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Online Identification of the Rotor Time Constant
of an Induction Machine

Ahmed Oteafy, Graduate Student Member, IEEE, John Chiasson, Senior Member, IEEE,
and Marc Bodson, Fellow, IEEE.

Abstract—Indirect field oriented control of an induction
machine requires knowledge of the rotor time constant to
estimate the rotor flux linkages. An online method is described
for estimating the rotor time constant and the stator resistance
both of which vary during operation of the machine due to
ohmic heating. The method formulates the problem using a
nonlinear least-squares criterion and is guaranteed to find the
minimizing solution (parameter values) in a finite number of
steps. In this work the algorithm has been implemented online
in simulation with the results demonstrating its application and
efficacy.
Index Terms—Induction Motor, Rotor Time Constant, Pa-

rameter Identification

I. INTRODUCTION

The field-oriented control method provides a means to
obtain high-performance control of an induction machine
for use in applications such as traction drives. This field-
oriented control methodology requires knowledge of the
rotor flux linkages, which are not usually measured [1][2]. In
order to circumvent this problem, the rotor flux linkages are
estimated using an observer, and this observer requires the
value of the rotor time constant TR. However, the rotor time
constant varies due to ohmic heating. The work presented
here implements in simulation an online method which
allows the value of the rotor time constant to be updated
during normal operation of the machine.
Standard methods for the estimation of induction motor

parameters include the blocked rotor test, the no-load test,
and the standstill frequency response test. However, these
approaches cannot be used online, that is, during normal
operation of the machine. The interest here is in tracking
the value of TR = LR/RR as it changes. A model based
approach is considered here, which uses measurements of
the stator currents, stator voltages, and rotor speed to find
the parameter values that best fit this data set to the model
in a least-squares sense. The method is implemented online,
and simulation results of the tracking of TR are presented.
In [3][4], the authors developed a regressor model that was

nonlinear in the unknown parameters and used elimination
theory (resultants) to solve for the parameter values that
minimized the squared error. That methodology, though
computationally intensive, made no simplifying assumptions
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on the system model with the only restriction being that the
system was sufficiently excited, which is true as long as there
is a load on the motor or it is accelerating. Here we consider
the special case in which the machine is running at constant
speed during the data collection, which is not a restrictive
requirement in most industrial variable speed drives. This
constant speed assumption allows the implementation of
a method to estimate the rotor time constant and stator
resistance that is less computationally intensive than the
method proposed in [4][5].

The method is a simplification of the nonlinear least-
squares method presented in [4][5] where it is shown that the
computational complexity of this algorithm is significantly
reduced. In particular, the (reduced complexity) method pre-
sented here comes down to solving a 5-th order polynomial
rather than a 20-th order polynomial as in [4][5]. The
estimation method is used in combination with an input-
output linearization controller ([2][6][7]).

A combined parameter identification and velocity esti-
mation problem is discussed in [8][9] where the speed is
assumed to be slowly varying. In [10][11] a linear least-
squares approach was used for parameter estimation and
solved by assuming a slowly varying speed. For a summary
of the various techniques for tracking the rotor time constant,
the reader is referred to the recent survey [12].

The paper is organized as follows. Section II introduces
a standard induction motor model. Section III develops the
linear regressor model assuming the motor is at constant
speed. Section IV summarizes an algorithmic implementation
of the method, with simulation results presented in Section
V. Finally, concluding remarks and future work are discussed
in Section VI.

II. INDUCTION MOTOR MODEL

Standard models of induction machines are available in the
literature. Parasitic effects such as hysteresis, eddy currents,
magnetic saturation, and others are generally neglected.
Consider a state-space model of the system given by (cf.
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[6][7][2])

diSa
dt

=
β

TR
ψRa + βnpωψRb − γiSa +

1

σLS
uSa

diSb
dt

=
β

TR
ψRb − βnpωψRa − γiSb +

1

σLS
uSb

dψRa
dt

= − 1

TR
ψRa − npωψRb +

M

TR
iSa (1)

dψRb
dt

= − 1

TR
ψRb + npωψRa +

M

TR
iSb

dω

dt
=

Mnp
JLR

(iSbψRa − iSaψRb)− τL
J

where ω = dθ/dt with θ the position of the rotor, np is the
number of pole pairs, iSa, iSb are the (two-phase equivalent)
stator currents, ψRa, ψRb are the (two-phase equivalent) rotor
flux linkages, and uSa, uSb are the (two-phase equivalent)
stator voltages.
The parameters of the model are the five electrical pa-

rameters, RS and RR (the stator and rotor resistances), M
(the mutual inductance), LS and LR (the stator and rotor
inductances), and the two mechanical parameters, J (the
inertia of the rotor) and τL (the load torque). The symbols

TR = LR/RR σ = 1−M2/ (LSLR)
β =M/ (σLSLR) γ = RS/ (σLS) + βM/TR

have been used to simplify the expressions. TR is referred to
as the rotor time constant while σ is called the total leakage
factor.
This model is transformed into a coordinate system at-

tached to the rotor. For example, the current variables are
transformed according to∙

iSx
iSy

¸
=

∙
cos(npθ) sin(npθ)
− sin(npθ) cos(npθ)

¸ ∙
iSa
iSb

¸
. (2)

The transformation simply projects the vectors in the (a, b)
frame onto the axes of the moving coordinate frame. An
advantage of this transformation is that the signals in the
moving frame (i.e., the (x, y) frame) typically vary slower
than those in the (a, b) frame (they vary at the slip frequency
rather than at the stator frequency). At the same time, the
transformation does not depend on any unknown parameter
in contrast to the field-oriented (or dq) transformation. The
stator voltages and the rotor fluxes are transformed in the
same way as the currents resulting in the following model
([10][11])

diSx
dt

=
uSx
σLS

− γiSx +
β

TR
ψRx + npβωψRy + npωiSy (3)

diSy
dt

=
uSy
σLS

− γiSy +
β

TR
ψRy − npβωψRx − npωiSx (4)

dψRx
dt

=
M

TR
iSx − 1

TR
ψRx (5)

dψRy
dt

=
M

TR
iSy − 1

TR
ψRy (6)

dω

dt
=

Mnp
JLR

(iSyψRx − iSxψRy)− τL
J
. (7)

III. REGRESSOR MODEL

As stated in the introduction, the interest here is in online
tracking of the value of TR as it changes due to ohmic
heating so that an accurate value is available to estimate
the flux for a field-oriented controller. However, the stator
resistance value RS will also vary due to ohmic heating
so that its variation must also be taken into account. The
electrical parametersM,LS , σ are assumed to be known and
not varying. Measurements of the stator currents iSa, iSb and
voltages uSa, uSb as well as the position θ of the rotor are
assumed to be available; velocity is then reconstructed from
the position measurements. However, the rotor flux linkages
are not assumed to be measured.
Standard methods for parameter estimation are based on

equalities where known signals depend linearly on unknown
parameters. However, the induction motor model described
above does not fit in this category unless the rotor flux
linkages are measured. The first step is to eliminate the fluxes
ψRx, ψRy and their derivatives dψRx/dt, dψRy/dt. The four
equations (3), (4), (5), (6) can be used to solve for ψRx, ψRy,
dψRx/dt, dψRy/dt, but one is left without another indepen-
dent equation to set up a regressor system for the identification
algorithm. Consequently, a new set of independent equations
is found by differentiating equations (3) and (4) to obtain

1

σLs

duSx
dt

=
d2iSx
dt2

+ γ
diSx
dt
− β

TR

dψRx
dt
− npβω

dψRy
dt

− npβψRy
dω

dt
− npω

diSy
dt
− npiSy

dω

dt
(8)

and

1

σLs

duSy
dt

=
d2iSy
dt2

+ γ
diSy
dt
− β

TR

dψRy
dt

+ npβω
dψRx
dt

+ npβψRx
dω

dt
+ npω

diSx
dt

+ npiSx
dω

dt
. (9)

Next, equations (3), (4), (5), (6) are solved for ψRx, ψRy,
dψRx/dt, dψRy/dt. These in turn are substituted into equa-
tions (8) and (9) with the assumption of constant speed to
obtain

0 = −d
2iSx
dt2

+
diSy
dt

npω +
1

σLS

duSx
dt
− (γ + 1

TR
)
diSx
dt

− iSx(−βM
T 2R

+
γ

TR
) + iSynpω(

1

TR
+

βM

TR
) +

uSx
σLSTR

(10)

0 = −d
2iSy
dt2

− diSx
dt

npω +
1

σLS

duSy
dt
− (γ + 1

TR
)
diSy
dt

− iSy(−βM
T 2R

+
γ

TR
)− iSxnpω(

1

TR
+

βM

TR
) +

uSy
σLSTR

.

(11)

As γ = RS/ (σLS) + βM/TR, it follows that −βM/T 2R +
γ/TR = (RS/TR) / (σLS) and γ + 1/TR = RS/ (σLS) +
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(βM + 1) /TR so that (10) and (11) become

0 = −d
2iSx
dt2

+
diSy
dt

npω +
1

σLS

duSx
dt

−
³
RS/ (σLS) + (βM + 1) /TR

´ diSx
dt

− iSx(
RS

TR

1

σLS
) + iSynpω((βM + 1) /TR) +

uSx
σLSTR

(12)

0 = −d
2iSy
dt2

− diSx
dt

npω +
1

σLS

duSy
dt

−
³
RS/ (σLS) + (βM + 1) /TR

´ diSy
dt

− iSy(
RS

TR

1

σLS
)− iSxnpω (βM + 1) /TR +

uSy
σLSTR

.

(13)

A. Regressor Model
With

y(t) ,

⎡⎢⎣ d2iSx
dt2

− diSy
dt

npω − 1

σLS

duSx
dt

d2iSy
dt2

+
diSx
dt

npω − 1

σLS

duSy
dt

⎤⎥⎦ (14)

W (t) ,⎡⎣− diSx
dt

1
σLS

(βM + 1)
�
− diSx

dt + iSynpω
�
+

uSx
σLS

− iSx
σLS

− diSy
dt

1
σLS

(βM + 1)
�
− diSy

dt − iSxnpω
�
+

uSy
σLS

− iSy
σLS

⎤⎦
(15)

and

K =

⎡⎣ K1

K2

K3

⎤⎦ ,
⎡⎣ RS

1/TR
RS/TR

⎤⎦ , (16)

equations (12) and (13) are written in regressor form as

y(t) =W (t)K. (17)

This model is over-parameterized in that the parameters are
not independent of each other as they must satisfy the con-
straint

K3 = K1K2. (18)

ReplacingK3 byK1K2 in (17) results in the model not being
over-parameterized, but it is then nonlinear in the parameters.
This is considered next.
B. Nonlinear Least-Squares Identification [13]
Equation (17) can be rewritten as

y(nT ) =W (nT )K (19)

where T is the sample period, nT is the n-th sample time at
which a measurement is taken, andK =

£
K1 K2 K3

¤T
is the vector of unknown parameters. If the constraint (18)
is ignored, then the system is an over-parameterized linear
least-squares problem. In this case, theoretically an exact
unique solution for the unknown parameter vector K may
be determined after several time instants. However, several
factors contribute to errors which make (19) only approxi-
mately valid in practice. Specifically, both y(nT ) andW (nT )

are measured through signals that are noisy due to quantiza-
tion and differentiation. Further, the dynamic model of the
induction motor is only an approximate representation of the
real system. These sources of error result in an inconsistent
system of equations. To find a solution for such a system, the
least-squares criterion is used. Specifically, given y(nT ) and
W (nT ) where y(nT ) =W (nT )K, one defines

E2(K) =
NX
n=1

¯̄̄
y(nT ) −W (nT )K

¯̄̄2
(20)

as the residual error associated to a parameter vector K.
Then, the least-squares estimate K∗ is chosen such that
E2(K) is minimized for K = K∗. The function E2(K) is
quadratic and therefore has a unique minimum at the point
where ∂E2(K)/∂K = 0. Solving this expression for K∗
yields the least-squares solution to y(nT ) =W (nT )K as

K∗ =

"
NX
n=1

WT (nT )W (nT )

#−1 " NX
n=1

WT (nT )y(nT )

#
.

(21)
When the system model is over-parameterized (as in the
application here), the expression (21) will lead to an ill-
conditioned solution forK∗. That is, small changes in the data
W (nT ), y(nT ) lead to large changes in the value computed
forK∗. To get around this problem, a nonlinear least-squares
approach is taken which involves minimizing

E2(K) =
NX
n=1

¯̄̄
y(nT )−W (nT )K

¯̄̄2
= Ry − 2RT

WyK +KTRWK (22)

subject to the constraint (18), where

Ry ,
NX
n=1

yT (nT )y(nT ), (23)

RWy ,
NX
n=1

WT (nT )y(nT ), (24)

RW ,
NX
n=1

WT (nT )W (nT ). (25)

On physical grounds, the parameters K1,K2 are con-
strained to the region

0 < K1 <∞, 0 < K2 <∞. (26)

Also, based on physical grounds, the squared error E2(K)
will be minimized in the interior of this region. Define the
new error function E2p(K1,K2) as

E2
p(K1,K2) ,

NX
n=1

¯̄̄
y(nT ) −W (nT )K

¯̄̄2
K3=K1K2

(27)

= Ry − 2RT
WyK

¯̄̄
K3=K1K2

+
¡
KTRWK

¢¯̄̄
K3=K1K2

.
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As the minimum of (27) must occur in the interior of the
region, it is therefore at an extremum point. This then entails
solving the two extrema equations

p1(K1,K2) ,
∂E2p(K1,K2)

∂K1
(28)

p2(K1,K2) ,
∂E2p(K1,K2)

∂K2
(29)

which are polynomials in the parametersK1,K2. The degrees
of the polynomials pi are given in the table below

degK1 degK2

p1(K1,K2) 1 2
p2(K1,K2) 2 1

These two polynomials can be rewritten in the form

p1(K1,K2) = a1(K2)K1 + a0(K2) (30)
p2(K1,K2) = b2(K2)K

2
1 + b1(K2)K1 + b0(K2). (31)

A systematic procedure to find all possible solutions to a
set of polynomials is provided by elimination theory through
the method of resultants [14]. (This method was used in
[3].) However, in this special case, p1(K1,K2) is of degree
1 in K1 and can be solved directly. Substituting K1 =
−a0(K2)/a1(K2) from p1(K1,K2) = 0 into p2(K1,K2) =
0 and multiplying the result through by a21(K2), one obtains
the (resultant) polynomial

r(K2) = a20(K2)b2(K2)− a0(K2)a1(K2)b1(K2)

+ a21(K2)b0(K2) (32)

where degK2
{r} = 5. The roots of (32) are the only

possible candidates for the values of K2 that satisfy
p1(K1,K2) = p2(K1,K2) = 0 for some K1. In the
online implementation, the coefficients of the polynomials
a1(K2), a0(K2), b2(K2), b1(K2), b0(K2) (whose explicit ex-
pressions in terms of the elements of the matrices RW and
RWy are known a priori vis-a-vis (27), (28), and (29)) are
computed and stored during data collection. The coefficients
of the polynomial r(K2) are then computed online according
to (32) by vector convolution, addition, and subtraction. The
positive roots K2i of r(K2) = 0 are next computed and then
substituted into p1(K1,K2i) = 0 and solved for its positive
rootsK1j . By this method of back solving, all (finite number)
of the possible candidate solutions (K1j ,K2i) are found, and
the one that gives the smallest squared error, i.e., the smallest
value of E2p(K1,K2), is chosen.

IV. IMPLEMENTATION

The aforementioned method is now implemented in this
work by designing the necessary blocks in synthesizable
m-code on the Simulink R° platform. Hence, in addition to
the core algorithm of the regressor, several other blocks are
required to mitigate numerical issues arising from the imple-
mentation of the algorithm, and these will be briefly discussed
in what follows. Figure 1 depicts the procedure.

Fig. 1. Main process

A. Signal Filtering and Differentiation
The regressor model of (14) and (15) requires first and

second order derivatives of the signals. This is achieved by
numerical differentiation, which is preceded by a discrete
filter with an appropriately selected cutoff frequency to reduce
noise caused by the differentiation process. Moreover, the
signals θ, iSx, iSy, uSx, and uSy are passed through the same
filter so that they all have the same delay due to the filter.
The numerical differentiation is implemented using the

centered difference approach for the first and second order
derivatives, and is given by

dx(nT )

dt
≈ x((n+ 1)T )− x((n− 1)T )

2T
(33)

d2x(nT )

dt2
≈ x((n+ 1)T )− 2x(nT ) + x((n− 1)T )

T 2
(34)

Note that the centered difference approach has a smaller er-
ror bound than the forward or backward difference approaches
yet with the same computational cost (see [15] pp. 168–176).

B. Parameter Estimation Process
The parameter estimation process utilizes the filtered, and

differentiated signals to construct, at every time step, Y (nT )
of (14) and W (nT ) of (15). Then, for the next N iterations
an accumulation process constructs Ry, RWy, and RW , of
(23). At the conclusion of every accumulation cycle of N
iterations the values of Ry, RWy, and RW are presented to
the subsequent step before resetting them and restarting the
accumulation process. Following the accumulation process,
the coefficients of the 5th order polynomial r(K2) of (32)
are computed directly from Ry, RWy, and RW , and a root
finding algorithm is employed to determine its real roots. The
root finding algorithm is summarized as follows

1) Scale the coefficients of the polynomial r(K2)
by scaling its roots by Cauchy’s bound.
2) Apply Weyl’s quadtree root-finding approach
(see [16] and [17]).
3) Numerically determine the real and complex
roots, and remove repeated roots.
4) Rescale the real roots.
5) For every real root for K2 compute the corre-
sponding value K1. Out of the finite possible pairs
(K1,K2), choose the one that minimizes the error
function E2p(K1,K2) of (27).

Hence, the root finding algorithm produces the parameters
RS = K1 and TR = 1/K2 that minimize the error function
E2p(K1,K2).
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The combination of root normalization and the Quadtree
approach result in a consistent and stable root finding algo-
rithm even when the coefficients of r(K2) are badly scaled.

V. SIMULATION RESULTS
The estimation method is applied to a two-phase equivalent

model of the induction machine that is under closed-loop
control. An input-output linearizing controller is applied to
the induction machine. The simulation carried out in this
section highlights the gain in performance that is achieved by
applying the online estimation process to update the rotor time
constant to the controller.
The parameters of the induction machine under study are

(see [2]): M = 0.0117 H, LR = 0.014 H, LS = 0.014 H,
RS = 1.7 Ω, RR = 3.9 Ω, τL0 = 0.15 N-m, f = 0.00014
N-m/rad/sec, J = 0.00011 Kg-m2, and nP = 3. The
controller sets the desired rotor speed atωR = 2π×75 rad/sec,
while the load torque is defined to be τL , τL0 + fω to
incorporate the viscous friction f = 0.00014N-m/rad/sec and
an output load torque τL0 = 0.15 N-m. The data is collected
at a sampling rate of fS = 4 kHz. The filter was a 2nd order
low pass Butterworth filter with a cutoff frequency of 70 Hz.
In the simulation the resistor values are increased by 50%

after 3 seconds of operation with the estimator updating the
value of TR every 0.5 seconds. Figure 2 is the rotor speed
and its reference profile that was run during the collection
of the data (voltages, currents, and position). Figure 3 shows
the plot of K1 = RS and its reference versus time. After the
update at 3.5 secs the estimator gives the correct value of K1

within 0.03%. Similarly, Figure 4 is a plot of K2 = 1/TR
and its reference versus time showing that after the update the
estimator gives the correct value ofK2 within 2%. Figure 5 is
a plot of the real power P (t) = uSaiSa + uSbiSb vs time. As
the figure shows, the real power jumps up to 66.9W at 3 sec.
After the rotor time constant is updated at 3.5 seconds, the real
power comes down to 63.7W,which is a 5% decrease. Figure

Fig. 2. ω and ωref vs. time in sec

6 is a plot of the reactive power Q(t) = uSaiSb − uSaiSb

Fig. 3. K1 = RS and K1ref vs. time in sec

Fig. 4. K2 = 1/TR and K2ref vs. time in sec

Fig. 5. Real power P in W vs. time in sec.
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Fig. 6. Reactive power Q in W vs. time in sec

vs time. The figure shows that the reactive power jumps in
magnitude to 88.0 W at t = 3 sec. After the rotor time
constant is updated at 3.5 seconds, its magnitude comes down
to 82.8 W, which is a 6% decrease. As mentioned in the
introduction, the rotor time constant TR = 1/K2 is used to
estimate the rotor fluxes which in turn are used to to estimate
the direct and quadrature currents for use in field oriented
control. In field oriented control the motor torque is given by
τ = μψdiq (μ = Mnp

JLR
) which at constant speed is given by

τ = μMidiq [2]. For a given torque, the current magnitude
i2d + i2q is minimized if id = iq. Consequently, if an incorrect
value of the time constant is used, then non optimum values
of the currents will be commanded by the controller resulting
in increased Ohmic losses in the stator and rotor resistors.
This then results in a higher power usage for the same torque
requirement. Thus it is important to know the correct value of
TR as it varies for energy efficient operation of the motor.

VI. CONCLUSIONS AND FURTHER WORK

An approach for the online identification of the values of
the rotor time constant and the stator resistance that was
originally developed by the authors in [18] has been simulated
online in this work. A practical benefit of updating the rotor
time constant is the power savings as shown above. Work is
now proceeding on implementing the above algorithm in an
experimental setting and results are expected by the time of
the conference.
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[9] Miguel Vélez-Reyes and George Verghese, “Decomposed algorithms
for speed and parameter estimation in induction machines”, in Pro-
ceedings of the IFAC Nonlinear Control Systems Design Symposium,
1992, pp. 156–161, Bordeaux, France.

[10] J. Stephan, M. Bodson, and J. Chiasson, “Real-time estimation
of induction motor parameters”, IEEE Transactions on Industry
Applications, vol. 30, no. 3, pp. 746–759, May/June 1994.

[11] J. Stephan, “Real-time estimation of the parameters and fluxes of
induction motors”, Master’s thesis, Carnegie Mellon University, 1992.

[12] Hamid A. Toliyat, Emil Levi, and Mona Raina, “A review of RFO
induction motor parameter estimation techniques”, IEEE Transactions
on Energy Conversion, vol. 18, no. 2, pp. 271–283, June 2003.

[13] Shankar Sastry and Marc Bodson, Adaptive Control: Stability, Con-
vergence, and Robustness, Prentice-Hall, Englewood Cliffs, NJ, 1989.

[14] David Cox, John Little, and Donal O’Shea, IDEALS, VARIETIES,
AND ALGORITHMS An Introduction to Computational Algebraic
Geometry and Commutative Algebra, 2nd Edition, Springer-Verlag,
Berlin, 1996.

[15] R. L. Burden and J. D. Faires, Numerical Analysis, 8th Edition,
Thomson Brooks/Cole, 2005.

[16] J.-C Yakoubsohn, “Numerical analysis of a bisection-exclusion method
to find zeros of univariate analytic functions”, Journal of Complexity,
vol. 21, no. 5, pp. 652–690, October 2005.

[17] H. Weyl, “Randbemerkungen zu hauptproblemen der mathematik”,
Mathematische Zeitschrift, vol. 20, no. 1, pp. 131–150, December
1924.

[18] John Chiasson and Marc Bodson, “Estimation of the rotor time
constant of an induction machine at constant speed”, in Proceedings of
the European Control Conference ECC’07, July 2-5 2007, pp. 4673–
4678, Kos Greece.

4378

Authorized licensed use limited to: Boise State University. Downloaded on May 10,2010 at 20:24:19 UTC from IEEE Xplore.  Restrictions apply. 


	Boise State University
	ScholarWorks
	1-1-2009

	Online Identification of the Rotor Time Constant of an Induction Machine
	Ahmed Oteafy
	John Chiasson
	Marc Bodson

	Online Identification of the Rotor Time Constant of an Induction Machine

