 0.495 (0.088) 0.045 (0.010)
Student 0.50 KDE 0.200 (0.008) 0.648 (0.007) 0.934 (0.006) 0.143 (0.007)
Clayton 0.80 TV-best 0.080 (0.007) 0.140 (0.026) 0.155 (0.071) 0.013 (0.003)
Clayton 0.80 TV-LS 0.085 (0.010) 0.145 (0.027) 0.223 (0.108) 0.035 (0.026)
Clayton 0.80 TV-KL 0.085 (0.011) 0.154 (0.031) 0.255 (0.125) 0.015 (0.006)
Clayton 0.80 KDE 0.135 (0.008) 0.408 (0.008) 0.921 (0.007) 0.111 (0.005)
Frank 4.00 TV-best 0.093 (0.009) 0.107 (0.010) 0.253 (0.054) 0.009 (0.002)
Frank 4.00 TV-LS 0.096 (0.011) 0.111 (0.012) 0.324 (0.138) 0.049 (0.048)
Frank 4.00 TV-KL 0.099 (0.012) 0.117 (0.015) 0.335 (0.065) 0.011 (0.005)
Frank 4.00 KDE 0.130 (0.009) 0.226 (0.008) 0.707 (0.022) 0.103 (0.003)

Gumbel 8.30 TV-best 0.270 (0.010) 0.661 (0.010) 0.790 (0.009) 0.227 (0.011)
Gumbel 8.30 TV-LS 0.272 (0.010) 0.664 (0.010) 0.795 (0.010) 0.250 (0.022)
Gumbel 8.30 TV-KL 0.322 (0.030) 0.679 (0.012) 0.801 (0.010) 0.235 (0.013)
Gumbel 8.30 KDE 0.348 (0.010) 0.823 (0.003) 0.945 (0.002) 0.324 (0.006)
Gumbel 1.25 TV-best 0.068 (0.006) 0.119 (0.019) 0.190 (0.078) 0.007 (0.002)
Gumbel 1.25 TV-LS 0.072 (0.009) 0.124 (0.021) 0.265 (0.127) 0.008 (0.004)
Gumbel 1.25 TV-KL 0.071 (0.008) 0.124 (0.020) 0.267 (0.129) 0.008 (0.003)
Gumbel 1.25 KDE 0.125 (0.007) 0.309 (0.006) 0.920 (0.008) 0.119 (0.004)

for this data. Fig. 8 plots the TV-LS on the left panel and the Gumbel copula density on the
right panel. They look similar, with some difference in the front corner.

7. Concluding Remarks

We presented a TV penalized maximum likelihood copula density estimate subject to the
constraints that the marginal distributions are standard uniforms. The linear equality constrained
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Table 5: Relative error REq(θ̂) for the simulated data from Gaussian(0.5) with n = 500, m = 32

MPLE-TV Parametric

Estimate Estimate RE1(θ̂) RE2(θ̂) RE∞(θ̂)
TV-LS Gaussian 0.1116 0.1807 0.7838
TV-KL Gaussian 0.0938 0.1517 0.6361
TV-LS Clayton 0.1373 0.1987 0.2440
TV-KL Clayton 0.1164 0.1813 0.2343
TV-LS Frank 0.1181 0.2202 1.9224
TV-KL Frank 0.1069 0.1915 1.6805
TV-LS Gumbel 0.5921 0.6974 0.9371
TV-KL Gumbel 0.6135 0.7004 0.9255
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Figure 7: Left: log(DBP) vs. log(SBP); Right: standardized ranks of log(DBP) vs. those of standardized ranks of
log(SBP)

TV regularized MPLE problem is solved by an augmented Lagrangian combined with operator-
splitting algorithm. A fast ROF/TV-L2 denoising solver is at the core of the method. The K-
fold CV regularization parameter selector based on integrated squared error or Kullback-Leibler
distance works well.

The extension of our method to trivariate copula density estimation requires solving a 3D
ROF/TV-L2 denoising problem in the step 1 of the operator-splitting iteration. The parametric
maximum flow algorithms in Goldfarb and Yin (2009) and code from Yin (2010) used in this
paper is capable of doing this. Hence our approach is readily to be extended to trivariate case. In
higher dimensions, nonparametric copula density estimation is more challenging due to the “curse
of dimensionality”.

The theoretical questions such as the consistency and convergence rate of the estimator wait to
be investigated. Few work exists regarding the asymptotic properties of TV regularized estimators,
even in denoising problems. The consistency theorems in 1D TV-denoising problems have recently
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Table 6: Number of successes of MPLE-TV estimate for selecting a parametric copula from 4 different parametric
candidates over 100 replications

MPLE-TV True
Estimate Copula n m RE1 RE2 RE∞

TV-LS Clayton(0.8) 125 16 53 38 35
TV-KL Clayton(0.8) 125 16 52 36 30
TV-LS Frank(4) 125 16 41 81 97
TV-KL Frank(4) 125 16 36 83 95
TV-LS Gaussian(0.5) 125 16 39 28 11
TV-KL Gaussian(0.5) 125 16 42 28 11
TV-LS Gumbel(1.25) 125 16 46 34 24
TV-KL Gumbel(1.25) 125 16 47 39 30
TV-LS Clayton(0.8) 500 32 96 80 65
TV-KL Clayton(0.8) 500 32 94 81 65
TV-LS Frank(4) 500 32 92 99 97
TV-KL Frank(4) 500 32 79 99 98
TV-LS Gaussian(0.5) 500 32 92 64 52
TV-KL Gaussian(0.5) 500 32 92 55 42
TV-LS Gumbel(1.25) 500 32 80 65 42
TV-KL Gumbel(1.25) 500 32 79 61 40
TV-LS Clayton(0.8) 2000 64 100 100 94
TV-KL Clayton(0.8) 2000 64 100 100 85
TV-LS Frank(4) 2000 64 100 100 99
TV-KL Frank(4) 2000 64 94 100 100
TV-LS Gaussian(0.5) 2000 64 99 91 64
TV-KL Gaussian(0.5) 2000 64 100 46 27
TV-LS Gumbel(1.25) 2000 64 97 96 84
TV-KL Gumbel(1.25) 2000 64 97 95 83

been proved in Dumbgen and Kovac (2009). Much work is ahead to establish the consistency
results for TV regularized density estimators.

The MATLAB code implementing the method is available on the authors website.
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Table 7: Relative error REq(θ̂) for the real data with n = 663, m = 38

MPLE-TV Parametric

Estimate Estimate RE1(θ̂) RE2(θ̂) RE∞(θ̂)
TV-LS Gumbel 0.2299 0.3162 0.3085
TV-KL Gumbel 0.2438 0.3261 0.3257
TV-LS Gaussian 0.2326 0.3512 0.7155
TV-KL Gaussian 0.2429 0.3519 0.7315
TV-LS Clayton 0.4064 0.7008 0.8767
TV-KL Clayton 0.3919 0.6944 0.8837
TV-LS Frank 0.2598 0.3907 2.5778
TV-KL Frank 0.2763 0.3880 2.4886
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