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Abstract— As a result of high-tech companies such as
Google, Yahoo, and Microsoft offering free email services,
email has become a primary channel of communication.
However, email service providers have traditionally offered
little in the way of message privacy protection. This has made
emails, of which billions are sent around the world on any day,
an attractive data source for personal identity information
thieves. Google was one of the first companies to provide
substantial email privacy protection when they began using
the HTTPS always-on option to encrypt messages sent through
their email service, Gmail. Unfortunately, Gmail’s encryption
option does not offer true point-to-point encryption since the
encrypted emails are decrypted and stored in plaintext form
on Google’s servers. This type of approach poses a security
vulnerability which is unacceptable to security-minded users
such as highly sensitive government agencies and private
companies. For these users, true point-to-point encryption
is needed. This paper introduces an identity-based one-way
group key agreement protocol and describes a point-to-point
email encryption scheme based on the protocol. Both the
security proofs and the efficiency analysis, with experimental
results, of the new scheme are provided.

Keywords: P2P encryption; Identity-based encryption; One-
way group-key agreement; Bilinear pairings

I. INTRODUCTION

Email has evolved into one of the most important and

widely used communication channels for both individuals

and organizations. However, despite email’s ubiquity in al-

most all parts of the world, current industry standards do not

emphasize email security. In fact, most emails are currently

transmitted as plain text across the Internet and other public

networks. Additionally, email servers often backup messages

in order to ensure the message’s delivery in the face of a

network failure. Since attackers can potentially read, copy,

and alter every un-encrypted email sent over networks or

stored on a mail server, there is an urgent need for point-to-

point (P2P) email encryption.

Among the most popular webmail services; namely Hot-

mail, Yahoo mail, and Google’s Gmail; Gmail has done the

most to protect users’ privacy by using the https (http secure)

always-on option to encrypt emails as they travel between a

web browser and Gmail servers. This procedure helps protect

data from being eavesdropped on by third parties during data

transmission at the cost of higher CPU usage and latency.

However, it does not offer protection against attackers who

are able to gain access, either physically or remotely, to

Google servers since all emails are decrypted and stored in

plain text form on those servers. In this case, the attacker

would be able to read and/or alter every email on the server;

P2P encryption is needed to prevent such an attack. The

following sequence of events describes the process used by

Gmail to send an email:

Sender writes email and clicks “Send”
=⇒ Sender’s browser encrypts email and transmits it to
Gmail Server =⇒ Gmail server decrypts and stores email
=⇒ Gmail server re-encrypts and sends email to recipient
=⇒ Recipient’s browser loads and decrypts email

This https procedure relies on the Transport Layer Secure

(TLS) protocol [1] to achieve session key agreement be-

tween the sender and Gmail server and the Gmail server and

the email’s ultimate recipient. The two session key agree-

ments are needed since the Gmail server must decrypt each

message using the session key shared with the sender and

later re-encrypt and send the message using the session key

shared with the email recipient. This can be quite expensive

since each TLS key agreement requires the transmission of

several back-and-forth handshake messages.

In contrast, P2P encryption requires a single encryption

by the sender and a single decryption by the recipient;

no server side encryption or decryption is needed. The

following sequence of events illustrates the sending of an

email using P2P encryption:

Sender writes email and clicks “Send”
=⇒ Sender’s browser encrypts email and transmits it to
email server =⇒ email server stores email =⇒ email server
sends email to recipient =⇒ Recipient’s browser loads and
decrypts email

P2P encryption compares favorably to the Gmail https

protocol since it does not require server side encryp-

tion/decryption and can thus forego the two TLS handshakes.

In theory, the adoption of a P2P email encryption scheme

would reduce server load and thus latency.

P2P encryption requires the adoption of one of the fol-
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lowing approaches:

1) Before two users communicate, they establish and

share an encryption key which they will use for future

communications.

2) Each email user determines a private/public key set

and publishes their public key.

3) The email sender and recipient find a way to agree on

an encryption key without the need for an information

exchanging handshake since the recipient might not

be online when the email is sent.

The first approach does not scale well since it requires

sharing a different key with each potential email recipient.

The second approach has been adopted by the well-known

PGP (Pretty Good Privacy) [2], [3] secure email protocol,

which requires each PGP user to have his/her own public

and private key pair. In PGP, an email sender needs to know

the public key of the email’s recipient prior to the encryption

of the message. This is often achieved by querying a public-

key certificate authority (CA) to retrieve (or verify) the

recipient’s public key. While this approach scales well, it

has some serious disadvantages such as:

1) all participants need to decide upon and publish public

keys.

2) it is difficult to find a trusted third party to act as the

CA.

3) tracking valid and revoked certificates requires extra

work on behalf of the CA.

4) public key encryption is computationally expensive.

Identity-based cryptography (IBC) is a promising solution

to these issues. In IBC, everyone’s public key is generated

from a unique identifier; for instance, an individual’s email

address. A trusted key distribution center (KDC) uses a

cryptographic algorithm to calculate the private key for a

public key and sends the pair of keys to the participant. Since

both the public key generation algorithm and the input to the

algorithm (i.e. email address) are publicly available, anyone

is able to calculate another’s public key on the fly without

needing to querying a server. Studies have shown that an IBC

system requires a significantly less complex infrastructure

(fewer servers and easier installation) and lower operating

costs and user productivity losses (one-fifth and one-third

of the values, respectively) compared to a typical public-

key system. [6]

This paper proposes an identity-based one-way group

key agreement protocol for email encryption. The proposed

protocol allows email participants to agree on a symmetric

key using encryption algorithms, such as AES [4], which

are far more efficient than those involving an IBC public

key.

The paper is organized as follows. Section II describes

related work. Section III gives the cryptographic background

needed to understand this paper. It includes a brief intro-

duction to bilinear pairings, the associated cryptographically

hard problems, and a typical identity-based cryptosystem.

Section IV describes the identity-based one-way group key

agreement protocol. Section V shows security proofs for

the protocol. Section VI provides an efficiency analysis of

the proposed P2P email encryption scheme and includes

a detailed comparison with the well-known PGP program.

Section VII presents the performance results of the new

scheme. Finally, Section VIII summarizes the proposed work

and concludes the paper.

II. RELATED WORK

PGP is a secure protocol which enables P2P email en-

cryption. If a person wishes to use PGP to send a secure

email, he/she needs to:

1) encrypt the email using the IDEA encryption algo-

rithm [5],

2) find and verify the email recipient’s RSA public key

[7],

3) encrypt the IDEA encryption key using the email

recipient’s RSA public-key.

The encrypted email can then be sent over a regular emailing

system. Upon receiving a PGP-encrypted email, a user needs

to

1) use his/her RSA private key to get the IDEA encryp-

tion key,

2) use the IDEA key to decrypt the email.

The emailing processes listed above are all fairly easy

to implement with the exception of finding and verifying

an email recipient’s public keys. While getting someone’s

public key is fairly straightforward, often requiring the

querying of a public directory, verifying the received key

requires a CA’s signature of endorsement. This is the main

disadvantage of public-key cryptosystems, including PGP,

and is even more of a problem when an email is sent

to multiple recipients. In that case, the sender needs to

perform the troublesome public-key verification process for

each recipient. The proposed identity-based one-way group

key agreement protocol does not require the public-key

verification process and its associated costs.

III. CRYPTOGRAPHIC BACKGROUND

A. Bilinear pairings

Bilinear pairing is a popular cryptosystem which has

found recent use in various efficient encryption and signature

schemes [8], [9], [10], [11], [12], [13], [14]. A symmetric

bilinear pairings cryptosystem is described briefly in this

section.

Let (G1, +) and (G2,×) be two cyclic groups of the same

prime order, q, and let B be the generator of the additive

group G1, and e : G1 × G1 → G2 is a bilinear mapping if

it has the following properties:

Bilinearity:

∀X, Y, Z ∈ G1, and ∀a, b ∈ Z∗
q ,
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e(X, Y ) = e(Y, X)
e(aX, bY ) = e(X, Y )ab = e(bX, aY )
e(X, Y + Z) = e(X, Y )e(X, Z)

Non-degeneracy:

If B is a generator of G1, then e(B,B) is a

generator of G2.

Computability:

∀X, Y ∈ G1 , there exists a polynomial-time algo-

rithm to efficiently compute the bilinear mapping

e(X, Y ).
An elliptic curve is a typical example for the G1 group

[15], [16]. The security of most bilinear mapping based

cryptographic schemes is related to the difficulty of the

bilinear variants of the Diffie-Hellman problems, which are:

• Computational Bilinear Diffie-Hellman Problem (CB-

DHP): Given X, aX, bX for a, b ∈ Z∗
q , compute abX .

• Decision Bilinear Diffie-Hellman Problem (DBDHP):

Given X, aX, bX, cX for a, b, c ∈ Z∗
q , and an element

g ∈ G2, decide if g = e(X, X)abc.

Currently, there is no known algorithm which is able to

efficiently solve these hard problems.

B. Identity-based cryptosystem

In a typical public-key cryptosystem, a trusted third party

must serve as a CA by providing public-key endorsement

services for registered users. The disadvantages of having

such certificate authorities were discussed earlier in this

paper. Identity-based cryptography is remarkable in that it

does not require a CA. Instead, a public known hash function

can be used to derive a participant’s public key from the

participant’s identity token.

While identity-based cryptosystems do not require a CA,

most implementations require a central server, called a key

distribution center (KDC), to generate and distribute the

public/private key pair for users when they first register.

KDCs differ from CAs in that they do not need to up-and-

running all the time and they don’t need to provide public-

key verification services for each communication.

The KDC needs to define a set of cryptographic parame-

ters and make them publicly known. A typical identity-based

cryptosystem setting is as follows:

1) The KDC chooses two cyclic groups (G1, +) and

(G2,×) of the same prime order q. Let B be a

generator of the order q over G1 and e : G1 × G1 →
G2 be a bilinear mapping.

2) The KDC also chooses a cryptographic hash function

H : {0, 1}∗ → G1 that can map a user’s identity

to a point in G1. The map-to-curve and map-to-point

algorithms from Weil pairings in [17], [18] are such

functions.

3) The KDC selects a master secret S ∈ Z∗
q .

4) Finally, the KDC publishes the set of cryptographic

parameters {G1, G2, q, B, e,H}.

5) Each registered user Ui will have a public key Pi.

Pi = H(IDi) ∈ G1 (1)

where IDi ∈ {0, 1}∗ is the identity of the user Ui.

The KDC calculates a private key Si and sends it to

Ui through a secure channel, where

Si = S × Pi ∈ G1 (2)

IV. ONE-WAY GROUP KEY AGREEMENT PROTOCOL FOR

P2P EMAIL ENCRYPTION

This section proposes the identity-based one-way group

key agreement protocol and describes its application to P2P

email encryption.

A. KDC server

For the proposed one-way group key agreement protocol

to allow an email sender and a group of recipients to

agree on a key for P2P email encryption, all of the email’s

participants must have public-private keys issued by the

same KDC. This can easily be achieved by letting the email

service provider act as the KDC. In that case, when a

user registered an account with the company, the company’s

email server would act as the KDC and would generate the

user’s public key and private key using the steps described

in Section III-B. However, since the service provider knows

the master secret key, S, they would be able to derive every

user’s private key. With the private key, they could determine

the user’s encryption key and subsequently decrypt any

of their emails. The service provider would have strong

incentives for decrypting user emails since it would allow

for more efficient indexing, better spam detection, and more

effective ad-targeting.

For this reason, highly sensitive organizations such as

government agencies would probably want to have their own

server running as the KDC to use their own set of identity-

based cryptographic parameters. An agency’s use of its own

server as the KDC does not limit the email service providers

which could be used by the agency’s employees. On the

contrary, it allows for secure P2P email encryption across

most networks. Only the agency’s KDC and the email’s

recipients (if they are registered users of the agency), who

can use the agency’s set of cryptographic parameters to

determine the key for the email’s encryption, will be able to

decrypt the email.

B. Key generation by email sender

In any email application, a sender can email a message

to a group of n > 0 recipients. Assume ID0 is the email

sender’s identity (i.e. the sender’s email address) and let IDi,

for i = 1, 2, . . . , n, denote the identity for each of the n
email recipients.
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1) The email sender picks a random number r ∈ Z∗
q and

computes

xi = e(S0, rPi) ∈ G2,∀i = 0, 1, 2, . . . , n (3)

where S0 is the private key of the email sender ID0

and Pi = H(IDi) is the public key of the email

recipient IDi.

2) The email sender generates the encryption key K by

computing

K = ⊕∀i=0,1,...,n(xi) (4)

3) The email sender also computes yi,∀i = 1, 2, . . . , n,

as follows.

yi = ⊕∀j �=i(xj) (5)

in other words,

yi = x0 ⊕ x1 ⊕ . . . ⊕ xi−1 ⊕ xi+1 ⊕ . . . ⊕ xn (6)

4) The email sender encrypts the email using the secret

key K and sends the encrypted email out along with

(r, y1, y2, . . . , yn).

C. Key re-generation by each email recipient

Upon receiving the email from ID0, each recipient IDi

can compute the secret key K from yi (which is attached in

the email) and the public key P0 = H(ID0) of the email

sender ID0 with the following equation:

K = yi ⊕ e(rP0, Si) (7)

since

yi ⊕ e(rP0, Si) = yi ⊕ e(rP0, sPi)
= yi ⊕ e(sP0, rPi)
= yi ⊕ e(S0, rPi)
= yi ⊕ xi

= (⊕∀j �=i(xj)) ⊕ xi

= K

D. Example

The security proofs in the next section distinguish between

the case where an email has an even number of recipients

and the case where an email has an odd number of recipients.

Thus, in this section we will provide an example for each

case. To start, assume an email sender, with identity ID0,

would like to send an email to two (an even number)

recipients with identities ID1 and ID2. This scenario would

be handled as follows:

1) The sender picks a random number r and computes⎧⎨
⎩

x0 = e(S0, rP0)
x1 = e(S0, rP1)
x2 = e(S0, rP2)

2) The sender generates the encryption key

K = x0 ⊕ x1 ⊕ x2

3) The sender computes{
y1 = x0 ⊕ x2

y2 = x0 ⊕ x1

4) The sender encrypts the email using the key K and

sends (r, y1, y2) along with the email.

5) The recipient with identity ID1 computes

y1 ⊕ e(rP0, S1) = x0 ⊕ x2 ⊕ e(rP0, SP1)
= x0 ⊕ x2 ⊕ e(sP0, rP1)
= x0 ⊕ x2 ⊕ e(S0, rP1)
= x0 ⊕ x2 ⊕ x1

= K

6) The recipient with identity ID2 computes

y2 ⊕ e(rP0, S2) = x0 ⊕ x1 ⊕ e(rP0, SP2)
= x0 ⊕ x1 ⊕ e(sP0, rP2)
= x0 ⊕ x1 ⊕ e(S0, rP2)
= x0 ⊕ x1 ⊕ x2

= K

Thus, both email recipients are able to derive the

encryption key K which was generated by the email’s

sender.

Now, assume an email sender with identity ID0 would

like to send an email to three (an odd number) recipients

with identities ID1, ID2, and ID3. This scenario would be

handled as follows:

1) The sender picks a random number r and computes⎧⎪⎪⎨
⎪⎪⎩

x0 = e(S0, rP0)
x1 = e(S0, rP1)
x2 = e(S0, rP2)
x3 = e(S0, rP3)

2) The sender generates the encryption key

K = x0 ⊕ x1 ⊕ x2 ⊕ x3

3) The sender computes⎧⎨
⎩

y1 = x0 ⊕ x2 ⊕ x3

y2 = x0 ⊕ x1 ⊕ x3

y3 = x0 ⊕ x1 ⊕ x2

4) The sender encrypts the email using the key K and

sends (r, y1, y2, y3) along with the email.

5) The recipient with identity ID1 computes

y1 ⊕ e(rP0, S1) = x0 ⊕ x2 ⊕ x3 ⊕ e(rP0, SP1)
= x0 ⊕ x2 ⊕ x3 ⊕ e(sP0, rP1)
= x0 ⊕ x2 ⊕ x3 ⊕ e(S0, rP1)
= x0 ⊕ x2 ⊕ x3 ⊕ x1

= K

6) The recipient with identity ID2 computes

y2 ⊕ e(rP0, S2) = x0 ⊕ x1 ⊕ x3 ⊕ e(rP0, SP2)
= x0 ⊕ x1 ⊕ x3 ⊕ e(sP0, rP2)
= x0 ⊕ x1 ⊕ x3 ⊕ e(S0, rP2)
= x0 ⊕ x1 ⊕ x3 ⊕ x2

= K
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7) The recipient with identity ID3 computes

y3 ⊕ e(rP0, S3) = x0 ⊕ x1 ⊕ x2 ⊕ e(rP0, SP3)
= x0 ⊕ x1 ⊕ x2 ⊕ e(sP0, rP3)
= x0 ⊕ x1 ⊕ x2 ⊕ e(S0, rP3)
= x0 ⊕ x1 ⊕ x2 ⊕ x3

= K

Thus, all three email recipients are able to derive the

encryption key K which was generated by the email’s

sender.

V. SECURITY ANALYSIS

In this section, we provide proofs showing that the encryp-

tion key K cannot be derived from the public information

{y1, y2, . . . , yn} alone. Let’s define the encryption key K
and all yi’s as sets, since we will consider these quantities

as sets in our security analysis.

Definition V-1: the encryption key K defined in Equation (4)
is a set of elements {x0, x1, . . . , xn} that are linked together
by the ⊕ operator.

Definition V-2: A subset, s, of K is a subset of
{x0, x1, . . . , xn}, where all elements in the subset are linked
together by the ⊕ operator. Thus, the yi’s defined in Equa-
tion (5) are all subsets of K.

To prove the security of the proposed scheme, we need to

answer the question: What subsets of K are required in order

to determine K?

Theorem V-1: A set of subsets of K, denoted by G =
{s1, s2, . . . , st} for some positive integer t, can be joined
with the ⊕ operator to yield K if and only if every element
of K appears an odd number of times in G.
Proof: Assume, for the sake of contradiction, that d > 0
elements of K, namely {xi1 , xi2 , . . . , xid

}, appear an even

(or zero) number of times in G = {s1, s2, . . . , st}, where

s1 ⊕ s2 ⊕ . . .⊕ st = K. The remaining n− d + 1 elements,

namely {xj1 , xj2 , . . . , xjn−d+1} must appear an odd number

of times in G. Let (⊕xi)r represent the operation xi ⊕xi ⊕
. . . ⊕ xi, where xi appears r times (xi XOR’ed with itself

r − 1 times). Note that

(xi)r =
{

xi if r is an odd number

0 if r is an even number

Now consider

G = s1 ⊕ s2 ⊕ . . . ⊕ st

= [(⊕xi1)
α1 ⊕ (⊕xi2)

α2 ⊕ . . . ⊕ (⊕xid
)αd ] ⊕

[(⊕xj1)
β1 ⊕ (⊕xj2)

β2 ⊕ . . . ⊕ (⊕xjn−d+1)
βn−d+1 ]

= xj1 ⊕ xj2 ⊕ . . . ⊕ xjn−d+1

where each αi is even ∀i ∈ [1, d] and each βj is odd ∀j ∈
[1, n − d + 1].

Having assumed that s1 ⊕ s2 ⊕ . . .⊕ st = K and having

shown that s1⊕s2⊕ . . .⊕st = xj1 ⊕xj2 ⊕ . . .⊕xjn−d+1 , we

can conclude that K = xj1 ⊕xj2 ⊕ . . .⊕xjn−d+1 . However,

this could only be true if d = 0, which contradicts our

previous assumption that d > 0. This contradiction proves

the theorem. ♦
Theorem V-2: A set of subsets of K, denoted by G, which
can be combined via ⊕ to yield K cannot be constructed
from a subset of Y = {y1, y2, . . . yn}, where the yi’s are
those which are defined in Equation (5).
Proof: From the given set Y , let’s try to construct a set G
which can be XORed to yield K. Obviously G �= ∅ and

G �= {yi},∀i since in these cases G cannot be XORed to

get K.

Case |G| is even: Noting that x0 appears once in every yi

(see Equation (6) and the example in Section IV-D), if |G|
is even then x0 appears an even number of times in G. So

according to Theorem V-1, G cannot be XORed to yield K.

Case |G| is odd: In this case, every xi such that yi ∈ G
appears |G| − 1 times in G since xi appears once in every

yj ∈ G except yi (See Equation (5)). Because |G| is odd

and is greater than 1, |G| − 1 must be even and non-zero.

Thus, some elements xi’s of K appear an even number of

times in G. Again, according to Theorem V-I G cannot be

XORed to yield K.

Having covered all possible cases, we conclude that the

encryption key K cannot be derived from the given set Y =
{y1, y2, . . . yn}. ♦

VI. EFFICIENCY

In this section we analyze the proposed P2P email encryp-

tion scheme from several perspectives. First, we analyze the

server side computational cost of both user registration (i.e.

public/private key generation) and email transactions. Next,

we consider the computational cost from an email sender’s

perspective and an email recipient’s perspective. We assume

that the email was sent to n recipients. Finally, we analyze

the increase in the size of emails which are subject to our

P2P encryption scheme. Our analysis will use the following

notation for operations associated with the P2P scheme:

PM point multiplication in group G1

BP bilinear pairing

HASH map-to-point hash algorithm [17], [18].

Before we begin, we note that if a practical elliptic curve

E/F3163 is used to implement the group G1, then one

BP operation requires ≈ 11, 110 modular multiplications

in F3163 [19]. Meanwhile, a PM operation of E/F3163
requires only a few hundred modular multiplications in

F3163.

A. User registration

A new user registers an email account through the KDC

(e.g., Google server). After a user chooses his/her email
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address, the KDC uses the HASH and a PM to compute

the public and private key pair for the user. These two

key generations can be seen in Equations (1) and (2),

respectively. Both operations are quite efficient and do not

represent a significant cost.

B. Computational cost for an email sender

To send an email to n recipients, the sender is required

to

1) calculate x0, x1, x2, . . . , xn: From Equations (1) and

(3) we see that each computation requires a HASH,

PM, and BP operation.

2) derive the encryption key K. From Equation (4), this

derivation requires ⊕ing all xi’s.

3) calculate y1, y2, . . . , yn: From Equation (5), the calcu-

lation of each yi requires ⊕ing all xj’s ∀j �= i.
4) AES encrypt the email using the encryption key K.

The bit-wise ⊕ operation is extremely efficient, making

the costs for calculating K and yi’s negligible. From the

email sender’s perspective, the main computational cost

stems from the AES encryption and the calculation of

X = {x0, x1, . . . , xn}. Since each xi calculation requires a

HASH, a PM and a BP operation, the total cost of calculating

X is (n+1) HASH, (n+1) PM and (n+1) BP operations.

C. Computational cost for an email server

In contrast to the current Gmail behavior, the email server

from the proposed scheme is not required to perform any

decryption or encryption operations. However, encrypted

emails have an opportunity cost associated with them since

encryption makes spam filtering and history searches more

difficult.

D. Computational cost for an email recipient

To receive an email, a recipient needs to

1) re-construct the encryption key using Equation (7).

This requires One HASH, one PM and one BP op-

eration (the ⊕ operation is again ignored).

2) AES decrypt the message using the re-constructed

encryption key K.

We see that the computational cost of sending an email is

linearly proportional to the number of recipients while the

cost of receiving an email is constant.

E. Email size

The size of an email will increase as a result of using

the proposed P2P email encryption scheme. The first, and

least significant, cause of growth is the use of block ciphers

such as AES. These ciphers often require full blocks and

will consequently fill the last block with random bits if it

is not full. This has the potential to add up to one block

minus a bit to the email’s size. Since most block sizes

are relatively small, AES has a block size of 256 bits, the

added size is usually not noticeable. A more significant

increase in message size results from having to include the

key agreement information, (r, y1, y2, . . . , yn), with every

email. If an elliptic curve is used to implement the bilinear

pairing cryptosystem from the proposed P2P encryption

scheme, each member of the key agreement information

will be roughly the same size as the key of the selected

curve. According to the National Institute of Standards and

Technology, n-bit security (the security of a symmetric

encryption scheme with an n-bit key) requires an elliptic

curve with a key size ≈ 2n bits. So using an elliptic curve

and 128-bit security would result in a 256 × (n + 1) bit

increase in the size of an email sent to n recipients.

F. Comparison to the current Gmail setting

Table I provides a brief efficiency comparison between the

proposed P2P-EES and the current Gmail’s HTTPS always-

on option.

TABLE I

EFFICIENCY COMPARISON BETWEEN P2P-EES AND THE GMAIL’S

HTTPS ALWAYS-ON OPTION, ASSUMING THERE ARE n RECIPIENTS IN

AN EMAIL

P2P-EES Gmail’s HTTPS always-on

Email sender • (n + 1) PM; • TLS handshake with the
• (n + 1) BP; email server;
• (n + 1) HASH; • Email encryption.
• Email encryption.

Email server • None • TLS handshake with the
email sender;

• Email decryption
• TLS handshake with the

email recipient;
• Email re-encryption.

Email recipient • 1 PM; • TLS handshake with the
• 1 BP; email server;
• 1 HASH; • Email decryption.
• Email decryption.

Email size • Encrypted message • Encrypted message only.
along with all
yi’s (the key
agreement info).

VII. EXPERIMENTS

In addition to the theoretical performance analysis of

the P2P-EES, we implemented the P2P-EES prototype and

conducted experiments to measure the latency and storage

requirements for server cryptosystem setup, user registration,

and email transmission.

A. Implementation

The cryptosystem was implemented using a type A pairing

[20], [25], which is constructed on a curve E : y2 = x3 +x
over the field Fq for some prime q = 3 mod 4. As a result,

E(Fq) contains q + 1 points and E(Fq2) contains (q + 1)2
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points. The group G = E(Fq)[r] is cyclic if r is an odd

number and a factor of q + 1. Consider the distortion map

in [21]

ψ(x, y) = (x, iy) (8)

where ψ maps points (x, y) ∈ E(Fq) to points in

E(Fq2)\E(Fq). If f denotes the Tate or Weil [22], [23],

[24] pairing, the bilinear mapping e : G × G → Fq2 can be

defined by

e(P,Q) = f(P,ψ(Q)) (9)

An implementation for this type of pairing has been

suggested by [25] and is as follows:

1) An order r, of the group G, is chosen to be larger

enough to avoid generic discrete logarithm attacks.

r = 160 bits and r = 256 bits were used for our

experiments.

2) Choose a random number h such that it is a multiple

of 4 and (hr)2 is large enough to resist finite field

attacks. For example, if one desires q2 to be 1024

bits long, then h must be ≈ 256 bits long (assuming

r = 256 bits).

3) Repeat step 2 while q = hr − 1 is not prime.

B. Experimental hardware

The experiments were conducted on a machine with an

Intel(R) Core(TM)i3CPU M330@2.13GHz processor, 4 GB

RAM, and the 64-bit Windows 7 home premium operating

system.

C. Cryptosystem setup

In a real application, the setup process needs to only be

performed once for a specific set of (rBits,qBits,MKBits)

values, where rBits is r’s bit size, qBits is q’s bit size, and

MKBits is the Master Key S’s bit size. For the performance

testing, the setup process was ran multiple times with differ-

ent (rBits,qBits,MKBits) values. Table II gives the execution

time for determining the parameters for the pairing system,

including the generation of the master key S.

TABLE II

SERVER PAIRING CRYPTOSYSTEM PARAMETERS SETUP

rBits qBits MKBits Time (ms: millisecond)
160 256 256 907
160 256 512 923
256 512 256 978
256 512 512 1239

D. User registration

After the setup process, the server writes the cryptosys-

tem’s parameters and master key to files. Upon receiving a

user registration request, a public and private key pair are

generated for the user. The key pair generation process was

described previously with Equations (1) and (2), where the

user’s email address is used as their unique ID. Table III

shows the execution time of key pair generation during our

experiments.

TABLE III

USER REGISTRATION - KEY PAIR GENERATION

rBits qBits MKBits email address Time (ms)
256 512 256 fiona201301@gmail.com 109
256 512 512 fiona201301@gmail.com 156
256 512 256 fionazeng@u.boisestate.edu 125
256 512 512 fionazeng@u.boisestate.edu 167

E. Email transmission
A Type A curve, with rBits = 256 and qBits = 512,

was used to measure encryption and decryption times. The

connection time is considered to be the time it takes for

a client to connect to the email server when sending or

opening an email.
1) Key derivation, encryption, and decryption for email

messages with a single recipient: Table IV shows the

sender’s and recipient’s network connection time; as well

as the key derivation, encryption and decryption time; for

emails containing only one recipient. The cipher text size is

included for reference.

TABLE IV

CONNECTION (CONN.), KEY DERIVATION (DER.), ENCRYPTION (ENC.)

AND DECRYPTION (DEC.) TIME FOR EMAILS WITH ONLY ONE RECIPIENT

Cipher Sender Recipient
Msg. size Conn. Der. Enc. Conn. Der. Dec.
(char) (char) (ms) (ms) (ms) (ms) (ms) (ms)
524 875 4493 157 198 4926 153 698

3009 5670 4953 168 224 4583 172 813
10658 12944 5614 153 229 4922 144 935

There are two factors which contributed to the increase

in cipher text size. First, the padding scheme used by AES

(a block cipher) could have added a few bytes (no more

than the 16 byte block size) of padding to the message.

Second, and more importantly, a random number r and all

yi’s needed to be appended at the end of the message as

part of the cryptosystem. Therefore, the size of a cipher text

is approximately the sum of the size of the message, the

random number r, and all yi’s.
2) Encryption and decryption for email messages with

multiple recipients: Emails were sent to multiple recipients

to measure how the system scaled with the number of email

recipients. The marginal increase in transmission time was

consistent for larger numbers of recipients and so, for the

sake of brevity, we show only the results of two and three

recipient emails. The connection times were also omitted

because of the lack of variance in the values (see Table IV

for typical connection times). The results of the two and

three recipient tests are shown in Tables V and VI.
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TABLE V

KEY DERIVATION (DER.), ENCRYPTION (ENC.) AND DECRYPTION

(DEC.) TIME FOR EMAILS WITH TWO RECIPIENTS

Sender Recipient1 Recipient2
Msg. Der. Enc. Der. Dec. Der. Dec.
(char) (ms) (ms) (ms) (ms) (ms) (ms)
524 335 202 103 681 98 662

3009 349 226 96 892 112 824
10658 389 276 101 1064 116 922

TABLE VI

KEY DERIVATION (DER.), ENCRYPTION (ENC.) AND DECRYPTION

(DEC.) TIME FOR EMAILS WITH THREE RECIPIENTS

Sender Recipient1 Recipient2 Recipient3
Msg. Der. Enc. Der. Dec. Der. Dec. Der. Dec.
(char) (ms) (ms) (ms) (ms) (ms) (ms) (ms) (ms)
524 477 192 105 668 109 662 102 676

3009 498 212 96 876 112 824 107 864
10658 481 296 101 998 116 922 112 972

F. Results Summary

The experimental result can be summarized as follows:

1) Cryptosystem parameter setup, including the mas-

ter key generation (rBits=256, qBits=512 and MK-

Bits=512 bits) takes ≈ 1 second.

2) Key pair generation during user registration takes ≈ .1
seconds.

3) Connecting to an email server using the Java Mail

library requires 4 to 6 seconds. It takes a fraction of a

second to encrypt or decrypt messages, and that speed

(throughput per second) is independent of the email’s

size and recipient count.

4) The key derivation time is roughly the same for each

recipient. However, the sender’s key derivation time

is directly proportional to the number of recipients.

These results match the theoretical analysis from Table

I.

5) The increase in cipher size is slight and independent

of the plain text size, so the scheme has no storage

concerns.

VIII. CONCLUSION

This paper proposed a secure and efficient identity-based

one-way group key agreement protocol which can be in-

tegrated with an email service application to provide P2P

encryption. The scheme’s security was proved in Section V

and its efficiency was analyzed in Section VI, in which Table

I gave a detailed theoretic comparison between the proposed

P2P email encryption scheme and the current Gmail HTTPS

always-on option. Experiments were conducted to measure

the performance of the proposed P2P-EES in Section VII.
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