
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

8-1-2009

On-Chip Intrinsic Evolution Methodology for
Sequential Logic Circuit Design
Fan Xiong
Boise State University

Nader Rafla
Boise State University

©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes
or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE. DOI: 10.1109/MWSCAS.2009.5236119

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical
https://scholarworks.boisestate.edu/electrical
http://dx.doi.org/10.1109/MWSCAS.2009.5236119

On-Chip Intrinsic Evolution Methodology for Sequential
Logic Circuit Design

Fan Xiong
Electrical and Computer Engineering

Boise State University
Boise, ID 83725

fanxiong@u.boisestate.edu

Nader I. Rafla, Ph.D., P.E.
Electrical and Computer Engineering

Boise State University
Boise, ID 83725

nrafla@boisestate.edu

Abstract

This paper focuses on the application of Virtual
Reconfigurable Circuit (VRC) design methodology and
intrinsic evolution for the design of small sequential
circuits and their implementation on a single
programmable chip with an embedded hardcore
processor. The evolutionary algorithm is developed in
software that runs on the embedded processor. Fitness
function is calculated using hardware architecture and
is used to guide the evolution process. This new
method is applied to the development of a 3-bit
sequence detector and the evolved architecture is
implemented on a Xilinxtm Virtex-II pro device.
Simulations were run on the evolved architecture and
on the same circuit designed using conventional
Hardware Descriptive Language (HDL). Both designs
showed the same functional behavior. Synthesis results
show that the new method can be used in successfully
implementing small sequential circuits on a
reconfigurable hardware environment.

1. Introduction

Evolvable Hardware (EHW) is a new bio-inspired
technique that uses evolutionary algorithm (EA) to
auto-configure and optimize circuits [1][2]. By
exploring a large design search space, EHW may find
solutions for a task, unsolvable, or more optimal than
those found using traditional design methods. Instead
of manually designing a circuit, only input/output-
relations are specified. The circuit is automatically
designed using an adaptive algorithm inspired from
natural evolution.

EHW encodes circuit structure and parameters as
chromosomes using one of several predefined
encoding methods. EA uses these chromosomes to
generate random bit-sequence for chip configuration. A
fitness value is then calculated and used to judge and

refine the sequence. Fitness is an indicator for the
goodness of the solution expressed by a particular
chromosome.

There exist two methods for calculating fitness in
EHW; intrinsic and extrinsic. In intrinsic EHW, the
fitness evaluation is done after downloading the
configuration sequence to the chip. The circuit is then
tested and its output is compared to predetermined
expected results. Comparison results are used to guide
the evolution process to either continue or stop. On the
other hand, extrinsic EHW uses software program to
evaluate the fitness, reiterate if necessary and finally
download the resulted configuration bit-sequence to
the chip, so it’s also called off-line evolution.

There are four commonly used EAs in EHW:
Genetic Algorithm (GA), Genetic Programming (GP),
Evolutionary Programming (EP) and Evolutionary
Strategy (ES). GA is the most widely used
evolutionary algorithm [3].

As has been discussed in previous work [4], the
majority of circuits that have been evolved are
combinational logic circuits, and only a small portion
of work has been done on evolving sequential logic
circuits. Although some researchers made useful
contributions to this area [4][5][6][7][8], the research
of evolving sequential logic circuits is still in its early
stages and did not use the combination proposed in this
research.

In this paper, we propose a novel method to evolve
sequential logic circuits using intrinsic evolution and
virtual reconfigurable circuit technique. A simple GA
is used along with a new structure of VRC to design
flexible and easy reconfigurable architecture. This
architecture is suitable for implementation on a Field
Programmable Gate Array (FPGA) platform. Since the
FPGA configuration bit-stream is considered
proprietary information and it is challenging to deal
with, VRC is best suited to use in such a situation.
Although some researchers tried to use reverse

978-1-4244-4480-9/09/$25.00 ©2009 IEEE 200

Authorized licensed use limited to: Boise State University. Downloaded on October 12, 2009 at 11:32 from IEEE Xplore. Restrictions apply.

engineering to obtain XilinxTM FPGA bit-stream file
format, these efforts deemed to be inefficient [9]. Other
VRC architectures were proposed by different research
groups for developing reconfigurable architectures
while trying to keep the architecture flexible and
simple [10][11][12][13][14].

The idea adopted here is to use VRC as a second
reconfiguration layer built on top of the FPGA. This
VRC is generally constructed from an array of
programmable elements (PEs). Each PE can easily be
configured to connect to others elements and/or to
circuit inputs or outputs.

Routing is accomplished via multiplexers while
configuration memory of the VRC is typically
implemented as a register array. Data loaded into the
configuration memory is used to control the routing
through multiplexer selection. Based on VRC, users
can design any desired configuration according to the
application on hand. Furthermore, the VRC is
described in HDL which is independent of the target
platform. Thus, makes the design portable to other
different reconfigurable platforms.

The rest of the paper is organized as follows:
Section 2 introduces a case study of designing a
sequence detector using the proposed approach and
section 3 describes the implementation environment.
Experimental results are shown in Section 4. Section 5
concludes the paper with suggestions of future work

2. Case Study: A sequence Detector

Finite State Machines (FSM) are typical examples
for sequential logic circuit design. Therefore, the
chosen case study of FSM is a sequence detector that
has one input, one output and three internal states. It is
capable of detecting two overlapping bit occurrences of
101 and 100. Its Mealy state transition diagram is
shown in Figure 1.

0 1 2
1/0 0/1

1/0

1/0

0/0

0/0

Figure 1. State transition diagram

for sequence detector

2.1. Virtual reconfigurable architecture

 The hardware implementation of the VRC is coded
in VHDL. It has one input Sin, one output Sout, and 24
configuration bit inputs. This VRC architecture is
viewed as a programmable element that implements
our FSM via these configuration bits. Once a target
configuration is obtained, Sin and Sout are used as the
input and output of the evolved sequential circuit
respectively. The VRC is a simple configuration that
consists of three 8-to-1 multiplexers and two flip-flops
as shown in Figure 2.

Figure 2. Virtual reconfigurable
circuit architecture

2.2. Evolution process

The GA runs on the embedded PowerPC (PPC)

processor to generate a configuration chromosome.
This configuration chromosome is used to configure
the VRC architecture that implements the function of
the sequence detector. The PPC also has a random
generator that generates test bit-sequences. These
sequences are applied simultaneously to both the VRC
and to a reference design for the FSM, coded in C. The
corresponding output sequence of this FSM is stored in
a Random Access Memory (RAM). Both output
sequences, from the RAM and VRC, are compared for
equality in the comparator, a simple XOR circuit, to
generate a fitness value. In fact, the number of ones in
this value indicates how good the match between the
two sequences is. For example, for a bit sequence of n
bits and a perfect match occurs, the fitness value would
be n. If this fitness value is not perfect, it is used to
guide the GA (through mutation and crossover) to
generate a new chromosome for a new VRC
configuration and the cycle repeats until a perfect
match is found or after a certain number of iterations is
reached. The evolved architecture becomes the final

0/1

1/1

8 bits

8 to 1
Mux

FlipFlop

CLK

8 to 1
Mux

8 to 1
Mux

FlipFlop

CLK

8 bits

8 bits

Configuration bits (24)

Sin

Sout

201

Authorized licensed use limited to: Boise State University. Downloaded on October 12, 2009 at 11:32 from IEEE Xplore. Restrictions apply.

implementation of the FSM. This evolution process is
depicted in Figure 3.

RAM

VRC

Comparator

Random
generator

Chromosome

PowerPC

Reference
FSM

Fi
tn

es
s V

al
ue Test sequence

Test sequence

C
onfiguration bits

Figure 3. Sequence detector
evolution process

3. Implementation environment

The evolvable system is implemented on a XilinxTM
XUPV2P Virtex-II Pro FPGA prototyping board [15],
shown in Figure 4. This device contains 13696 slices,
428Kbit distributed RAM, 428Kbit multiplier blocks,
2448 block RAMs, 8 Digital Clock Managers (DCMs),
2 PowerPC RISC embedded processors and 8 multi-
gigabit transceivers. The maximum processor speed is
300MHZ. The development board has a wealth of
resources among which an RS232 port that facilitated
the communication between the PC and the FPGA chip
via an on-chip UART IP core module. Configuration
and debugging of the FPGA is done through USB port.

The evolvable system is built using the XilinxTM
Embedded Development Kit (EDK) software (version
10.1) [16]. The implementation can be viewed as a
software/hardware co-design. As described previously,
the virtual reconfigurable circuit is written in VHDL
and communicates with the PowerPC microprocessor
using an On-chip Peripheral Bus (OPB) bus structure.
The C code ran on the processor to generate the
configuration chromosome used as a configuration bit-
stream for the FPGA.

Figure 4. XUPV2P board

4. Experimental results

FPGA Device resource utilization were collected
and analyzed to evaluate the effectiveness of the
design. Table 1 shows the amount of resources used by
the case study implementation.

Table I. Device utilization of EHW system

Resources Used Available Percent

Slices 1138 13696 8.3%
Slice Flip Flops 1078 27392 3.9%
4 input LUTs 1560 27392 5.7%

A maximum of 8.3% of FPGA’s total resources

were used. This indicates that there is enough space for
more complex and much larger designs.

The system functionality is verified using a clock
frequency of 100MHz for the PPC and 50MHz for the
rest of the system. The allowable maximum clock
frequencies, as defined by FPGA specification, are
300MHz and 100MHz respectively. We can conclude
that it is possible to accommodate applications
requiring faster higher clocking frequencies.

The parameters used by the Genetic Algorithms,
determined experimentally, to generate the FSM for
this particular case study are:

• Population size is 256
• Maximum number of generation is 2000
• Crossover rate is 0.7
• Mutation rate is 0.04
• Number of runs is 10
Since a large crossover rate and small mutation rate

were used, the genetic algorithm found a global
optimization. Two test bit-sequences were used to test

202

Authorized licensed use limited to: Boise State University. Downloaded on October 12, 2009 at 11:32 from IEEE Xplore. Restrictions apply.

the proposed design: a 200 and 300
Evolution results for the 10 runs of the
are shown in Figures 5 and 6 respectiv
was found after a different number of
each run with a probability of 90%
mach does not occur, 2000 generatio
terminate the evolution process. Prelim
an improved implementation of the
guarantees the ability of finding a sol
bit sequences each run.

5. Conclusion

This paper proposes a new innovat
evolve small sequential logic circuits
Evolution with Virtual Reconfigurable
technique. Experimental results of a
sequence detector, show that a sequenti
evolved 90% of the time when a gene
used with intrinsic evolution. The
behaves as if the same circuit is
conventional HDL methods. The case s
that the evolution time is reduced
evolution compared to other curr
hardware evolution methods [17].
includes applying this design techn
sequential logic circuits.

0

100

200

300

400

500

600

Fitness=200

0

100

200

300

400

500

600

700

Fitness =300

Figure 5. Number of genera
run number for the 200 bit-se

Figure 6. Number of genera
run number for the 300 bit-se

0 bit-sequences.
e two sequences
vely. A solution
f generations for
or greater. If a

ons are used to
minary results of

GA algorithm
lution for longer

tive approach to
s using Intrinsic
e Circuit design
a case study, a
ial circuit can be
etic algorithm is
evolved design
designed using

study also shows
using intrinsic

rently available
 Future work
nique to larger

6. References

[1] H. de Garis, “Evolvable Hard
Practice. Communications of
Computer Machinery,” CACM Jo

[2] X. Yao and T. Higuchi, “Promi
Evolvable Hardware,” IEEE Tra
Cybernetics, Part C, vol. 29, Feb

[3] D. E. Goldberg, Genetic Al
Optimization, and Machine Lear
Pub. Co., Reading, Mass., 1989.

[4] B. Ali, A.E. Almaini and T. Kal
Algorithms and Their Use in the
Logic Circuits,” Genetic Progra
Machines. Vol. 5, No. 1, Mar. 20

[5] N. Nedjah and L.D.M Mourelle
Machines: An Evolutionary
International, vol. 2, No. 4, Aug

[6] Shanthi, A. P. and Singaram,
Asynchronous Sequential C
Conference on Evolvable Hardw

[7] P. Chongstitvatana and C. Ap
Correctness of Finite-State Ma
Multiple Partial Input/Output Se
Workshop of Evolvable Hardwar

[8] A. Thompson, “Evolving Electro
that Exploit Hardware Resour
European Conference on Artific
929, 1995, pp. 640–656.

[9] Andres Upegui, Dynamica
Bio-inspired Hardware, Ph.D

[10] L. Sekanina, “Virtual Reconfigur
World Applications of Ev
Evolvable Systems: From Biolo
2606, Springer-Verlag, 2003, pp

[11] L. Sekanina, Evolvable Compo
Hardware Implementations, Spri

[12] L. Durbeck and N. Macias, “
Grained Parallel Testing o
Proceedings of SPIE ITCom , 20

[13] Pauline C Haddow and Gunnar
Genotype-Phenotype Mapping
Proceedings of the third NASA
Evolvable Hardware, 2001, pp. 1

[14] P.C. Haddow and G. Tufte, “An
FPGA for Adaptive Hardware,
2000 Congress on Evolutionary
pp.553-560.

[15] XilinxTM Corp, Xilinx Univers
Pro Development System H
Manual, Apr., 2008

[16] XilinxTM Inc., EDK Concepts, T
Reference Manual (V10.1), Sept.

[17] Garrison W. Greenwood and
Introduction to Evolvable Ha
Guide for Designing Self-Adap
IEEE Press, 2006.

ations vs
equence

ations vs
equence

dware: Principles and
the Association for

Journal. Aug. 1997.
ises and Challenges of
ans. Systems, Man and
b.1999, pp. 87-97.
lgorithms in Search,
rning, Addison-Wesley

lganova, “Evolutionary
e Design of Sequential
amming and Evolvable
004, pp. 11-29.
e, “Mealy Finite State
y Approach,” CIC
. 2006, pp. 789-806.
L. K.. “Evolution of

Circuits,” NASA/DoD
ware, 2005. pp. 93-96.

orntewan, “Improving
achine Synthesis from
equences,” NASA/DoD
re, 1999, pp. 262–266.
onic Robot Controllers
rces,” Proceeding 3rd
cial Life (ECAL), vol.

ally Reconfigurable
D thesis, 1996.

rable Circuits for Real-
volvable Hardware,”
ogy to Hardware, vol.
. 186–197.

onents from Theory to
inger, Berlin, 2004.
“Defect-tolerant, Fine-
f a Cell Matrix,”

002, pp. 71-85.
r Tufte, “Bridging the
for Digital FPGAs,”

A/DOD Workshop on
109-115
n Evolvable Hardware
,” Proceedings of the
ry Computation, 2000,

ity Program Virtex-II
Hardware Reference

Tools, and Techniques
., 2008

Andrew M. Tyrrell,
ardware: A Practical
ptive Systems, Wiley-

203

Authorized licensed use limited to: Boise State University. Downloaded on October 12, 2009 at 11:32 from IEEE Xplore. Restrictions apply.

	Boise State University
	ScholarWorks
	8-1-2009

	On-Chip Intrinsic Evolution Methodology for Sequential Logic Circuit Design
	Fan Xiong
	Nader Rafla

	untitled

