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Lyapunov Stability of an Open-Loop Induction Machine

Ahmed Oteafy, Graduate Student Member, IEEE, and John Chiasson, Senior Member, IEEE

Abstract—The induction machine is widely utilized in the
industry and exists in a plethora of applications. Although it
is characterized by its inherent stability over a wide range of
operating conditions, this characterization is based on steady-
state arguments. This work develops a rigorous approach to
the open-loop stability of the induction machine. In particular,
a condition for the global asymptotic stability of the induction
machine in the sense of Lyapunov is presented. These conditions
are met if the machine is lightly loaded. Hence, meeting these
conditions guarantees that the motor will reach (or return
to) the desired equilibrium point regardless of how far it has
been perturbed from it. The analysis is based on the standard
nonlinear differential equation model of the induction machine
taking into account transient responses.
Index Terms—Induction Machine, Lyapunov Stability, Open-

Loop Stability

I. INTRODUCTION
The classical method that depicts the range of stable opera-

tion for the induction machine is a torque versus (normalized)
slip curve as shown below (see [1])

Fig. 1. Torque versus normalized slip curve

τ is the steady state output torque, τp is the peak load
torque, S is the normalized slip defined as

S , ωS − npωR
ωS

(1)

(i.e. the normalized difference between the electrical fre-
quency ωS , and the angular speed npωR), and Sp is the

A. Oteafy is with the ECE Department, Boise State University, Boise ID
83725, ahmedoteafy@u.boisestate.edu.
J. Chiasson is with the ECE Department, Boise State University, Boise

ID 83725, johnchiasson@boisestate.edu.

pull-out slip which corresponds to the peak torque τp.
The curve indicates the stability of the induction machine
about steady-state operating points. The stable steady-state
operating points for motoring must satisfy 0 < S < Sp.
For example, if the motor is operating at slip S1 producing
the torque τ0 as shown in Figure 1. Then any increase in
the load torque (but the total load torque not exceeding τp)
would result in a decrease in the steady-state speed ωR [see
(1)] with a consequent increase in the steady-state slip S
(i.e. a shift to the right from the operating point S1 in Figure
1). The increased slip gives an increase in the steady-state
output torque to accommodate the increase in the load torque.
On the other hand, consider the motor operating at the slip
S2 > Sp in Figure 1. Any increase in the load torque (even
a minimal one) would again result in a decrease in ωR [see
(1)] and thus an increased slip to the right of the original
steady-state slip S2 in Figure 1. But now a lower output
torque is produced which cannot meet the increased load
demand. Hence the motor will stall. Note that this argument
is based on steady-state conditions and does not account for
transients. In fact though the operating points for S > Sp
are always unstable, operating points with S < Sp can also
be unstable.

At rest (ωR = 0), S = 1 and typically Sp << 1. Thus at
startup of the motor the (instantaneous) slip S >> Sp and,
as Figure 1 shows, the torque produced by the motor is low.
As a result, the machine must be lightly loaded so that it can
come up to full (near synchronous) speed under open-loop
conditions. After getting up to full speed, the motor can then
be loaded and run stably.

In this work, we give a rigorous treatment of the stability
issue by accounting for transients. Specifically, a sufficient
condition for the global stability of an open-loop induction
machine is derived using Lyapunov theory based on the well-
known nonlinear differential equation model of the induction
machine. It is shown that the conditions for global stability
hold if the machine is lightly loaded. We begin in Section
II by deriving an error-dynamics model of the induction
motor in the stator field coordinate system. In Section III a
power balance equation of the motor is developed that is then
transformed into the error state variables. The results are then
utilized in Section IV to develop a Lyapunov function that
gives sufficient conditions for global stability of the induction
machine. Section V provides a numerical example that is
used to demonstrate the application of the theorem. Finally,
concluding remarks are presented in Section VI.
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II. STATOR FIELD MODEL OF THE INDUCTION MOTOR
The starting point for the analysis is the two-phase equiv-

alent model of the machine (see [1] and [2]). The parameters
of the two phase induction motor are the stator-side induc-
tance LS and resistance RS , the rotor-side inductance LR
and resistance RR, the mutual inductance M , the number of
rotor pole pairs np, the moment of inertia of the rotor J , and
the rotational friction f .
The variables consist of the angular position of the rotor

θR, the angular speed ωR, the load torque τL, the stator
currents iSa and iSb, the stator voltages uSa and uSb, and
the rotor currents iRa and iRb where a and b denote the
equivalent two phases of the motor.

A. Space Vector Model
A space vector model of the induction machine is ([1] and

[2])

RSiS + LS
d

dt
iS +M

d

dt

¡
iRe

jnpθR
¢
= uS

RRiR + LR
d

dt
iR +M

d

dt

¡
iSe
−jnpθR¢ = 0 (2)

npM Im
n
iS
¡
iRe

jnpθR
¢∗o− τL = J

dωR
dt

where the state vector’s (complex) stator current, rotor cur-
rent and stator voltage are defined as

iS , iSa + jiSb

iR , iRa + jiRb

uS , uSa + juSb

The total load torque on the motor τL is defined as

τL , fωR + τL0

where τL0 denotes the external load torque exerted on the
rotor, and is henceforth assumed to be constant.

B. Stator Field Coordinate System Model
Next, the model (2) is transformed into a stator field

coordinate system. The transformation is defined as

iSdq , iSd + jiSq , iSe
−jωSt

iRdq , iRd + jiRq , iRe
jnpθRe−jωSt (3)

uSdq , uSd + juSq , uSe
−jωSt

or

iS = iSdqe
jωSt

iR = iRdqe
−jnpθRejωSt (4)

uS = uSdqe
jωSt

where ωS is the electrical frequency of the voltage source
applied to the stator and is assumed to be constant.

Substituting (4) into the space vector model (2) and
simplifying results in

RSiSdq + LS
diSdq
dt

+ jωSLSiSdq +M
diRdq
dt

+jωSMiRdq = uSdq

RRiRdq + LR
diRdq
dt

+ j (ωS − npωR)LRiRdq (5)

+M
diSdq
dt

+ j (ωS − npωR)MiSdq = 0

npM Im
n
iSdq

¡
iRdq

¢∗o− (fωR + τL0) = J
dωR
dt

Expanding into real and imaginary parts, we obtain the
state space representation

ẋ = f(x) +Bu (6)

where

x ,
£
ωR iSd iSq iRd iRq

¤T
u ,

£
uSd uSq τL0

¤T

f(x) ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

npM

J
(iSqiRd − iSdiRq)− f

J
ωR

RRM

σLSLR
iRd +

npM

σLS
ωRiRq − RS

σLS
iSd

+
npM

2

σLSLR
ωRiSq + ωSiSq

RRM

σLSLR
iRq − npM

σLS
ωRiRd − RS

σLS
iSq

− npM
2

σLSLR
ωRiSd − ωSiSd

RS (1− σ)

σM
iSd − npM

σLR
ωRiSq − RR

σLR
iRd

−np
σ
ωRiRq + ωSiRq

RS (1− σ)

σM
iSq +

npM

σLR
ωRiSd − RR

σLR
iRq

+
np
σ
ωRiRd − ωSiRd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 − 1
J

1

σLS
0 0

0
1

σLS
0

σ − 1
σM

0 0

0
σ − 1
σM

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
3453

Authorized licensed use limited to: Boise State University. Downloaded on May 10,2010 at 20:20:47 UTC from IEEE Xplore.  Restrictions apply. 



and σ is the leakage factor defined as

σ , 1− M2

LSLR
.

The equilibrium conditions are obtained by setting the
derivatives in the stator field model (5) to zero and then
equating the real and imaginary parts to obtain

RSiSd0 − ωSLSiSq0 − ωSMiRq0 = uSd0

RSiSq0 + ωSLSiSd0 + ωSMiRd0 = uSq0

RRiRd0−ωSLRiRq0 + npωR0LRiRq0−ωSMiSq0 (7)
+npωR0MiSq0 = 0

RRiRq0 + ωSLRiRd0 − npωR0LRiRd0 + ωSMiSd0

−npωR0MiSd0=0

npM (iSq0iRd0 − iSd0iRq0)− (fωR0 + τL0) = 0

C. Error Model
Next, to facilitate the Lyapunov analysis of the induction

machine we derive an error model. This is achieved by
translating the origin of the system (6) to an arbitrary
equilibrium point x0 as defined by (7). Specifically, a set
of error state variables about an equilibrium point is defined
as

e1 , ωR − ωR0

e2 , iSd − iSd0

e3 , iSq − iSq0 (8)
e4 , iRd − iRd0

e5 , iRq − iRq0

or

ωR = e1 + ωR0

iSd = e2 + iSd0

iSq = e3 + iSq0 (9)
iRd = e4 + iRd0

iRq = e5 + iRq0.

Then, substituting these expressions for the state variables
of the stator field into the model (6), we obtain the error
model of the induction machine

ė = A(x0)e+g(e) (10)

where

e =
£
e1 e2 e3 e4 e5

¤T

A(x0) ,⎡⎢⎢⎢⎢⎢⎢⎢⎣

− f
J −npM

J iRq0
−np(σ−1)

σ

¡
LR
M iRq0 + iSq0

¢ − RS
σLS

np(σ−1)
σ

¡
LR
M iRd0 + iSd0

¢ np(σ−1)
σ ωR0 − ωS

−np
σ

³
M
LR

iSq0 + iRq0

´
−RS(σ−1)

σM

np
σ

³
M
LR

iSd0 + iRd0

´
npM
σLR

ωR0

(11)
npM
J iRd0

npM
J iSq0 −npM

J iSd0
−np(σ−1)

σ ωR0 + ωS
RRM
σLSLR

npM
σLS

ωR0

− RS
σLS

−npM
σLS

ωR0
RRM
σLSLR

−npM
σLR

ωR0 − RR
σLR

ωS − np
σ ωR0

−RS(σ−1)
σM

np
σ ωR0 − ωS − RR

σLR

⎤⎥⎥⎥⎥⎥⎥⎦
and

g(e) ,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

npM

J
e3e4−npM

J
e2e5

npM

σLS
e1e5 +

npM
2

σLSLR
e1e3

−npM
σLS

e1e4 − npM
2

σLSLR
e1e2

−npM
σLR

e1e3 − np
σ
e1e5

npM

σLR
e1e2 +

np
σ
e1e4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (12)

The error model consists of quadratic terms which vanish
near the equilibrium point (where the matrix A(x0) domi-
nates), and the stability of the linearized system is dependent
on the choice of the equilibrium point as A(x0) depends on
the equilibrium point.
The system (7) which determines the equilibrium points

may be rewritten as

npM (iSq0iRd0 − iSd0iRq0)− (fωR0 + τL0) = 0 (13)

K

⎡⎢⎢⎣
iSd0
iSq0
iRd0
iRq0

⎤⎥⎥⎦ =
⎡⎢⎢⎣

uSd0
uSq0
0
0

⎤⎥⎥⎦ (14)

where K ,

⎡⎢⎢⎣
RS −ωSLS

ωSLS RS

0 M (npωR0 − ωS)
−M (npωR0 − ωS) 0

0 −ωSM
ωSM 0
RR LR (npωR0 − ωS)

−LR (npωR0 − ωS) RR

⎤⎥⎥⎦ .
Therefore, one possible scenario is to select the set-

points for the speed ωR0, and voltages uSd0 and uSq0, with
the currents iSd0, iSq0, iRd0 and iRq0 then specified by
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equation (14). The resulting load torque τL0 is determined
by equation (13). In other words, one specifies ωR0, uSd0
and uSq0, and then uses⎡⎢⎢⎣

iSd0
iSq0
iRd0
iRq0

⎤⎥⎥⎦ = K−1

⎡⎢⎢⎣
uSd0
uSq0
0
0

⎤⎥⎥⎦ (15)

and

τL0 = npM (iSq0iRd0 − iSd0iRq0)− fωR0 (16)

to obtain the currents and load torque.

III. POWER BALANCE EQUATION

The Lyapunov candidate function will be derived from a
power balance equation that characterizes the power transfer
between the input and output of the motor.

A. Power Balance Equation

First we define the magnetic field energy of the motorWf

and the mechanical energy WJ as (see [1])

Wf , 1

2
LS
¡
i2Sd + i2Sq

¢
+
1

2
LR
¡
i2Rd + i2Rq

¢
+M

£
iSd iSq

¤ ∙ iRd
iRq

¸
(17)

and

WJ ,
1

2
Jω2R. (18)

The power balance equation in terms of the stator field
coordinate variables is given by

d

dt
(Wf +WJ) =

£
uSd uSq −τL

¤⎡⎣ iSd
iSq
ωR

⎤⎦ (19)

−RSi
2
Sd −RSi

2
Sq −RRi

2
Rd −RRi

2
Rq.

B. Error State Variables

Next, substituting for the state variables (7) of the stator
field into the power balance equation (19), and simplifying
using the equilibrium conditions (7) results in the power
balance equation given in terms of the error state variables
as

d

dt
(Wf +WJ) = uSde2 + uSqe3

− ¡fe21 + 2fe1ωR0 + τL0e1
¢

(20)
−RS

¡
e22 + 2e2iSd0

¢−RS

¡
e23 + 2e3iSq0

¢
−RR

¡
e24 + 2e4iRd0

¢−RR

¡
e25 + 2e5iRq0

¢
where

Wf =
1

2
LS
¡
e22 + e23 + 2e2iSd0 + 2e3iSq0

¢
+
1

2
LR
¡
e24 + e25 + 2e4iRd0 + 2e5iRq0

¢
+Me2e4

+M (iSd0e4 + e2iRd0 + e3e5 + iSq0e5 + e3iRq0)

+
1

2
LS
¡
i2Sd0 + i2Sq0

¢
+
1

2
LR
¡
i2Rd0 + i2Rq0

¢
+M (iSd0iRd0 + iSq0iRq0)

and

WJ =
1

2
J
¡
e21 + 2e1ωR0

¢
+
1

2
Jω2R0.

IV. LYAPUNOV STABILITY OF THE INDUCTION MACHINE
In this section, the power balance equation (20) is used to

obtain a Lyapunov candidate function V . Define the function
W (e) by

W (e) ,Wf +WJ− (Wf (0) +WJ(0))

where

Wf (0) =
1

2
LS
¡
i2Sd0 + i2Sq0

¢
+
1

2
LR
¡
i2Rd0 + i2Rq0

¢
+M (iSd0iRd0 + iSq0iRq0)

and

WJ(0) =
1

2
Jω2R0.

This ensures W (0) = 0, however W is not assured to be
positive definite. Next rewrite W (e) as

W (e) = eTPe+ dTe (21)

where

P , 1

2

⎡⎢⎢⎢⎢⎣
J 0 0 0 0
0 LS 0 M 0
0 0 LS 0 M
0 M 0 LR 0
0 0 M 0 LR

⎤⎥⎥⎥⎥⎦ (22)

and

d ,

⎡⎢⎢⎢⎢⎣
JωR0
LSiSd0 +MiRd0
LSiSq0+MiRq0
LRiRd0 +MiSd0
LRiRq0+MiSq0

⎤⎥⎥⎥⎥⎦ . (23)

The derivative of W (e) is of course equal to the right-
hand side of the power balance equation (20), which is now
rewritten as

dW

dt
= −eTQWe− cTWe (24)

where
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QW ,

⎡⎢⎢⎢⎢⎣
f 0 0 0 0
0 RS 0 0 0
0 0 RS 0 0
0 0 0 RR 0
0 0 0 0 RR

⎤⎥⎥⎥⎥⎦
and

cW ,

⎡⎢⎢⎢⎢⎣
2fωR0+τL0
2RSiSd0 − uSd
2RSiSq0 − uSq
2RRiRd0
2RRiRq0

⎤⎥⎥⎥⎥⎦ .
A. Lyapunov Candidate Function and its Derivative
Next, using P as defined in (22) above, a candidate

Lyapunov function V is constructed by defining

V , eTPe. (25)

The derivative of this Lyapunov candidate function is thus

dV

dt
= −eTQWe− cTWe− dT ė.

Using (10) this becomes

dV

dt
= −eTQWe− cTWe− dT (g(e) +A(x0)e)

which can be rewritten as

dV

dt
= −eTQe− cTe (26)

where Q ,

⎡⎢⎢⎢⎢⎣
f 1

2npMiRq0 −12npMiRd0
1
2npMiRq0 RS 0
−12npMiRd0 0 RS
1
2npLRiRq0 0 1

2MnpωR0
−12npLRiRd0 −12MnpωR0 0
1
2npLRiRq0 −12npLRiRd0

0 −12MnpωR0
1
2MnpωR0 0

RR 0
0 RR

⎤⎥⎥⎥⎥⎦ (27)

and cT = cTW + dTA(x0) or explicitly

c =

⎡⎢⎢⎢⎢⎣
fωR0−npM (iSq0iRd0 − iSd0iRq0)+τL0
RSiSd0 − (LSiSq0 +MiRq0)ωS − uSd0
RSiSq0 + (LSiSd0 +MiRd0)ωS − uSq0
RRiRd0+(MiSq0 + LRiRq0) (npωR0 − ωS)
RRiRq0− (MiSd0 + LRiRd0) (npωR0 − ωS)

⎤⎥⎥⎥⎥⎦ .
However, with reference to the equilibrium conditions (7)

one sees that c ≡ 0 regardless of the equilibrium point.
Therefore, the Lyapunov candidate function and its derivative
are

V , eTPe (28)

and

dV

dt
= −eTQe. (29)

B. Sufficient Conditions for Global Stability
The induction machine is globally asymptotically stable in

the sense of Lyapunov if (see [3])
(a) V(e) > 0 ∀ e 6= 0, and V(0) = 0
(b) dV(e)/dt < 0 ∀ e 6= 0
(c) V(e)→∞ as kek→∞
The leading principal minors of the matrix P are

π1 =
1

2
J > 0, π2 =

1

4
JLS > 0, π3 =

1

8
JL2S > 0

π4 =
1

16
JσL2SLR > 0, π5 =

1

32
Jσ2L2SL

2
R > 0

As all of the leading principal minors of P are positive, P
is positive definite. Moreover, V (0) = 0 so that condition (a)
is always satisfied. Furthermore, V = eTPe ≥ λmin (P ) e

Te
and as λmin (P ) > 0 we have V (e)→∞ as kek→∞ thus
fulfilling condition (c).
The matrix Q in (27) can be written as a function of just

(S, ωS), i.e., Q = Q(S, ωS) by using (15) to eliminate the
currents and npωR0 = ωS(1−S) to eliminate npωR0. Doing
so, the leading principal minors of Q(S, ωS) are computed
and letting S → 0 results in

Π1 = f

Π2 → fRS

Π3 → fR2S (30)

Π4 → fRS

µ
RSRR − 1

4
M2ω2S

¶
Π5 → f

µ
RSRR − 1

4
M2ω2S

¶2
so that for

4RSRR −M2ω2S > 0

and small enough S, the system is globally asymptotically
stable. Summarizing, the main result is that for sufficiently
small normalized slip S (i.e. the motor is lightly loaded), the
system is globally asymptotically stable.

V. NUMERICAL EXAMPLE
Consider an induction machine with the following param-

eter values (see [1]): M = 0.0117 H, LR = 0.014 H,
LS = 0.014 H, RS = 1.7 Ω, RR = 3.9 Ω, f = 0.00014
N-m/rad/sec, J = 0.00011 Kg-m2, np = 3, ωS = 2π × 60
rad/sec. The condition for globally asymptotically stable
under light loads is

4RSRR

M2ω2S
= 1.363 > 1.

For example, with the following set points: uSd0 = 50 V,
uSq0 = 0 V, and ωR0 = 124 rad/sec the normalized slip is

S =
377− 3× 124

377
=
377− 372
377

= 0.0132

3456
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and the corresponding equilibrium currents and load torque
set point are computed from equations (15) and (16) as

iSd0 = +2.852 A
iSq0 = −8.521 A
iRd0 = −0.128 A
iRq0 = −0.040 A
τL0 = +0.025 N-m.

Substituting these into the expression (27) for the matrix Q
and numerically computing the five eigenvalues gives⎡⎢⎢⎢⎢⎣

0.000121
0.361589
0.361607
5.238411
5.238412

⎤⎥⎥⎥⎥⎦
which are all positive showing the system is globally asymp-
totically stable under these operating conditions.

VI. CONCLUSIONS AND FUTURE WORK

Sufficient conditions for the global asymptotic stability of
an open-loop induction machine have been derived in this
work. Under lightly loaded conditions, global asymptotic
stability holds meaning the motor will eventually converge
to its equilibrium point no matter how far away it starts from
the equilibrium point.
Future work is intended to focus on obtaining local stabil-

ity results that set bounds on the error variables. These are
expected to apply to larger set of operating conditions, but
not result in global stability.
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