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Case History

Imaging complex structure in shallow seismic-reflection data
using prestack depth migration

John H. Bradford1, Lee M. Liberty1, Mitch W. Lyle1, William P. Clement1, and Scott Hess1

ABSTRACT

Prestack depth migration �PSDM� analysis has the poten-
tial to significantly improve the accuracy of both shallow
seismic reflection images and the measured velocity distribu-
tions. In a study designed to image faults in theAlvord Basin,
Oregon, at depths from 25–1000 m, PSDM produced a de-
tailed reflection image over the full target depth range. In
contrast, poststack time migration produced significant mi-
gration artifacts in the upper 100 m that obscured reflection
events and limited the structural interpretation in the shallow
section. Additionally, an abrupt increase from �2500 to
�3000 m/s in the PSDM velocity model constrained the in-
terpretation of the transition from sedimentary basin fill to
basement volcanic rocks. PSDM analysis revealed a complex
extensional history with at least two distinct phases of basin
growth and a midbasin basement high that forms the division
between two major basin compartments.

INTRODUCTION

While both time and depth poststack migration methods are often
applied to shallow seismic reflection data �Davies and King, 1992;
Bradford et al., 1998; Liberty, 1998; Wiederhold et al., 1998�, pre-
stack depth migration �PSDM� has some inherent advantages. First,
it is important to recognize that poststack migration imaging is im-
plicitly limited by the assumptions of NMO processing. These as-
sumptions include approximately horizontal reflectors, small offset-
to-depth ratio, and small lateral and vertical velocity gradients, all of
which are commonly violated in shallow reflection surveys. Al-
though dip-moveout �DMO� processing is a means of dealing with
the problem of dipping reflectors �Deregowski, 1985; Hale, 1991;

Bradford et al., 1998�, the latter two assumptions remain limiting
factors. The process of PSDM, coupled with migration velocity
analysis, produces both a migrated image and a depth-velocity mod-
el that are not subject to the assumptions of NMO processing. Thus,
one of the most important advantages of PSDM is improved image
accuracy and detailed velocity models that can provide valuable
constraints in interpretation. In addition, PSDM suppresses steeply
dipping, coherent noise such as ground roll or air waves �Bradford
and Sawyer, 2002�, can suppress migration artifacts by stacking af-
ter migration, and can be formulated to include surface topography
in the migration. All of these advantages are well known as PSDM
has become a standard part of the processing flow in hydrocarbon
exploration data processing �see THE LEADING EDGE special issues
on migration — June 2005; December 2002; May 2001�. Yet, with
the exception of a few examples in the literature �Pasasa et al., 1998;
Bradford and Sawyer, 2002; Morozov and Levander, 2002�, PSDM
remains a rarely utilized processing tool in shallow seismic reflec-
tion.

The processing stream for PSDM analysis includes random and
coherent noise suppression, depth-velocity model estimation,
PSDM, and postmigration stacking. Of these steps, the most critical
is velocity model estimation as PSDM is strongly sensitive to the ac-
curacy of the velocity model. For PSDM velocity analysis, the data
are sorted into common-image-point �CIP� gathers in the postmi-
grated domain, analogous to common midpoint �CMP� gathers in
stacking velocity analysis. When the velocity model is correct, re-
flectors in the CIP domain are flat. Often the model must be updated
iteratively to produce a good migration result. A typical approach is
layer stripping, where the velocity model is updated layer by layer in
a top-to-bottom sequence �Al-Yahya, 1989; Lafond and Levander,
1993�.

Alternatively, we may estimate the model using reflection tomog-
raphy. In recent years, tomography has become the preferred method
for velocity model building �Guo and Fagin, 2002�. Stork �1992�
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presents a method of reflection tomography in the postmigration do-
main. Depth deviations are measured as residual moveout �RMO� in
the CIP gathers. The depth deviations are converted to traveltime de-
viations using the velocity above a given reflector. The tomographic
inversion is formulated to minimize the traveltime deviations along
key horizons in the CIPdomain with the sensitivity matrix computed
via ray tracing. We have found this method to be robust in both shal-
low seismic and ground-penetrating radar �GPR� data analysis
�Bradford, 2006�. The inversion result is constrained in a variety of
ways. For example, in this study, the solution was constrained to lin-
ear vertical gradients between reflecting horizons, and the algorithm
allows for velocity discontinuities across constraint zone bound-
aries.

Our objective is to demonstrate that PSDM can, in some cases,
significantly improve shallow seismic reflection images relative to
poststack migration. Specifically, we use both methods to image an
active extensional basin where target depths vary from 25 m to more
than 1000 m and therefore span the range typically considered to fall
within the realm of shallow seismic reflection. We use a typical
NMO/DMO processing flow to produce the poststack migrated im-
age, and the reflection tomography approach described above to pro-
duce the PSDM section.

FIELD SETTING AND DATA ACQUISITION

The Borax Lake Hydrothermal System �BLHS�, consisting of Bo-
rax Lake and a series of linear trending hot springs, is located near
the center of Pueblo Valley in the Alvord Basin of southeast Oregon
�Figure 1�. Alvord Basin is a north-south-trending graben in the
northern basin and range province bounded on the east and west
sides by north-trending normal faults �Pezzopane and Weldon,
1993; Blewitt et al., 2003�. Hemphill-Haley �1987� documented re-
cent deformation ��2000 year BP� along the basin bounding fault

systems. The Steens and Pueblo Mountains bound the basin to the
west and the Trout Creek Mountains lie along the eastern margin.
The basin lies in the rain shadow of Steens Mountain, and the area re-
ceives the least precipitation in Oregon. Presently,Alvord Lake is an
ephemeral playa located 3 km north of Borax Lake. During wetter
climatic cycles over the past 20,000 years, Alvord Lake was a sub-
stantial water body covering much of Alvord Basin. Consequently,
the basin fill consists primarily of unconsolidated lacustrine sedi-
ments overlying the Miocene basement rocks consisting of rhyo-
lites, tuffs, and basalts �Fuller, 1931; Williams and Compton, 1953;
Evans and Geisler, 2001�. Depth of the basin fill is highly variable,
with maximum thickness reaching 1000 m in places �Cleary et al.,
1981�.

Based on gravity data, topographic expression, and the linear
trend of the series of springs that define the BLHS, previous workers
have inferred that the BLHS is controlled by a north-south-trending,
midbasin fault �Cleary et al., 1981; Fairley et al., 2003�. We are using
a number of geophysical techniques, including gravity, magnetics,
and time-domain electromagnetics, to characterize the BLHS at
scales ranging from 101 to 103 m �Hess et al., 2004�. Here we discuss
acquisition and processing of a 2D basin-scale seismic reflection
profile. Our primary objectives are �1� to verify the presence of a sig-
nificant fault zone beneath the BLHS and then �2� to develop the re-
lationship between the midbasin fault zone and the basin-bounding
faults.

As we will show, significant stratigraphic complexity occurs in
the eastern part of the basin. Because of this complexity, we focus on
the eastern 7.5 km of the Pueblo Valley profile �Figure 1� in the fol-
lowing discussion. Quaternary silts and fine-grained sands �Qs�
form the surficial material along most of the profile. At the eastern
margin, the topography rises sharply as the profile begins to climb
the Trout Creek rangefront; here, the Tertiary volcanic rocks �Tv� are
exposed and form the surface material. Lithified siltstone is outcrop-
ping approximately 1.5 km north of the Pueblo Valley profile along
the trend of the BLHS springs. These rocks were encountered at
depths of 300–400 m in boreholes drilled on either side of BLHS
trend �unpublished Anadarko well logs�, indicating a significant
midbasin horst.

The primary criteria in survey design were imaging the basin fault
system over the full thickness of the basin fill �up to 700 m� while
maintaining resolution of the near-surface structure ��100 m�. Us-
ing our 120 channel seismograph with a relatively coarse 5-m re-
ceiver spacing and a 12.5-m off-end gap provided 607.5 m maxi-
mum offset �additional survey details are listed in Table 1�. The off-

Figure 1. Map of the study area. The trace of the Borax Lake Fault
�BLF� zone was mapped from the location of hot springs and the
break in surface topography and is indicated with a dashed line. The
section of the Pueblo Valley profile acquired over the East Basin
Compartment is discussed in the text. Distances along the profile are
given for reference. Shot locations discussed in the text are indicated
in yellow with shot-number annotation.

Table 1. Data acquisition parameters.

Recording instrument Geometrics, 24-bit, 120-
channel seismograph

Source 400-lb accelerated weight drop,
stack of four

Geometry End on, shooting east to west

Receiver array 10-Hz single geophones

Receiver spacing 5 m

Source spacing 10 m

Near offset 12.5 m

Far offset 607.5 m

Sampling interval 1 ms
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set-to-target depth ratio of nearly one provided good velocity control
over the primary target range. The shallow water table ��3 m over
most of the survey area� resulted in relatively high velocity moveout
��1400 m/s� of the early reflections. This allowed us to image re-
flections as shallow as 25 m with the relatively coarse receiver spac-
ing. Thus, the geometry provided a reasonable compromise between
good velocity control at depth and adequate fold for shallow reflec-
tions.

The damp silts and muds at the surface presented optimal source
and receiver coupling conditions and produced relatively low-am-
plitude ground roll. Consequently, the data have a high S/N ratio
with clear reflections evident to 1.5 s �Figure 2�. Immediately evi-
dent in the shot records are numerous reflectors with nonnormal mo-
veout, indicating steeply dipping horizons, particularly at times

greater than 300 ms. Events with very low apparent velocity indi-
cate downdip shooting, whereas events with high or negative appar-
ent velocity indicate updip shooting. Numerous updip and downdip
events are evident, suggesting complex subsurface stratigraphy
�Figure 2�. Given the large depth range, data quality, and subsurface
complexity, this data set provided a good test for the application of
PSDM in shallow seismic reflection imaging.

DATA PROCESSING

Preprocessing for migration included a time-varying bandpass fil-
ter, automatic gain control �AGC�, f-k filtering, top muting the first
arrival, and inside muting the strongly aliased coherent modes �v
�200 m/s�. Figure 3 details the processing parameters. This pro-

cessing scheme attenuated near-offset coherent
noise �e.g., ground roll� and optimized resolution
in the near surface while preserving deep reflec-
tions. Because the primary objective of the study
was geometric interpretation of the stratigraphy,
we did not attempt to preserve amplitudes and ap-
pliedAGC early in the flow to minimize contami-
nation of the reflection image with high-ampli-
tude coherent noise. We chose a datum elevation
of 1250 m. The datum was higher than the eleva-
tion along much of the profile but was necessary
to image the shallowest reflections on the eastern
margin where the elevation rose to just over
1260 m. We completed all processing using Pro-
MAX™ data processing software.

We derived the starting depth-velocity model
by iteratively applying dip moveout and stacking
velocity analysis. After two iterations, there were
no significant changes in the velocity model. Ap-
plying a 200-CMP�200-ms smoother to the
stacking velocity model �Figure 4� prior to depth
conversion via Dix inversion produced signifi-
cantly better migration results than the un-
smoothed model. In stacking velocity analysis,
we could not clearly identify any deep reflections
near the eastern basin-bounding fault. Thus, the
basement rock velocity in this area was initially
unconstrained and we extended the surface veloc-
ity to depth �Figure 4a�.

For PSDM, we used a Kirchhoff method based
on Deregowski’s �1985� algorithm. The Green’s
functions were computed using a ray tracer that
solves for the maximum amplitude arrivals and
computes traveltimes for arbitrary source and re-
ceiver elevations. The program optionally com-
putes amplitudes, but we did not use this func-
tionality. We migrated the data from topography
in the common offset domain.

After the first iteration of PSDM and reflection
tomography using the method of Stork �1992�,
we interpreted depth to basement based on an
abrupt increase in velocity from �2500 to
�3000 m/s and a change in reflector character
from well-defined stratigraphic reflectors to dis-
continuous, irregular reflections. We then edited
the velocity model to remove obvious tomogra-

Figure 2. Shot gathers taken along the Pueblo Valley profile. Surface locations are indi-
cated in Figure 1. Only a time-varying bandpass filter and AGC have been applied. Non-
normal moveout and conflicting dips indicate horizons dipping steeply in both directions.
Note that shot numbers decrease from west to east. �label key: �1� Fault-plane diffraction,
�2� Down-dip stratigraphic reflectors, �3� Intersection of back-dipping stratigraphic re-
flections and down-dipping fault plane diffractions�.
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phy artifacts, particularly at depths greater than 700 m where veloci-
ties were not as well constrained because of a lack of laterally contin-
uous reflections and offset-to-depth ratio �1. This edited velocity
model �Figure 4b� was then the input for the second round of PSDM
and tomography. After the second round of tomography �Figure 4c�,
no significant artifacts were evident, residual moveout was substan-
tially reduced �Figure 5�, and no additional editing was necessary to
produce a good PSDM result �Figure 6�. Note that the deep horizons
within the high-velocity basement are not laterally continuous re-
flections but rather are linked segments of laterally discontinuous
events that may or may not be a common physical boundary. Linking
discontinuous events as a common horizon for the purpose of RMO
analysis does not effect the tomographic result.

For comparison, we also migrated the NMO/DMO stacked
section �Figure 6b� using a poststack Kirchhoff time migration algo-
rithm �Figure 6c�. The velocity distribution for poststack time mi-
gration was the smoothed stacking velocity model �the depth con-
verted velocity distribution is shown in Figure 4a�.

Comparison of migration results

With the exception of a few reflector mislocations where there are
large lateral velocity contrasts, poststack time migration and PSDM
produced similar results below 150 ms or approximately 110 m
�Figure 6�. However, the images in the shallow part of the basin dif-
fer dramatically. Migration artifacts in the poststack migrated image
completely obscure the shallow reflections over much of the section.

Figure 3. PSDM data processing flow. The left side of the diagram
represents a conventional NMO processing scheme which produces
the starting depth-velocity model. The right side of the diagram illus-
trates the steps to produce the final velocity model and PSDM image.

Figure 4. Changes in the migration-velocity model as it is refined
through reflection tomography. �a� The smoothed stacking velocity
model; �b� the model after one round of tomography and editing; and
�c� the final velocity model. Note that horizons used to measure
RMO are plotted on the final model and that no velocity editing was
required after the final tomography iteration.

Figure 5. CIP gather at 6.15 km produced with �a� the starting depth-
velocity model �Figure 4a� and �b� the final velocity model �Figure
4c�. Panel �a� shows a significant positive RMO indicating a general
velocity overestimate. In panel �b�, RMO is largely removed. Note
that the reflector depth positions are shallower because of the de-
crease in velocity values.

B178 Bradford et al.
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The migration artifacts are in part a result of the requirement of ele-
vation datuming prior to poststack migration. Because we wanted to
preserve as much of the shallow section as possible, the elevation at
the center part of the east basin segment is below datum. This results
in a data discontinuity that produces migration artifacts. The PSDM
section is migrated from elevation, so the shallow artifacts are mini-
mized. Additionally, artifacts that are present are attenuated through
CIP stacking after PSDM. The overall result is that PSDM produces
a much clearer image of the shallow structures.

The difference in image quality is particularly evident in zones A
and B that are outlined in Figure 6. In zoneA, the PSDM image clear-
ly shows a minimum vertical displacement of 25 m across the Borax

Lake Fault �BLF� at a depth of 50–75 m, whereas the stratigraphic
architecture is difficult to interpret in the poststack migrated section
�Figure 6�. At this location, the problem of shallow migration noise
is compounded by the large lateral velocity gradient across the BLF.
In zone B, a small near-surface vertical displacement ��10 m� sug-
gests reactivation of a deeper secondary fault �Figures 6 and 7�.
While the reflectors and structural relationships above 110 m are
clearly imaged in the PSDM section, migration artifacts in poststack
migration completely obscure the shallow section �Figure 7�.

STRUCTURAL INTERPRETATION

We identify a basement high ��100 m depth�
that divides the Pueblo Valley into two subbasins.
This interpretation is consistent with an earlier
gravity interpretation that places a horst below
the BLHS �Cleary et al., 1981�. Our study high-
lights the structures observed across the eastern
subbasin. Figure 8 shows a symmetric basin with
near equal displacement along the eastern and
western subbasin margins. The BLHS horst is lo-
cated on the western edge of our profile and is
bounded to the east by a set of 40°, east-dipping
normal faults including the BLF. Along the east-
ern margin of the basin, we interpret a series of
30°–45° west-dipping normal faults, including
the eastern basin bounding fault �EBBF�. We also
identify numerous smaller-offset faults distribut-
ed across the basin.

An angular unconformity is evident at a depth
of 200 m between 9.5 and 10.5 km immediately
west of the EBBF �Figures 7 and 8�. Below this
unconformity, strata dip steeply �up to 35°� and
are truncated to the east by the EBBF. Progres-
sively steeper dips on strata along the eastern
margin of the basin suggest growth faulting and
continued deformation during and after deposi-
tion.Above the unconformity, strata dip eastward
�4° and suggest faulting continued later than the
age of the shallowest beds imaged. The unconfor-
mity likely represents a dry period when erosion
replaced deposition. Although the unconformity
may continue west of 9 km, a lack of contrasting
dips on strata with depth makes this horizon diffi-
cult to track.

Along the western margin of the subbasin, we
measure a 6° dip to the west on shallow ��100 m
depth� strata that terminate at the BLF. This is a
50% increase in tilt of near-surface strata adjacent
to the BLF, compared to strata adjacent to the
EBBF. However, strata deeper in the basin appear
more steeply dipping along the eastern basin mar-
gin. This suggests that displacements were ini-
tially greater along the eastern basin margin if the
strata are approximately the same age with in-
creasing depth. Strain may have shifted from the
eastern margin to the BLF fault system during ba-
sin evolution. The presence of hot springs upon
the central valley horst along the western bound-

Figure 6. The east basin segment of the Pueblo Valley profile. �a� Surface elevation along
the seismic profile with surficial units indicated; �b� stack after two iterations of DMO
and stacking velocity analysis with shots locations from Figures 1 and 2 indicated; �c�
poststack Kirchhoff time migration with the stacking-velocity model shown in Figure 4a;
�d� PSDM image using the velocity model shown in Figure 4c. Migration noise in the
poststack migration obscures shallow reflections while PSDM produces a clear image
from depths of less than 25 m to greater than 800 m. Note in particular zones A and B
which are highlighted with red boxes. �Qs — Quaternary silts and sands; Tv — Tertiary
volcanics�.
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ary of our profile supports an active western subbasin fault system
that likely includes the BLF.

There is tremendous variability in location and timing of faulting
within the basin and range both regionally and locally �Wallace,
1984�, and basin styles and fault patterns vary tremendously �Effi-
moff and Pinezich, 1981; Liberty et al., 1994�. For example, in the
nearby Quinn River Valley, recent faults have abandoned the basin
margin and now appear within the central portions of the valley
�Narwold, 2001; Personius and Mahan, 2005�. Multiphase basin
evolution has been documented on seismic profiles across basins
within central Nevada, again suggesting transfer of strain from one

fault system to another �Effimoff and Pinezich, 1981; Liberty et al.,
1994�. The seismic profiles show clear angular unconformities with-
in these Nevada basins, with changing fault styles above and below
the unconformities. The data presented here provide further support
for multiphase basin development, perhaps suggesting similar basin
evolutions. However, all of these studies lack the dating control re-
quired to determine if the change in extensional style occurred at the
same time.

CONCLUSIONS

Overall, PSDM analysis produced good image results at depths
ranging from 25 m to greater than 700 m. Accurately measuring the
interval velocity field through reflection tomography proved to be a
valuable aid in interpreting depth to basement since a well-defined
reflection from the volcanic sequence was not present across much
of the section. PSDM proved to have a number of advantages over
poststack time migration, particularly in the shallowest 100 m of the
basin. These included accurate datuming, reduced migration arti-
facts after CIP stacking, and accurate imaging in the presence of
large lateral velocity contrasts. While these are the commonly recog-
nized attributes of PSDM, it is rarely utilized in the realm of shallow
seismic reflection. With ever-decreasing computational costs, which
historically have been a primary limitation of advanced processing
in shallow investigations, we believe that PSDM can and should be-
come a standard tool in shallow, high-resolution seismic reflection
experiments.
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