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Ground-penetrating-radar reflection attenuation
tomography with an adaptive mesh

Emily A. Hinz1 and John H. Bradford1

ABSTRACT

Ground-penetrating radar �GPR� attenuation-difference
analysis can be a useful tool for studying fluid transport in the
subsurface. Surface-based reflection attenuation-difference
tomography poses a number of challenges that are not faced
by crosshole attenuation surveys. We create and analyze a
synthetic attenuation-difference GPR data set to determine
methods for processing amplitude changes and inverting for
conductivity differences from reflection data sets. Instead of
using a traditional grid-based inversion, we use a data-driven
adaptive-meshing algorithm to alter the model space and to
create a more even distribution of resolution.Adaptive mesh-
ing provides a method for improving the resolution of the
model space while honoring the data limitations and improv-
ing the quality of the attenuation difference inversion. Com-
paring inversions on a conventional rectangular grid with the
adaptive mesh, we find that the adaptively meshed model re-
duces the inversion computation time by an average of 75%
with an improvement in the root mean square error of up to
15%. While the sign of the conductivity change is correctly
reproduced by the inversion algorithm, the magnitude varies
by as much as much as 50% from the true values. Our hetero-
geneous conductivity model indicates that the attenuation
difference inversion algorithm effectively locates conductiv-
ity changes, and that surface-based reflection surveys can
produce models as accurate as traditional crosshole surveys.

INTRODUCTION

Geophysical techniques have gained increasing use for character-
izing and monitoring subsurface hydrogeologic transport pathways
and mechanisms. Electrical methods such as DC resistivity and low-
frequency electromagnetic �EM� surveying are often used for map-
ping conductive plumes, and measurements can identify changes in

the location and concentration of conductive anomalies �Acworth
and Dasey, 2003; Chambers et al., 2003; Kim et al., 2004�.

Because intrinsic ground-penetrating-radar �GPR� attenuation
depends strongly on electrical conductivity, GPR is also a useful tool
for mapping conductive regions in the subsurface. Additionally,
some of the properties of GPR, such as its higher frequencies and the
wave propagation of the electromagnetic signal, allow for higher lat-
eral and vertical resolution of features than lower-frequency EM
techniques. A number of previous studies have investigated the use
of GPR in crosshole experiments for detecting and monitoring con-
ductive tracers through attenuation analysis �Liu et al., 1998; Day-
Lewis et al., 2003; Chang et al., 2004; Johnson et al., 2007�. These
studies demonstrate the practicality and usefulness of GPR attenua-
tion inversion for conductivity estimation, but they also note that the
technique is prone to more errors in conductivity estimation than
lower-frequency EM techniques because of the influence of noise in
the GPR amplitudes. Applying techniques such as regularization
methods or filtering and stacking during data processing may help
reduce the influence of noise in the conductivity analysis.

Whereas crosshole experiments have demonstrated the use of
GPR for monitoring conductivity changes, there has been little work
in applying the same technique to surface-based acquisition geome-
tries. Here, we formulate the attenuation difference problem for
multioffset GPR reflection data. Employing a number of simplifying
assumptions, GPR attenuation difference tomography can be mod-
eled and inverted like traditional slowness-based tomography. The
total change in attenuation recorded at a receiver is the sum of atten-
uation changes along the raypath between the transmitter and the re-
ceiver. Instead of traditional grid-based tomographic inversions, we
use adaptive-meshing theory to create a more even ray coverage
among all of the model’s cells. The objective of the adaptive mesh-
ing is to create an irregular mesh with every cell’s resolution value
between two user-defined thresholds. In addition to altering the in-
verse problem’s operator matrix and model matrix, adaptive mesh-
ing based on cell resolution allows for the visual incorporation of
resolution information into the final model. This new model can then
be used with any tomographic inverse algorithm based on ray
lengths per cell to compute the attenuation change within each cell.
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We investigate the adaptive meshing algorithm and reflection atten-
uation difference tomography using a simulated sand and cobble
aquifer.

ATTENUATION DIFFERENCE TOMOGRAPHY

Intrinsic GPR attenuation is strongly influenced by the bulk con-
ductivity of the medium the electromagnetic wave travels through.
As discussed by Bradford �2007�, the GPR frequency-dependant at-
tenuation � can be approximated by

� �
� ef

2
��

��
, �1�

where � ef�� �����.
The mathematical symbols are summarized in Table 1, and the

magnetic permeability is taken as ���0. Here we assume the imag-
inary term of the complex dielectric permittivity is approximately
independent of frequency over the bandwidth of the signal. This is
often reasonable in materials where GPR propagates effectively.
Furthermore, we assume only the DC component of conductivity is
changing with the addition of a saline tracer.

The observed electric field amplitude measured by GPR is a com-
bination of a variety of terms �Bradford and Deeds, 2006�:

A�A0
�S�RCSCRRTe��r

G
. �2�

The time-lapse amplitude difference �Johnson et al., 2007� caused
by a conductivity change between two times, 1 and 2, is

� A� ln�A1/A2�� �
j�1

N

�� jrj . �3�

For the purposes of our study, this simplified form of expressing am-
plitude change produces an equation where attenuation change can
easily be solved for with any number of inversion algorithms. The
relatively simple relationship between attenuation and amplitude
change relies on a number of assumptions, which can be briefly de-
scribed as follows:

1� Changes in intrinsic attenuation are the main driver of attenua-
tion differences implying that changes in reflection coefficients
between the two times are negligible. Analysis of amplitude
changes from FDTD modeling suggests scattering attenuation
affects and reflection coefficient changes are at least an order of
magnitude smaller than intrinsic attenuation changes �see the
synthetic data discussion below�.

2� Effective dielectric permittivity does not change through time
and conductivity changes are small, therefore velocity changes
between the two times are negligible. Velocity is given as

V���ef�

2
��1�� � ef

�ef�
�2

�1���1/2

. �4�

We expect effective conductivity changes due to the introduc-
tion of saline water in a typical tracer test to be on the order of
tens of �S/cm. A change of 100 �S /cm would result in only a
0.5% velocity change.

3� Conductivity and dielectric permittivity are independent of fre-
quency, and consequently dispersion is small. In the GPR fre-
quency band this approximation is often reasonable and is often
used in GPR analysis.

4� The grain surface conductivity effects are ignored, and the
high-frequency relaxation properties are constant so that the
only change between the models is DC water conductivity.

RESOLUTION-BASED ADAPTIVE MESHING

Our resolution-based adaptive meshing algorithm builds on ideas
presented by Böhm et al. �2000� and Ajo-Franklin et al. �2006�. An
overview of the processing steps needed for attenuation-difference
analysis is outlined in Figure 1. Because our inverse formulation
only considers intrinsic attenuation, the velocity analysis and pro-
cessing steps needed to create an appropriate velocity model and
stacked section are separate from the process needed for the adaptive
meshing and attenuation analysis. Additionally, because we assume
that there are negligible velocity changes, we can use the same ve-
locity model for all of the attenuation difference data sets. This also
implies that raypaths only need to be calculated once for all of the
data sets used to compare attenuation differences. The following
subsections outline the process of creating the resolution-based
mesh from a raw data set.

Table 1. Symbols for mathematical expressions.

Symbol Units Description

a �Archie’s� Fitting factor

A Amplitude

A0 Initial source signal amplitude

� Np/m Attenuation

CR Receiver coupling factor

CS Source coupling factor

�ef F/m Effective dielectric
permittivity

�� F/m Real dielectric permittivity

�� F/m Imaginary dielectric
permittivity

	 Porosity

G Np/m Geometric spreading

m �Archie’s� Cementation exponent

� H/m Magnetic permeability

N m Total raypath distance

n �Archie’s� Saturation exponent

�S Source radiation pattern

�R Receiver radiation pattern

R Reflection coefficient

� A Logarithmic amplitude
difference

r m Ray length

� S/m Conductivity

� ef S/m Effective conductivity

T Transmission loss across
overburden layers

� 1 /s Angular frequency

V m/s Velocity
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Horizon and amplitude picking

Horizons used to trace raypaths through the model in the attenua-
tion inversion are picked from stacked data. The stack may be gener-
ated via a standard NMO processing scheme or using time or depth
prestack migration. We pick horizons that are strongly reflective and
laterally coherent over a large lateral extent. They do not have to be
limited to the extent of a single geologic feature nor do they have to
be present throughout the entire section. We use the horizons to
guide amplitude-picking in the multioffset, moveout corrected do-
main.

To eliminate the effect of phase variation in the measured ampli-
tudes, we use the envelope function or instantaneous phase �Taner et
al., 1979�. We locate the local maxima of the envelope function in the
vicinity of the picked horizon then sum the amplitudes over one
wavelength symmetrically about the maxima. An imperfect mo-
veout correction may result in small remnant residual moveout
�RMO� that deviates from the picked horizon. We compensate for
this RMO by using the local maxima from each successive trace as a
starting point, thereby steering the horizon pick along RMO.

The integrated amplitudes at each horizon and offset are used as
the amplitude A in equation 3 for the attenuation analysis. All of the
reflection locations are found in one data set, and the same location is
used for all other attenuation difference data sets.

Initial model construction and meshing

Following the adaptive meshing concepts outlined by Böhm et al.
�2000�, we have chosen to use the dual relationships of Voronoi
polygons and Delaunay triangles as the geometric foundation of our
meshing algorithm. Both Voronoi polygons and Delaunay triangles
are constructed using nearest neighbor properties and information,
and a regular square grid is a special case of Voronoi polygons
�Goodman and O’Rourke, 2004�. The initial model is created by
populating the model area with a set of points that are then associated
with constrained Voronoi polygons and Delaunay triangles �Figure
2�. Our algorithm starts with a Delaunay triangulated mesh for
wavefront-based ray tracing and then converts the mesh to Voronoi
polygons for adaptive meshing. While triangulated mesh offers an
efficient data structure for calculating raypaths through the model,
our adaptive-meshing algorithm is more easily implemented with
Voronoi polygons.

Each point in the model area, also known as a Voronoi site, is en-
closed by a unique Voronoi polygon and is also a vertex of a De-
launay triangle. Unconstrained Voronoi polygons are polygons
whose edges are equidistant to the neighboring Voronoi sites. Con-
strained Voronoi polygons are clipped by secondary line segments,
and, consequently, these polygons may violate the fundamental
nearest-neighbor property of Voronoi polygons. For our adaptive-

meshing algorithm, the only constraints on the Voronoi polygons are
the model area boundaries.

While both triangulations and Voronoi polygons have been used
in previous mesh-adaptation studies �Böhm et al., 2000; Ajo-Frank-
lin et al., 2006�, the use of polygons instead of triangles for the adap-
tive meshing has two advantages. First, for a given set of points, the
number of Voronoi polygons is about 1

2 to 2
3 the number of Delaunay

triangles, and this will result in smaller matrices for the inversion al-
gorithm. Second, the resolution-based mesh-altering algorithm that
we define below is easier to implement with Voronoi polygons be-
cause deletion or addition of an entire polygon is simply the deletion
of the polygon’s unique Voronoi site or the addition of another
Voronoi site within the polygon. The new model is created by remak-
ing the Voronoi polygons. However, the adaptive-meshing algo-
rithm we present could be rewritten for use on a triangulated mesh
instead, by redefining the deletion or addition algorithm.

Ray tracing

Efficient and robust raypath computation is a critical component
in the design of the ray-tracing algorithm. We accomplish this by
first using a fast-marching eikonal equation for triangulated meshes
�Kimmel and Sethian, 1998; Sethian and Vladimirsky, 2000; Raw-
linson and Sambridge, 2004; de Kool et al., 2006� to calculate the
wavefront arrival time from each source location through complex
velocity fields �Rawlinson and Sambridge, 2004; de Kool et al.,
2006�. Raypaths are then traced along time gradients computed at
each node of the triangular mesh to first order accuracy. The triangu-
lated mesh ensures that nonhorizontal horizons can be modeled with
the reflecting rays �Rüger and Hale, 2006�. In addition, the accuracy
of the computed time gradients and the resulting ray tracing is affect-
ed by the point sampling density of the velocity model which is a
function of the coarseness of the triangulated mesh. We trace reflect-
ing rays using a method based on the algorithm of Rawlinson and
Sambridge �2004� which efficiently finds large sets of rays that share
the same source point. For each unique source position, a synthetic
wavefront is propagated through the entire model, and the travel-
times to every node are calculated and stored. The primary upgoing
reflected wave is then computed from each reflecting horizon. For
each horizon, the traveltime at each node along the horizon is used as

Velocity inversion

Pick horizons
for attenuation

analysis

Get amplitudes
along horizons

Radargrams Velocity model

Attenuation-
difference
energy ratios

Trace rays to
horizons

Attenuation
difference
inversion

Conductivity
change model

Figure 1. Outline of model creation and processing steps.
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Figure 2. �a� Voronoi polygons constrained by the bounding rectan-
gle and �b� dual Delaunay triangulation for a set of points. The points
�asterisks� are both the vertices of the triangulation and the Voronoi
sites.
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the initial conditions for a new fast-marching eikonal computation.
The traveltimes are converted into time gradients through trilinear
interpolation. Rays are then traced backwards through the time gra-
dients, starting at the receiver and ending at the source. This shot-
point and Eikonal wavefront-based approach is an especially effec-
tive method for tracing rays in common-source gather �CSG� geom-
etry, where the number of receiver locations is greater than the num-
ber of source locations.

Resolution-based adaptive meshing

We utilize adaptive meshing to redistribute model cells so that all
of the cells possess resolution values between a user-defined minima
and maxima. These criteria result in a model where areas with very
high resolution contain more cells than areas with low resolution.
The adaptive meshing algorithm we have implemented is based on
Böhm et al. �2000� and Rüger and Hale �2006�. The algorithm uses
the diagonals of the resolution matrix derived from the singular-val-
ue decomposition �SVD� of the model matrix D:

D�U
�
VT. �5�

D is an M
N matrix, where M is the number of rays and N is the
number of cells that contain the ray length per cell. The decomposi-
tion results in three matrices, U, �, and V, containing data-related
eigenvectors, the square root of eigenvalues, and model-related
eigenvectors, respectively. The resolution matrix R is calculated as

R�V
VT �6�

and ranges from zero to one, where zero is a cell with no intersecting
rays and one is a perfectly resolved cell. The diagonal of the resolu-
tion matrix, which we will term the fitness vector, contains informa-
tion on the resolution of each polygon. In addition, we include a min-
imum segment-length criterion to prevent infinitely thin cells along
the raypath. This ray-length criteria is problem-specific, but factors
such as the GPR wavelength resolution and the positioning accuracy
of the ray-tracing algorithm should be incorporated into the choice
of the minimum segment length. We find that the minimum segment
length should be at least the vertical resolution of the GPR system, 1

4
of the wavelength, to approximate the accuracy of locating the
picked horizons.All cells are required to contain at least one ray seg-
ment with a ray length greater than the minimum segment length cri-
teria. The choice of the minimum required ray-segment length is im-
portant to keep the polygons larger than the wavelength used to cal-
culate the amplitude changes, and within the accuracy of the ray-
tracing algorithm to correctly position raypaths in the model.

Computing the SVD of a matrix becomes increasingly time con-
suming and problematic for very large matrices that are typical for
tomographic problems, and the calculation can become a bottleneck
in the adaptive-meshing routine. Instead of calculating the SVD of
matrix D, we approximate the SVD through a truncated Lanczos
bidiagonalization algorithm developed by Larsen �1998� for the
Pavtial Reorthogonalization Package �PROPACK�. Because the res-
olution matrix is used as a guide to split or merge Voronoi polygons
and not for a full inversion of the data, the adaptive-meshing algo-
rithm can use an approximation to the full SVD. We arbitrarily keep
the 66% of the largest eigenvalues to approximate a truncated SVD.
Truncation increases the speed of calculating the resolution matrix,
and it also results in more stable decompositions. Zhang and Thurber
�2007� give a more in-depth discussion on the use of Lanczos bidi-
agonalization for approximating the SVD and resolution matrices.

Two thresholds, a polygon-splitting and polygon-merging thresh-
old, are defined by the user. The merging threshold is a minimum al-
lowable fitness value whereas the splitting threshold is a maximum
fitness value. Polygons with fitness values below the merging
threshold or that do not contain a ray segment above a minimum seg-
ment length are deleted. In contrast, polygons with fitness values
above the splitting threshold are split into two separate polygons.
When polygons are split, we sacrifice some of the ray density and
model resolution for a smaller cell. An extreme example of this case
would be a model covered by a single cell. While this cell has a fit-
ness value of one, the model has averaged all of the spatial informa-
tion into a single cell. Because each polygon is defined by a single
unique Voronoi site, the merging and splitting routines can operate
on the set of Voronoi sites, and a new Voronoi polygon set is comput-
ed from the altered point set. Each time a new Voronoi polygon set is
constructed, a new resolution matrix is calculated for the updated
model. The adaptive-meshing algorithm iterates until all of the poly-
gons possess fitness values that lie within the acceptable fitness
threshold or until a user-defined number of iterations are performed.

The merging and splitting thresholds are problem specific, and
picking appropriate values often involves some experimentation to
evaluate the effect of different ranges on the model space. The merg-
ing and splitting thresholds also greatly affect the size of the final
model, and consequently, the thresholds directly affect the computa-
tional expense in calculating an inverse solution. A narrower split-
ting and merging range will result in a more even distribution of rays
and eigenvalues than a broader range, but at the same time, a narrow-
er range will result in reshaping more cells and larger computations
than a broader range. In general, we recommend a conservative split-
ting threshold between 0.8 and 0.9 and a merging threshold between
0.4 and 0.6. These criteria result in a new model space with an ade-
quate compromise between high fitness values, a relatively narrow
fitness range, and computation time.

Attenuation difference inversion

The simultaneous iterative reconstructive tomography �SIRT� al-
gorithm provides a simple approximation to a least-squares inver-
sion to solve for the attenuation change per Voronoi polygon. Ray-
length averaged updates to the attenuation are computed and applied
once per iteration. We implement the parameter update weighting
method presented in Aster et al. �2005�, which weights based on the
number of ray segments per cell and ray length.Amajor drawback of
using an irregular mesh for the model space instead of a regular grid
is that regularization techniques that utilize spatial derivatives are
difficult and computationally costly to implement. Many spatially-
based regularization techniques, such as L2-normalization, are de-
fined only for rectangular grids. Our inversion uses no additional
constraints on the range of attenuation values or smoothing regular-
ization. The attenuation change is converted into effective conduc-
tivity change by solving for conductivity using equations 1 and 3.

SYNTHETIC AQUIFER EXAMPLE

Wavefield simulator

We use a finite-difference time-domain �FDTD� algorithm to cre-
ate synthetic GPR common source gathers. The FDTD algorithm
uses standard second-order accurate finite-difference operators �Le-
vander, 1989� to solve the two-dimensional, isotropic, second-order
electric-field wave equation with nonzero conductivity. An absorb-
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ing boundary condition is implemented by introducing the conduc-
tive region around the model space. We simulate TE polarization
�field perpendicular to model plane� and introduce a profile perpen-
dicular line source at the surface of the model. For all simulations be-
low, we use a 100 MHz Ricker wavelet as the source. Because we
are inverting for attenuation changes and we will assume that there is
no attenuation or dielectric permittivity change near the antenna po-
sitions, we can ignore antenna directionality.

Forward modeling

The aim of our synthetic aquifer example is to simulate a saline
tracer injected at depth into a permeable sand unit. We produce a
model of the subsurface with realistic heterogeneity by incorporat-
ing velocity and conductivity heterogeneities derived from a modi-
fied photograph of a sand-gravel outcrop �Figure 3�. This outcrop is
an analog of the subsurface materials and properties at the Boise Hy-
drogeophysical Research Site �BHRS�, located 2.5 km downstream
of the outcrop. The BHRS is a research well field southeast of Boise,
Idaho, underlain by an approximately 20-m-thick sequence of un-
consolidated sandy pebble- and cobble-dominated fluvial sequences
�Barrash and Reboulet, 2004�. While the synthetic aquifer example
is not designed to perfectly simulate the geology and stratigraphy be-
neath the BHRS, the photo-derived properties simulate realistic het-
erogeneous distributions of petrophysical properties.

To produce a subsurface model, the photograph is converted to
gray scale, and the pixel values are then interpolated to porosity by
assigning porosities that range from zero for black cells to one for
white cells. Visual inspection of the outcrop reveals that light colors
in the photograph correspond with sandy units while dark colors cor-
respond with cobble units. Porosity values are clipped to a maximum
of 0.5 to prevent unrealistically high porosities, and the high resolu-
tion photograph is resampled to a pixel size equivalent to the spatial
step size of the FDTD algorithm �Figure 4a�.Acomparison of the po-
rosity values from different units of our synthetic outcrop model and
the overall porosity distribution is shown in Figure 5.

We introduce a shallow water table into the porosity model at
1.5 m. We assign a pore water saturation of 18%, due to residual wa-
ter content, within the vadose zone, and the pores are assumed to be
fully saturated below the water table. The vadose zone pore water
saturation is analogous to values observed at the BHRS. Since our
conductivity change anomaly will be contained within the fully satu-
rated zone, varying the choice of residual water saturation in the va-
dose zone or the nature of the saturated-unsaturated zone contact
will only slightly affect the raypaths traced through the model and
will not significantly affect the final attenuation inversion. We also

assume the matrix material is composed of only sand grains, and
therefore we can useArchie’s Law and a three phase complex refrac-
tive index method �CRIM� equation to approximate the effective
conductivity and dielectric permittivity, respectively �Figure 4b and
c�.

Archie’s Law is an empirical formula that relates the effective
conductivity of a clean sandstone sample to the effective conductivi-
ty of the pore water �Knight and Endres, 2005�. The equation as-
sumes a resistive matrix so that the majority of a sample’s conductiv-
ity is from the pore water w:

� �
1

a
� w	 mSw

n . �7�

The dielectric permittivity, and hence velocity, is estimated by mix-
ing the matrix and fluid conductivities using the CRIM equation
�Wharton et al., 1980�. For our three-phase system �solid matrix m,
water w, and air a�, the CRIM equation can be written as
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Figure 3. Enhanced grayscale photograph of a sand-cobble outcrop
used to construct the BHRS analog synthetic models.
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Figure 4. �a� Porosity, �b� velocity, and �c� conductivity values for
the background model derived from Figure 3. �d� Conductivity
change from increasing the water conductivity by 100 �S /cm with-
in one sand unit. The water table is at 1.5-m depth and can be seen as
a sharp discontinuity in both the derived velocity and conductivity
models �b and c�.
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��� �1�	 ���m�	 Sw
��w�	 �1�Sw���a. �8�

Other parameters used to create the surface-based synthetic radar-
grams are described in Table 2.

The conductivity change is modeled by increasing water conduc-
tivity by 100 �S /cm within the �0.5-m-thick sand lense centered at
4.5-m depth between 9- and 17-m distance, and this water conduc-
tivity change results in a bulk conductivity change of approximately
30 �S /cm �Figure 4d�. Water conductivity values are smoothed
around the edges of the sand lense to simulate slight dispersion of the
conductive water. Additionally, a flat clay layer is appended to the
bottom of the model to give a strong coherent reflector that allows us
to check the quality of our velocity model and migration.

Amplitude-repeatability tests at the BHRS with a Sensors and
Software PE100A using 100-MHz antennas indicate that logarith-
mic real enveloped amplitude difference RA typically vary by as
much as 0.05. The change in conductivity used in our synthetic aqui-
fer example creates amplitude differences at their maximum of
0.2–0.3, or approximately an order of magnitude larger than the
noise level of real GPR data. Uniformly distributed random noise
between �0.05 to 0.05 were added to the logarithmic amplitude dif-
ferences to simulate the expected noise level.

Preprocessing

As implemented by Stork �1992�, we use a reflection tomograph
in the prestack depth migration �PSDM� domain to estimate the ve-
locity model. In this method, traces are prestack depth migrated with
an initial velocity model, and reflectors are then checked to see if
they are flat-lying in the common-imaging-point �CIP� domain. An
incorrect velocity model will result in reflectors that are not flat, and
the offset-dependent change in the reflector is the residual moveout.
The velocity model is updated to remove residual moveout, and the
data are then remigrated. This process is repeated until the RMO
analysis converges on a velocity model. Bradford �2006, 2008� and
Bradford et al. �2009� provide a more detailed discussion of reflec-

tion tomography analysis with GPR data. The resulting velocity
function from the reflection tomography analysis is able to repro-
duce large-scale velocity variations of the original model �Figure 6�.
Velocity estimates along the edge of the migrated stack are less well-
constrained because these regions have less fold to constrain the ve-
locity inversion process.

We picked four horizons from the PSDM stack: two horizons de-
fining the top and bottom of the sand lens, and an additional horizon
above and below the sand lens �Figure 7�. The amplitudes along each
of the picked horizons are used with equation 3 to compute the am-
plitude ratio RA. With our aquifer model, we were able to confidently
pick the top of the sand unit, but the sand lens quickly thins below the
100-MHz wavelet resolution limit making it difficult to accurately
pick the entire length of the bottom of the sand unit. Small inaccura-
cies in the location of picked horizons are a result of the finite band-
width of the 100-MHz data and inaccuracies in our estimated veloci-
ty model. The velocity model produced through the RMO velocity
analysis procedure overestimates areas of low velocity and underes-
timates areas of high velocity by about 0.01–0.02 m /ns �Figure 6�.

Table 2. Property values used to generate the surface-based
synthetic aquifer data.

Property Phase Value

Dielectric constant Sand matrix 4.7

Dielectric constant Water 81

Dielectric constant Air 1

Conductivity ��S/cm� Sand matrix 0

Background model conductivity ��S /cm� Water 220

Saline tracer conductivity ��S /cm� Water 320

a �Archie’s� 1

n �Archie’s� 2

m �Archie’s� 1.3

FDTD spatial cell width and height �m� 0.0244

FDTD time step �ns� 0.1251

Resampled time step �ns� 0.8

Total time �ns� 500

Source spacing �m� 1

Receiver spacing �m� 0.2
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Figure 6. �a� The original velocity function shown in Figure 4b with
a 1
1 m running median smoothing operator applied. �b� Velocity
field created from reflection tomography inversion. The velocity
field is truncated to the range with good RMO velocity control, and
the color scale is clipped more severely than for �a� to better high-
light regions of velocity changes. �c� The velocity difference be-
tween �b� and �a�.
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Over the region of the conductivity change, the velocity is overesti-
mated resulting in migration horizons in this region that appear
deeper than their true position. The horizon is at the peak amplitude
of the reflected wavelet in the migrated depth-domain data, whereas
the true location of the reflector is better represented by the first
break.

Results

The initial model grid consists of 1600 0.5-m square cells through
which 5113 reflecting rays were traced to the four picked horizons
�Figure 7�.As with most tomographic problems, the synthetic model
is overdetermined; the number of observations, in this case the num-
ber of rays and corresponding amplitude changes, is much greater
than the number of model cells. Only source, receiver, and horizon
combinations that result in finding a local amplitude maximum with-
in a single wavelength in the envelope trace function are used to
trace rays. Some of the picks along the horizons, such as along hori-
zon 4 �Figure 7b�, exhibit small negative amplitude ratio changes,
approximately 5% of the maximum computed amplitude ratio, be-
fore the addition of noise. Negative changes result from small scat-
tering attenuation effects, but these negative changes are approxi-
mately an order of magnitude smaller than the intrinsic attenuation-
difference effects.

Five iterations of the adaptive-meshing algorithm with fitness val-
ues constrained between 0.8 and 0.6 and a minimum ray segment
length of 0.25 m were applied to a 0.5-m square grid starting model.
The resulting adaptively meshed �AM� model consists of 1596 poly-
gons for the surface-reflection tomography example �Figure 8�. Af-
ter five iterations of the adaptive-meshing algorithm our algorithm
had not yet found the optimal distribution of cells, and theAM model
contains some cells that violate the adaptive-meshing criteria. How-
ever, because remeshing is a computationally intensive process for

our large model, five iterations are sufficient to gain some of the
adaptive-meshing algorithm’s benefits in inversion efficiency and
resolution distribution.

The picked reflecting horizons can be used to further constrain the
inversion model. Clipping theAM model polygons by the picked ho-
rizons results in 1800 polygons. We will refer to this horizon-con-
strained variation on the adaptively meshed model as theAMH mod-
el. Some of the polygons in the AMH model, however, violate the
minimum segment length or the fitness criteria. Additionally, the
clipped polygons are no longer true Voronoi polygons. A more so-
phisticated adaptation algorithm that incorporates horizons as line
constraints into the adaptive meshing process that would allow for
all of the polygons to still adhere to the minimum segment length and
fitness criteria, but this is beyond the scope of this paper.

The conductivity change inversion was performed on the original
grid and the AM and AMH models. The SIRT inversion found a
model with a minimum error 100 iterations sooner, or about 25% of
the number of iterations, for the adaptive-mesh model than for the
original square grid. Likewise, the decrease in iterations and the in-
crease in the number of polygons is also reflected in the total CPU
time and memory used in the inversion �Table 3�. The derived con-
ductivity model produced by the SIRT inversion for the original grid,
AM, and AMH models locate a large ��10 �S /cm� positive con-
ductivity change between 10.5- and 18.5-m x-distance and a depth
between 4 and 5 m �Figure 9�. TheAMH model incorporates the ray-
tracing horizons and gives a better visualization as to where the am-
plitude data originates.
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Figure 7. �a� Unprocessed synthetic shot gathers derived from the
synthetic aquifer background and post-conductivity change models.
The difference between the two gathers is shown with amplitudes
magnified by a factor of 10. �b� The stacked and migrated section for
the background model and �c� a common-imaging-point gather
showing the location of the picked horizons.

D
ep
th
(m
)

0

2

4

6

8

10

12

14
0 5 10 15 20

Distance (m)

1

0.5

0

a)

0

2

4

6

8

10

12

14
0 5 10 15 20

Distance (m)

D
ep
th
(m
)

b)
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rectangular grid and �b� after adaptive meshing for the surface-re-
flection survey geometry.
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All of the inverted conductivity models from the surface-based re-
flection models, shown in Figure 9, underestimate the conductivity
change. Furthermore, some cells contain negative conductivity
changes as a result of some negative amplitude changes between the
presaline and postsaline injection models �Figure 9�. The inversion
models also all incorrectly place a small area of conductivity change

with a magnitude of about 5 �S/cm around a distance of 17 m. This
spurious region is related to a failure in amplitude summing and dif-
ferencing along the picked horizons.

We calculate the misfit and the rms error between the original
noise-free conductivity difference model �Figure 4d� and the tomog-
raphic models �Figure 9� by interpolating the tomographic models
back onto the original grid. Comparing the inversion results using
the surface geometry with respect to the original noise-free model,
the clipped adaptively meshed model has the smallest rms error
�0.0028 �S /cm per cell�, followed by the adaptively meshed model
�0.0029 �S /cm per cell� and then the 0.5-m square grid
�0.0033 �S /cm per cell�. Thus, for our example, adaptive meshing
provides a 12–15% improvement over the regular grid.

Comparison to crosshole geometry

For comparison, we also simulate a crosshole radar experiment
with the same synthetic data set. We place a source at 0.5-m intervals
with receivers at 0.2-m intervals. These source and receiver spacing
are coarser than typically found in borehole radar surveys, but this
geometry yields a comparable number of rays to the surface-reflec-
tion tomography data set. Boreholes are located at an x-distance of
5 m and 21 m and span the entire depth of the model area. Sources
and receivers were placed in both wells, and only direct wave energy
was picked for use in calculating amplitude differences.

Instead of reflection events, the crosshole model uses first arrival
energy, comprised of both refracted and direct energy for the attenu-
ation difference tomography. A total of 4107 rays were traced
through the initial model.After applying the same adaptive-meshing
criteria used with the reflection model, the model contained 924
polygons �Figure 10�. The region of poorer resolution and conse-
quently larger cells in the adaptively meshed model between 2- and
5-m depth is a result of refracted events arriving before the direct
wave for some of the source and receiver combinations.

The crosshole conductivity inversion places the region of conduc-
tivity change over a broader area than the surface reflection inver-
sion �Figure 11�. The spatial extent, both lateral and vertical, of the
region of conductivity change is also poorly constrained by the
crosshole inversion. The poorer conductivity change estimates are a
result of the crosshole raypath geometry. As shown by the fitness es-
timates in Figure 10a, the region of the conductivity change has the
poorest ray coverage and resolution in the model space. Not only
does this result in a poor lateral and vertical constraint on the shape
of the region of conductivity change, but the poor ray coverage also
smears the conductivity change over the length of the raypaths that
do image the conductivity change anomaly. An example of this
smearing is illustrated in Figure 11a and b as small positive conduc-
tivity changes between a distance of 7 and 8 m at a depth of 8 m.

Unlike the surface reflection model, the crosshole model does not
show any improvement in rms error in the model area between the
two wells; both the square grid and AM model have an rms error of
0.0032 �S /cm per cell. However, the SIRT inversion still found a
minimum error model approximately 100 iterations sooner for the
AM model.

DISCUSSION

The distribution and size of polygons in the adaptively meshed
model provides information on the ray density through the model
and also increases the spatial resolution in certain areas of the model.
Since the densest ray coverage occurs near the surface of the model,

Table 3. Computer performance metrics for the
surface-reflection SIRT conductivity inversions.

CPU Time �s� Relative Memory Usage

Grid 550 1

AM 170 1.07

AMH 120 1.27
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Figure 9. Estimated DC conductivity values computed from the at-
tenuation inversion with �a� the grid, �b� the AM, and �c� the AMH
models. The region of conductivity change is outlined in all three
models.
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the shallowest portions of the model have the highest fitness values
in the original grid, and a majority of the polygons in the AM model
cluster near the surface �Figure 8�.As a result, polygons in areas with
dense ray coverage and fitness values larger than the splitting thresh-
old are smaller than the original 0.5 m
0.5 m cells. In these areas,
the AM model can better resolve the spatial distribution of conduc-
tivity anomalies. However, in regions where ray coverage is sparse
and the fitness values of the cells are smaller than the merging thresh-
old, the polygons in the AM model are larger than the original grid.
The shape of conductivity anomalies in these areas will appear less
well-resolved in the AM model, but the low resolution in these areas
of the original grid would result in a poor inverse solution.

Besides the resolution matrix, another method of evaluating the
quality of the model space is to look at the resulting eigenvalues. Ide-
ally, the squared eigenvalues should all be equal, creating a flat
eigenspectrum. For instance, after adaptive meshing, the truncated
eigenspectrum is flatter for the synthetic aquifer example �Figure
12�. Applying more iterations and narrowing the merging and split-
ting thresholds used in the adaptive-meshing algorithm would result
in greater flattening of the spectrum. However, the SVD resolution-
based adaptive-meshing algorithm that we implement requires solv-
ing for the operator matrix at each iteration of the remeshing algo-
rithm, and this is a computationally intensive operation. Deriving
different remeshing criteria independent of large matrix calculations
associated with the SVD would greatly speed up the adaptive-mesh-
ing algorithm. Additionally, different criteria will affect the final
model and the conductivity inversion. Exploration of the impact of

remeshing techniques on the inversion could yield improved adap-
tive-meshing techniques.

Because our adaptive-meshing algorithm does not incorporate
geometric constraints, the adaptively meshed polygons are not con-
strained by any of the picked reflecting horizons. However, includ-
ing the reflecting horizons in the new data set could increase the ac-
curacy of the conductivity inversion. This is especially true in our
two examples where the conductivity anomaly is confined within a
layer that is also used as a reflecting horizon.

For our example, the multioffset reflection data creates a better es-
timate and spatial representation of the region of conductivity
change than the comparable crosshole data. Because the area of con-
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ductivity change is located near the water table, a large number of
crosshole first arrivals are rays that refract through the higher-veloci-
ty vadose zone rather than arrive as energy traveling directly through
the conductivity anomaly. Furthermore, the reflecting horizons used
with the reflection data inversion constrain the vertical extent of the
conductivity change.

Picking ray-tracing horizons that closely constrain the top and
bottom of the region of conductivity change helps to constrain the
model vertically. The good vertical resolution of the conductivity
change from surface-based reflection tomography is a result of the
conductivity change being confined in the model by strong reflec-
tors. The reflectors allow us to pick the top and bottom of the conduc-
tivity change as reflecting horizons. The lateral resolution of the con-
ductivity anomaly is limited by the source spacing because the zero
and near-zero offset traces provide the best lateral constraints for the
inversion.

All of the SIRT inversion results underestimate the DC conductiv-
ity within the plume �Figure 13�. This is partly a result of some un-
certainty in picking identical reflectors for amplitude comparison,
and the noise added to the picked amplitudes but underestimation is
mainly a result of the tomographic inversion process. This phenome-
non associated with ray-based tomography has been observed in to-
mographic inversion and is the impetus for developing new methods
of inversion �Böhm et al., 2000; Lane et al., 2004; Johnson et al.,
2007�. Tomographic inversion averages the attenuation change
along the length of the raypath, and this can result in smearing the at-
tenuation change over a larger region and along the raypath. Smear-
ing is particularly evident in the crosshole conductivity change esti-
mates �Figure 11�.

CONCLUSIONS

Unlike crosshole GPR attenuation tomography, the quality of sur-
face-based reflection attenuation tomography depends on the num-
ber and distribution of reflectors and on the accuracy of identifying
the location of those reflectors. For instance, inaccuracies in the ve-
locity model used for migration propagate into the final conductivity
inversion. Furthermore, while reflection tomography offers the abil-
ity to both laterally and vertically resolve conductivity anomalies,
the vertical extent of the region of conductivity change will be less

well resolved unless the anomaly is confined between well resolved
reflectors. Vertical resolution can be improved by incorporating far
offsets into the attenuation inversion and by choosing horizons close
to the area of expected conductivity change. Likewise, the lateral
resolution of the shape of the conductivity anomaly is dependent on
the geometry of data acquisition. Source spacing affects the density
of near-offset data that provide spatial constraints on the lateral ex-
tent of conductivity change. Large offsets can also improve lateral
and vertical resolution, especially for conductivity anomalies that
span multiple reflectors.

Adaptive meshing based on the resolution matrix of the model
space creates a new model space with a more even distribution of
model resolution and a flatter eigenvalue spectrum. By using the res-
olution matrix to steer the adaptive meshing, we use the distribution
of data to drive the creation of our new model space. The new model
space concentrates model polygons where the ray density and reso-
lution is at its greatest and reduces the number of model polygons
where the resolution is small or rays are nonexistent.

The redistribution of rays per polygon by the adaptive-meshing
algorithm results in a faster SIRT inversion for the adaptively
meshed model compared to the regular grid model. For our synthetic
aquifer data set, the inversion using the adaptively meshed model
completed in a quarter of the iterations used by the 0.5-m square
gridded model. In addition to a faster inverse result, the adaptively
meshed model allows for more rapid testing of different inversion
parameters and methodologies. Whereas our inversion uses a simple
SIRT inversion algorithm, the inversion results may be improved by
using a more sophisticated inversion algorithm or by including regu-
larization. Translating existing regularization techniques or devel-
oping regularization techniques that can be applied to arbitrary
meshes remains an area of research for adaptive-meshing inversion.

The adaptively meshed model creates an intuitive incorporation
of the model’s resolution into the final inversion product, and pro-
vides a visual representation of regions within the model that are bet-
ter constrained by the data. If a conductivity change anomaly is lo-
cated within an area of dense ray coverage, the adaptively meshed
model will be able to better spatially resolve the shape of the anoma-
ly because of the density of smaller cell sizes within high resolution
areas. Adaptive meshing provides a method for altering the model
resolution without adversely affecting the inversion method’s ability
to solve for conductivity change.

From our synthetic model, we predict that reflection-based GPR
attenuation difference tomography can be used to detect conductivi-
ty changes on the order of tens of �S/cm. While the inversion algo-
rithm could not match the magnitude of modeled conductivity
changes, the inverted model does match the overall trend of conduc-
tivity change: regions with the greatest increase in conductivity were
assigned larger conductivity change values than regions with less
conductivity change. Reflection data is most suitable for imaging
near-surface conductivity changes in the presence of multiple coher-
ent reflectors. For many near-surface experiments, conductivity
change estimates from reflection attenuation difference tomography
should be comparable to crosshole tomography estimates.
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