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1. Introduction 

This chapter outlines a theoretical framework for the microscopic approach to material 
transport in liquid mixtures, and applies that framework to binary one-phase systems. The 
material transport in this approach includes no hydrodynamic processes related to the 
macroscopic transfer of momenta. In analyzing the current state of thermodynamic theory, 
we indicate critically important refinements necessary to use non-equilibrium 
thermodynamics and statistical mechanics in the application to material transport in non-
isothermal mixtures.  

2. Thermodynamic theory of material transport in liquid mixtures: Role of the 
Gibbs-Duhem equation 

The aim of this section is to outline the thermodynamic approach to material transport in 
mixtures of different components. The approach is based on the principle of local 
equilibrium, which assumes that thermodynamic principles hold in a small volume within a 
non-equilibrium system. Consequently, a small volume containing a macroscopic number of 
particles within a non-equilibrium system can be treated as an equilibrium system. A 
detailed discussion on this topic and references to earlier work are given by Gyarmati 
(1970). The conditions required for the validity of such a system are that both the 
temperature and molecular velocity of the particles change little over the scale of molecular 
length or mean free path (the latter change being small relative to the speed of sound). For a 
gas, these conditions are met with a temperature gradient below 104 K cm-1; for a liquid, 
where the heat conductivity is greater, the speed of sound higher and the mean free path is 
small, this condition for local equilibrium is more than fulfilled, provided the experimental 
temperature gradient is below 104 K cm-1.  
Thermodynamic expressions for material transport in liquids have been established based 
on equilibrium thermodynamics (Gibbs and Gibbs-Duhem equations), as well as on the 
principles of non-equilibrium thermodynamics (thermodynamic forces and fluxes). For a 
review of these models, see (De Groot, 1952; De Groot, Mazur, 1962; Kondepudi, Prigogine, 
1999; Haase, 1969).  
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Non-equilibrium thermodynamics is based on the entropy production expression 
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where 


eJ is the energy flux, 


iJ are the component material fluxes, N is the number of the 

components, i  are the chemical potentials of components, and T is the temperature. The 

energy flux and the temperature distribution in the liquid are assumed to be known, 
whereas the material concentrations are determined by the continuity equations 
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Here in is the numerical volume concentration of component i and t  is time. Non-

equilibrium thermodynamics defines the material flux as  

          
  

 1i
i i i i iQJ n L n L

T T
 (3) 

where Li and LiQ are individual molecular kinetic coefficients. The second term on the right-
hand side of Eq. (3) represents the cross effect between material flux and heat flux. 
The chemical potentials are expressed through component concentrations and other 
physical parameters (De Groot, 1952; De Groot, Mazur, 1962; Kondepudi, Prigogine, 1999): 
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Here P  is the internal macroscopic pressure of the system and   k kv P is the partial 

molecular volume, which is nearly equivalent to the specific molecular volume kv . 

Substituting Eq. (4) into Eq. (3), and using parameter i iQ iq L L , termed the molecular heat 

of transport, we obtain the equation for component material flux: 
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Defining the relation between the heat of transport and thermodynamic parameters is a key 
problem because the Soret coefficient, which is the parameter that characterizes the 
distribution of components concentrations in a temperature gradient, is expressed through 
the heat of transport (De Groot, 1952; De Groot, Mazur, 1962). A number of studies that offer 
approaches to calculating the heat of transport are cited in (Pan S et al., 2007).  
Eq. (5) must be augmented by an equation for the macroscopic pressure gradient in the 
system. The simplest possible approach is to consider the pressure to be constant (De Groot, 
1952; De Groot, Mazur, 1962; Kondepudi, Prigogine, 1999; Haase, 1969; Landau , Lifshitz, 
1959), but pressure cannot be constant in a system with a non-uniform temperature and 
concentration. This issue is addressed with a well-known expression referred to as the 
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Gibbs-Duhem equation (De Groot, 1952; De Groot, Mazur, 1962; Kondepudi, Prigogine, 
1999; Haase, 1969; Landau, Lifshitz, 1959; Ghorayeb, Firoozabadi, 2000; Pan S et al., 2007): 
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The Gibbs-Duhem equation defines the macroscopic pressure gradient in a thermodynamic 
system. In equilibrium thermodynamics the equation defines the potentiality of the 
thermodynamic functions (Kondepudi, Prigogine, 1999). In equilibrium thermodynamics 
the change in the thermodynamic function is determined only by the initial and final states 
of the systems, without consideration of the transition process itself. In non-equilibrium 
thermodynamics, Eq. (5) plays the role of expressing mechanical equilibrium in the system. 
According to the Prigogine theorem (De Groot, 1952; De Groot, Mazur, 1962; Kondepudi, 
Prigogine, 1999; Haase, 1969), pressure gradient cancels the volume forces expressed as the 
gradients of the chemical potentials and provides mechanical equilibrium in a 
thermodynamically stable system. However, in a non-isothermal system, the same authors 
considered a constant pressure and the left- and right-hand side of Eq. (6) were assumed to 
be zero simultaneously, which is both physically and mathematically invalid. 
Substituting Eq. (6) into Eq. (5) we obtain the following equation for material flux: 
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In Eq. (7), the numeric volume concentrations of the components are replaced by their 
volume fractions i i in v , which obey the equation 
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Using Eq. (8) and the standard rule of differentiation of a composite function                 
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we can eliminate 1 and obtain Eq. (7) in a more compact form:  
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Here1 is expressed through the other volume fractions using Eq. (8), and the following 
combined chemical potential is introduced: 
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We note that the volume fraction selected for elimination is arbitrary (any other volume 
fraction can be eliminated in the same manner), and that in subsequent mathematical 
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expressions, we express the volume fraction of the first component through that of the 
others using Eq. (8).  
Equations for the material fluxes are usually augmented by the following equation, which 
relates the material fluxes of components (De Groot, 1952; De Groot, Mazur, 1962; 
Kondepudi, Prigogine, 1999; Haase, 1969; Ghorayeb, Firoozabadi, 2000; Pan S et al., 2007):  
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Eq. (12) expresses the conservation mass in the considered system and the absence of any 
hydrodynamic mass transfer. Also, Eq. (12) is used to eliminate one of the components from 
the series of component fluxes expressed by Eq. (10). That material flux that is replaced in 
this way is arbitrary, and the resulting concentration distribution will depend on which flux 
is selected. The result is not significant in a dilute system, but in non-dilute systems this 
practice renders an ambiguous description of the material transport processes.  
In addition to being mathematically inconsistent with Eq. (12) because there are N+1 
equations [i.e., N Eq. (10) plus Eq. (12)] for N-1 independent component concentrations, Eq. 
(10) predicts a drift in a pure liquid subjected to a temperature gradient. Thus, at  1i  Eq. 

(10) predicts 

 
  

 
 i ii

i
i

qL T
J

T v T
                                (13) 

This result contradicts the basic principle of local equilibrium, and the notion of 
thermodiffusion as an effect that takes place in mixtures only. Moreover, Eq. (13) indicates 
that the achievement of a stationary state in a closed system is impossible, since material 
transport will occur even in a pure liquid. 
The contradiction that a system cannot reach a stationary state, as expressed in Eq. (13), can 
be eliminated if we assume   

  i iq                                    (14) 

With such an assumption Eq. (10) can be cast in the following form: 
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Because the kinetic coefficients are usually calculated independently from thermodynamics, 
the material fluxes expressed by Eq. (15) cannot satisfy Eq. (12) for the general case. But in a 
closed and stationary system, where 


0iJ , Eqs. (12) and (15) become consistent. In this case, 

any component flux can be expressed by Eq. (15) through summation of the other equations.  
The condition of mechanical equilibrium for an isothermal homogeneous system, as well as 
the use of Eqs. (l) – (6) for non-isothermal systems, are closely related to the principle of 
local equilibrium (De Groot, 1952; De Groot, Mazur, 1962; Kondepudi, Prigogine, 1999; 
Haase, 1969). As argued in (Duhr, Braun, 2006; Weinert, Braun; 2008), thermodiffusion 
violates local equilibrium because the change in free energy across a particle is typically 
comparable to the thermal energy of the particle. However, their calculations predict that 
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even for large (micron size) particles, the energy difference is no more than a few percent of 
kT. But the local equilibrium is determined by processes at molecular level, as will be 
discussed below, and this argumentation cannot be accepted. 

3. Dynamic pressure gradient in open and non-stationary systems: 
Thermodynamic equations of material transport with the Soret coefficient as 
a thermodynamic parameter  

Expressing the heats of transport by Eq. (14), we derived a set of consistent equations for 
material transport in a stationary closed system. However, expression for the heat of 
transport itself cannot yield consistent equations for material transport in a non-stationary 
and open system. 
In an open system, the flux of a component may be nonzero because of transport across the 
system boundaries. Also, in a closed system that is non-stationary, the component material 

fluxes 


iJ  can be nonzero even though the total material flux in the system,
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zero. In both these cases, the Gibbs-Duhem equation can no longer be used to determine the 
pressure in the system, and an alternate approach is necessary. 
In previous works (Schimpf, Semenov, 2004; Semenov, Schimpf, 2005), we combined 
hydrodynamic calculations of the kinetic coefficients with the Fokker-Planck equations to 
obtain material transfer equations that contain dynamic parameters such as the cross-
diffusion and thermal diffusion coefficients. In that approach, the macroscopic gradient of 
pressure in a binary system was calculated from equations of continuity of the same type as 
expressed by Eqs. (2) and (8). This same approach may be used for solving the material 
transport equations obtained by non-equilibrium thermodynamics. 
In this approach, the continuity equations [Eq. (2)] are first expressed in the form 
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Summing Eq. (16) for each component and utilizing Eq. (8) we obtain the following equation 
for the dynamic pressure gradient in an open non-stationary system: 

 
  

   
       

    
     





1 1 1

2
N N N

i i
i i k i i i

ki k i

P JT L T L v
T

                (17) 

Substituting Eq. (17) into Eq. (16) we obtain the material transport equations: 
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Comparing Eq. (18) with Eq. (15) for a stationary mixture shows that former contains an 

additional drift term 
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system. The term 
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in Eq. (17) describes the contribution of that drift to the pressure 

gradient. This additional component of the total material flux is attributed to barodiffusion, 
which is driven by the dynamic pressure gradient defined by Eq. (17). This dynamic 
pressure gradient is associated with viscous dissipation in the system. Parameter 


J is 

independent of position in the system but is determined by material transfer across the 
system boundaries, which may vary over time.  
If the system is open but stationary, molecules entering it through one of its boundary 
surfaces can leave it through another, thus creating a molecular drift that is independent of 
the existence of a temperature or pressure gradient. This drift is determined by conditions at 
the boundaries and is independent of any force applied to the system. For example, the 
system may have a component source at one boundary and a sink of the same component at 
opposite boundary. As molecules of a given species move between the two boundaries, they 
experience viscous friction, which creates a dynamic pressure gradient that induces 
barodiffusion in all molecular species. The pressure gradient that is induced by viscous 
friction in such a system is not considered in the Gibbs-Duhem equation. 
Equations (6), (7), and (15) describe a system in hydrostatic equilibrium, without viscous 
friction caused by material flux due to material exchange through the system boundaries. 
Unlike the Gibbs-Duhem equation, Eq. (17) accounts for viscous friction forces and the 
resulting dynamic pressure gradient. For a closed stationary system, in which 


0J  

and
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, Eq. (18) is transformed into  
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There are thermal diffusion experiments in which the system experiences periodic 
temperature changes. An example is the method used described by (Wiegand, Kohler, 2002), 
where thermodiffusion in liquids is observed within a dynamic temperature grating 
produced using a pulsed infrared laser. Because this technique involves changing the wall 
temperature, which changes the equilibrium adsorption constant, material fluxes vary with 
time, creating a periodicity in the inflow and outflow of material. A preliminary analysis 
shows that material fluxes to and from the walls have relaxation times on the order of a few 
microseconds until equilibrium is attained, and that such non-stationary material fluxes can 
be observed using dynamic temperature gratings. 
The Soret coefficient is a common parameter used to characterize material transport in 
temperature gradients. For binary systems, Eq. (19) can be used to define the Soret 
coefficient as 
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where subscript P is used to indicate that the derivatives are taken at constant pressure, as is 
the case in Eqs. (4) and (6). We can solve Eqs. (19) to express the “partial” Soret coefficient 

k
TS  for the k’th component through a factor of proportionality between k and T .  

4. Statistical mechanics of material transport: Chemical potentials at 
constant volume and pressure and the Laplace component of pressure in a 
molecular force field 

The chemical potential at constant volume can be calculated using a modification of an 
expression derived in (Kirkwood, Boggs, 1942; Fisher, 1964): 
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Here 

 0 2

23
ln ln ln ln

2 rot

i ii i
i vib

i

m kT
kT kT kT Z kT Z

vh
                    (22) 

is the chemical potential of an ideal gas of the respective non-interacting molecules (related 
to their kinetic energy), h is Planck’s constant, im is the mass of the molecule, 

rot

iZ and 

vib

iZ are its rotational and vibrational statistical sums, respectively, and i
outV is the volume 

external to a molecule of the i’th component. The molecular vibrations make no significant 
contribution to the thermodynamic parameters except in special situations, which will not 
be discussed here. The rotational statistical sum for polyatomic molecules is written as 
(Landau, Lifshitz, 1980)  
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where  is the symmetry value, which is the number of possible rotations about the 
symmetry axes carrying the molecule into itself. For H2O and C2H5OH,  2 ; for NH3, 
 3 ; for CH4 and C6H6,  12 . 1 2, ,I I  and 3I are the principal values of the tensor of the 

moment of inertia. 
In Eq. (21), parameter   describes the gradual “switching on” of the intermolecular 
interaction. A detailed description of this representation can be found in (Kirkwood, Boggs, 
1942; Fisher, 1964). Parameter r is the distance between the molecule of the surrounding 
liquid and the center of the considered molecule;   ,ijg r is the pair correlative function, 
which expresses the probability of finding a molecule of the surrounding liquid at 


r ( 


r r ) 

if the considered molecule is placed at  0r ; and ij is the molecular interaction potential, 
known as the London potential (Ross, Morrison, 1988):  
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Here  ij is the energy of interaction and  ij is the minimal molecular approach distance. In 
the integration over i

outV , the lower limit is  ijr .       
There is no satisfactory simple method for calculating the pair correlation function in 
liquids, although it should approach unity at infinity. We will approximate it as 

 
  , 1ijg r

                                    (25) 

With this approximation we assume that the local distribution of solvent molecules is not 
disturbed by the particle under consideration. The approximation is used widely in the 
theory of liquids and its effectiveness has been shown. For example, in (Bringuier, Bourdon, 
2003, 2007), it was used in a kinetic approach to define the thermodiffusion of colloidal 
particles. In (Schimpf, Semenov, 2004; Semenov, Schimpf, 2000, 2005) the approximation 
was used in a hydrodynamic theory to define thermodiffusion in polymer solutions. The 
approximation of constant local density is also used in the theory of regular solutions 
(Kirkwood, 1939). With this approximation we obtain 
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The terms under the summation sign are a simple modification of the expression obtained in 
(Bringuier, Bourdon, 2003, 2007). 
In our calculations, we will use the fact that there is certain symmetry between the chemical 

potentials contained in Eq. (11). The term i
k

k

v
v

can be written as ik kN , where  i
ik

k

v
N

v
is 

the number of the molecules of the k’th component that can be placed within the volume 
iv but are displaced by a molecule of i’th component. Using the known result that free 

energy is the sum of the chemical potentials we can say that ik kN is the free energy or 
chemical potential of a virtual molecular particle consisting of molecules of the k’th 
component displaced by a molecule of the i’th component. For this reason we can extend the 
results obtained in the calculations of molecular chemical potential iV  of the second 
component to calculations of parameter ik kVN  by a simple change in the respective 
designations i k . Regarding the concentration of these virtual particles, there are at least 
two approaches allowed:  
a. we can assume that the volume fraction of the virtual particles is equal to the volume 

fraction of the real particles that displace molecules of the k’th component, i.e., their 

numeric concentration is
i

iv
. This approach means that only the actually displaced 

molecules are taken into account, and that they are each distinguishable from molecules 
of the k’th component in the surrounding liquid.  

b. we can take into account the indistinguishability of the virtual particles. In this 
approach any group of the ikN molecules of the k’th component can be considered as a 
virtual particle. In this case, the numeric volume concentration of these virtual 

molecules is
k

iv
.  

We have chosen to use the more general assumption b).  
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Using Eqs. (21) and (22), along with the definition of a virtual particle outlined above, we 
can define the combined chemical potential at constant volume  *

ikV  as 
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where 
ikN k ikm m N and ik

rot

NZ are the mass and the rotational statistical sum of the virtual 

particle, respectively. In Eq. (27), the total interaction potential ik kjN of the molecules 

included in the virtual particle is written as ik

j

N . We will use the approximation  
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This approximation corresponds to the virtual particle having the size of a molecule of the 
i’th component and the energetic parameter of the k’th component.  
In further development of the microscopic calculations it is important that the chemical 
potential be defined at constant pressure. Chemical potentials at constant pressure are 
related to those at constant volume iV  by the expression 

      
i
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iP iV i
V

dv   (29) 

Herei is the local pressure distribution around the molecule. Eq. (29) expresses the relation 

between the forces acting on a molecular particle at constant versus changing local pressure. 
This equation is a simple generalization of a known equation (Haase, 1969) in which the 
pressure gradient is assumed to be constant along a length about the particle size. 
Next we calculate the local pressure distributioni , which is widely used in hydrodynamic 
models of kinetic effects in liquids (Ruckenstein, 1981; Anderson, 1989; Schimpf, Semenov, 
2004; Semenov, Schimpf, 2000, 2005). The local pressure distribution is usually obtained 
from the condition of the local mechanical equilibrium in the liquid around i’th molecular 

particle, a condition that is written as  
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. In (Semenov, Schimpf, 2009; 

Semenov, 2010) the local pressure distribution is used in a thermodynamic approach, where 
it is obtained by formulating the condition for establishing local equilibrium in a thin layer 
of thickness l and area S when the layer shifts from position r to position r+dr. In this case, 
local equilibrium expresses the local conservation of specific free energy 
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 in such a shift when the isothermal system is placed in a force 

field of the i’th molecule.  
In the layer forming a closed surface, the change in the free energy is written as: 
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where we consider changes in free energy due to both a change in the parameters of the 
layer volume ( dV Sdr ) and a change dS in the area of the closed layer. For a spherical 
layer, the changes in volume and surface area are related as  2dV rdS , and we obtain the 
following modified equation of equilibrium for a closed spherical surface:     
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where

0r is the unit radial vector. The pressure gradient related to the change in surface area 

has the same nature as the Laplace pressure gradient discussed in (Landau, Lifshitz, 1980). 
Solving Eq. (31), we obtain 
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Substituting the pressure gradient from Eq. (32) into Eq. (29), and using Eqs. (24), (27), and 
(28), we obtain a general expression for the gradient in chemical potential at constant 
pressure in a non-isothermal and non-homogeneous system. We will not write the general 
expression here, rather we will derive the expression for binary systems.   

5. The Soret coefficient in diluted binary molecular mixtures: The kinetic term 
in thermodiffusion is related to the difference in the mass and symmetry of 
molecules 

In this section we present the results obtained in (Semenov, 2010, Semenov, Schimpf, 2011a). 
In diluted systems, the concentration dependence of the chemical potentials for the solute 
and solvent is well-known [e.g., see (Landau, Lifshitz, 1980)]:  2 lnkT   , and 1 is 

practically independent of solute concentration  2 . Thus, Eq. (20) for the Soret coefficient 

takes the form: 
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where  *
P is  *

21P .  

The equation for combined chemical potential at constant volume [Eq. (28)] using 
assumption b) in Section 3 takes the form   
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where 1 21N N is the number of solvent molecules displaced by molecule of the solute, 
 1

11
N is the potential of interaction between the virtual particle and a molecule of the solvent. 

The relation   1 1 is also used in deriving Eq. (34). Because        ln 1  at  0 , 
we expect the use of assumption a) in Section 3 for the concentration of virtual particles will 
yield a reasonable physical result.  
In a dilute binary mixture, the equation for local pressure [Eq. (32)] takes the form 
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where index i is related to the virtual particle or solute.  
Using Eqs. (29), (34), we obtain the following expression for the temperature-induced 
gradient of the combined chemical potential of the diluted molecular mixture: 
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Here1 is the thermal expansion coefficient for the solvent and T  is the tangential 
component of the bulk temperature gradient. After substituting the expressions for the 
interaction potentials defined by Eqs. (23), (24), and (28) into Eq. (36), we obtain the 
following expression for the Soret coefficient in the diluted binary system: 
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In Eq. (37), the subscripts 2 and 1N  are used again to denote the real and virtual particle, 

respectively. 
The Soret coefficient expressed by Eq. (37) contains two main terms. The first term 
corresponds to the temperature derivative of the part of the chemical potential related to the 
solute kinetic energy. In turn, this kinetic term contains the contributions related to the 
translational and rotational movements of the solute in the solvent. The second term is 
related to the potential interaction of solute with solvent molecules. This potential term has 
the same structure as those obtained by the hydrodynamic approach in (Schimpf, Semenov, 
2004; Semenov, Schimpf, 2005).  
According to Eq. (37), both positive (from hot to cold wall) and negative (from cold to hot 
wall) thermodiffusion is possible. The molecules with larger mass ( 

12 Nm m ) and with a 
stronger interactions between solvent molecules (  11 12 ) should demonstrate positive 
thermodiffusion. Thus, dilute aqueous solutions are expected to demonstrate positive 
thermophoresis. In (Ning, Wiegand, 2006), dilute aqueous solutions of acetone and dimethyl 
sulfoxide were shown to undergo positive thermophoresis. In that paper, a very high value 
of the Hildebrand parameter is given as an indication of the strong intermolecular 
interaction for water. More specifically, the value of the Hildebrand parameter exceeds by 
two-fold the respective parameters for other components.  
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Since the kinetic term in the Soret coefficient contains solute and solvent symmetry 
numbers, Eq. (37) predicts thermodiffusion in mixtures where the components are distinct 
only in symmetry, while being identical in respect to all other parameters. In (Wittko, 
Köhler, 2005) it was shown that the Soret coefficient in the binary mixtures containing the 
isotopically substituted cyclohexane can be in general approximated as the linear function  

     T iT m iS S a M b I            (38) 

where iTS is the contribution of the intermolecular interactions, ma and ib are coefficients, 
while M and I are differences in the mass and moment of inertia, respectively, for the 
molecules constituting the binary mixture. According to Eq. (37), the coefficients are defined 
by 
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In (Wittko, Köhler, 2005) the first coefficient was empirically determined for cyclohexane 
isomers to be    3 10.99 10ma K  at room temperature (T=300 K), while Eq. (39) 
yields    3 10.03 10ma K  ( 1 84M ). There are several possible reasons for this discrepancy. 
The first term on the right side of Eq. (38) is not the only term with a mass dependence, as 
the second term also depends on mass. The empirical parameter ma  also has an implicit 
dependence on mass that is not in the theoretical expression given by Eq. (39). The mass 
dependence of the second term in Eq. (37) will be much stronger when a change in mass 
occurs at the periphery of the molecule.  
A sharp change in molecular symmetry upon isotopic substitution could also lead to a 
discrepancy between theory and experiment. Cyclohexane studied in (Wittko, Köhler, 2005) 
has high symmetry, as it can be carried into itself by six rotations about the axis 
perpendicular to the plane of the carbon ring and by two rotations around the axes placed in 
the plane of the ring and perpendicular to each other. Thus, cyclohexane has 

1
24N . The 

partial isotopic substitution breaks this symmetry. We can start from the assumption that for 
the substituted molecules,  2 1 . When the molecular geometry is not changed in the 
substitution and only the momentum of inertia related to the axis perpendicular to the ring 
plane is changed, the relative change in parameter bi can be written as 

        
   

   
 

   
 

  
 

    

  
1 1 1 1

11

2 2 22 2
1 2 3 2 1 2 3 2 22 1

2 2 2
2 1 2 3 2 24 4 4

N N N N

NN

I I I I I I m m

T I I I T m T
   (41) 

Eq. (41) yields  
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Using the above parameters and Eq. (42), we obtain    3 15.7 10ma K , which is still about 
six-times greater than the empirical value from (Wittko, Köhler, 2005). The remaining 
discrepancy could be due to our overestimation of the degree of symmetry violation upon 
isotopic substitution. The true value of this parameter can be obtained with   2 2 3 . One 
should understand that the value of parameter  2 is to some extent conditional because the 
isotopic substitutions occur at random positions. Thus, it may be more relevant to use Eq. 
(42) to evaluate the characteristic degree of symmetry from an experimental measurement of 

ma  rather than trying to use theoretical values to predict thermodiffusion.  

6. The Soret coefficient in diluted colloidal suspensions: Size dependence of 
the Soret coefficient and the applicability of thermodynamics 

While thermodynamic approaches yield simple and clear expressions for the Soret 
coefficient, such approaches are the subject of rigorous debate. The thermodynamic or 
“energetic” approach has been criticized in the literature. Parola and Piazza (2004) note  that 
the Soret coefficient obtained by thermodynamics should be proportional to a linear 
combination of the surface area and the volume of the particle, since it contains the 
parameter ik given by Eq. (11). They argue that empirical evidence indicates the Soret 
coefficient is directly proportional to particle size for colloidal particles [see numerous 
references in (Parola, Piazza, 2004)], and is practically independent of particle size for 
molecular species. By contrast, Duhr and Braun (2006) show the proportionality between the 
Soret coefficient and particle surface area, and use thermodynamics to explain their 
empirical data. Dhont et al (2007) also reports a Soret coefficient proportional to the square 
of the particle radius, as calculated by a quasi-thermodynamic method.  
Let us consider the situation in which a thermodynamic calculation for a large particle as 
said contradicts the empirical data. For large particles, the total interaction potential is 
assumed to be the sum of the individual potentials for the atoms or molecules which are 
contained in the particle 

       
 *

1 1
i
in

in
i i i

iV

dV
r r r

v
          (43) 

Here i
inV is the internal volume of the real or virtual particle and   


1i ir r is the respective 

intermolecular potential given by Eq. (24) or (28) for the interaction between a molecule of a 
liquid placed at 


r ( 


r r ) and an internal molecule or atom placed at


ir . Such potentials are 

referred to as Hamaker potential, and are used in studies of interactions between colloidal 
particles (Hunter, 1992; Ross, Morrison, 1988). In this and the following sections, iv is the 
specific molecular volume of the atom or molecule in a real or virtual particle, respectively.       
For a colloidal particle with radius R >> ij , the temperature distribution at the particle 
surface can be used instead of the bulk temperature gradient (Giddings et al, 1995), and the 
curvature of the particle surface can be ignored in calculating the respective integrals. This 
corresponds to the assumption that 'r R and   24dv R dr  in Eq. (36). To calculate the 
Hamaker potential, the expression calculated in (Ross, Morrison, 1988), which is based on 
the London potential, can be used: 
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Here 
 21

x
y , and x is the distance from the particle surface to the closest solvent molecule 

surface. Using Eqs. (36) and (44) we can obtain the following expression for the Soret 
coefficient of a colloidal particle: 
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Here n is ratio of particle to solvent thermal conductivity. The Soret coefficient for the 

colloidal particle is proportional to
 5

21

1 2

R
v v

. In practice, this means that ST is proportional to 

 21

R
 since the ratio 

 6
21

1 2v v
 is practically independent of molecular size. This proportionality 

is consistent with hydrodynamic theory [e.g., see (Anderson, 1989)], as well as with 
empirical data. The present theory explains also why the contribution of the kinetic term 
and the isotope effect has been observed only in molecular systems. In colloidal systems the 
potential related to intermolecular interactions is the prevailing factor due to the large value 

of
 2

21

1

R
v

. Thus, the colloidal Soret coefficient is 
 21

R
times larger than its molecular 

counterpart. This result is also consistent with numerous experimental data and with 
hydrodynamic theory.  

7. The Soret coefficient in diluted suspensions of charged particles: 
Contribution of electrostatic and non-electrostatic interactions to 
thermodiffusion 

In this section we present the results obtained in (Semenov, Schimpf, 2011b). The colloidal 
particles discussed in the previous section are usually stabilized in suspensions by 
electrostatic interactions. Salt added to the suspension becomes dissociated into ions of 
opposite electric charge. These ions are adsorbed onto the particle surface and lead to the 
establishment of an electrostatic charge, giving the particle an electric potential. A diffuse 
layer of charge is established around the particle, in which counter-ions are accumulated. 
This diffuse layer is the electric double layer. The electric double layer, where an additional 
pressure is present, can contribute to thermodiffusion. It was shown in experiments that 
particle thermodiffusion is enhanced several times by the addition of salt [see citations in 
(Dhont, 2004)]. 
For a system of charged colloidal particles and molecular ions, the thermodynamic 
equations should be modified to include the respective electrostatic parameters. The basic 
thermodynamic equations, Eqs. (4) and (6), can be written as  
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where 


 

i

ie is the electric charge of the respective ion,  is the macroscopic electrical 

potential, and  

E is the electric field strength. Substituting Eq. (47) into Eq. (46) we 

obtain the following material transport equations for a closed and stationary system: 
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where 

 


  

ik

i ik ke N e               (49) 

We will consider a quaternary diluted system that contains a background neutral solvent 
with concentration1 , an electrolyte salt dissociated into ions with concentrations    n v , 
and charged particles with concentration2  that is so small that it makes no contribution to 
the physicochemical parameters of the system. In other words, we consider the 
thermophoresis of an isolated charged colloidal particle stabilized by an ionic surfactant. 
With a symmetric electrolyte, the ion concentrations are equal to maintain electric neutrality 

     v v                                (50) 

In this case we can introduce the volume concentration of salt as 

 
 

 

   
      

   
  1 1s
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 and formulate an approximate relationship in place of the exact 

form expressed by Eq. (8): 

   1 1s                 (51) 

Here the volume contribution of charged particles is ignored since their concentration is 
very low, i.e.    2 1s . Due to electric neutrality, the ion concentrations will be equal at 
any salt concentration and temperature, that is, the chemical potentials of the ions should be 
equal:    (Landau,  Lifshitz,  1980). 
Using Eqs. (48) – (51) we obtain equations for the material fluxes, which are set to zero:  
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where    e e e  (symmetric electrolyte). We will not write the equation for the flux of 
background solvent


1J  because it yields no new information in comparison with Eqs. (52) -

54), as shown above. Solving Eqs. (52) – (54), we obtain 
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Eq. (55) allows us to numerically evaluate the concentration gradient as 

     s
s s TS T         (57) 

where  310s
TS  is the characteristic Soret coefficient for the salts. Salt concentrations are 

typically around 10-2-10-1 mol/L, that is   410s or lower. A typical maximum temperature 
gradient is  410 /T K cm . These values substituted into Eq. (57) yield 

     4 3 110 10s cm . The same evaluation applied to parameters in Eq. (56) shows that the 
first term on the right side of this equation is negligible, and the equation for thermoelectric 
power can be written as 
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For a non-electrolyte background solvent, parameter  1 T can be evaluated 
as   1 1T kT , where 1 is the thermal expansion coefficient of the solvent (Semenov, 
Schimpf, 2009; Semenov, 2010). Usually, in liquids the thermal expansion coefficient is low 
enough (    3 1

1 10 K ) that the thermoelectric field strength does not exceed 1 V/cm. This 
electric field strength corresponds to the maximum temperature gradient discussed above. 
The electrophoretic velocity in such a field will be about 10-5-10-4 cm/s. The thermophoretic 
velocities in such temperature gradients are usually at least one or two orders of magnitude 
higher. 
These evaluations show that temperature-induced diffusion and electrophoresis of charged 
colloidal particle in a temperature gradient can be ignored, so that the expression for the 
Soret coefficient of a diluted suspension of such particles can be written as 

 








      
 




 

 


21

2 21
2

2 21
2

2

1
P

P
T

P

TS
T kT T

        (59) 

Eq. (59) can also be used for microscopic calculations.  
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For an isolated particle placed in a liquid, the chemical potential at constant volume can be 
calculated using a modified procedure mentioned in the preceding section. In these 
calculations, we use both the Hamaker potential and the electrostatic potential of the electric 
double layer to account for the two types of the interactions in these systems. The chemical 
potential of the non-interacting molecules plays no role for colloid particles, as was shown 
above. 
In a salt solution, the suspended particle interacts with both solvent molecules and 
dissolved ions. The two interactions can be described separately, as the salt concentration is 
usually very low and does not significantly change the solvent density. The first type of 
interaction uses Eqs. (25) and the Hamaker potential [Eq. (44)].

  For the electrostatic interactions, the properties of diluted systems may be used, in which 
the pair correlative function has a Boltzmann form (Fisher, 1964; Hunter, 1992). Since there 
are two kinds of ions, Eq. (21) for the “electrostatic” part of the chemical potential at 
constant volume can be written as 
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where 
 



s

sn
v v

is the numeric volume concentration of salt, and   e e is the 

electrostatic interaction energy.     
Eq. (32) expressing the equilibrium condition for electrostatic interactions is written as 
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where

0r is the unit radial vector. In Eq. (61) it is assumed that the particle radius is much 

larger than the characteristic thickness of the electric double layer. Solving Eq. (62) assuming 
a Boltzmann distribution for the ion concentration, as in (Ruckenstein, 1981; Anderson, 
1989), we obtain 
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Substituting the pressure gradient calculated from Eq. (62) into Eq. (29), utilizing Eq. (60), 
and considering the temperature-induced gradients related to the temperature dependence 
of the Boltzmann exponents, we obtain the temperature derivative in the gradient of the 
chemical potential for a charged colloidal particle, which is related to the electrostatic 
interactions in its electric double layer: 
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Here n is again the ratio of particle to solvent thermal conductivity. For low potentials 
( e kT ), where the Debye-Hueckel theory should work, Eq. (63) takes the form 
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Using an exponential distribution for the electric double layer potential, which is 
characteristic for low electrokinetic potentials , we obtain from Eq. (64) 
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where D is the Debye length [for a definition of Debye length, see (Landau, Lifshitz, 1980; 

Hunter, 1992)].  
Calculation of the non-electrostatic (Hamaker) term in the thermodynamic expression for 
the Soret coefficient is carried out in the preceding section [Eq. (45)]. Combining this 
expression with Eq. (65), we obtain the Soret coefficient of an isolated charged colloidal 
particle in an electrolyte solution: 
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This thermodynamic expression for the Soret coefficient contains terms related to the 
electrostatic and Hamaker interactions of the suspended colloidal particle. The electrostatic 
term has the same structure as the respective expressions for the Soret coefficient obtained 
by other methods (Ruckenstein, 1981; Anderson, 1989; Parola, Piazza, 2004; Dhont, 2004). In 
the Hamaker term, the last term in the brackets reflects the effects related to displacing the 
solvent by particle. It is this effect that can cause a change in the direction of thermophoresis 
when the solvent is changed. However, such a reverse in the direction of thermophoresis 
can only occur when the electrostatic interactions are relatively weak. When electrostatic 
interactions prevail, only positive thermophoresis can be observed, as the displaced solvent 
molecules are not charged, therefore, the respective electrostatic term is zero. The numerous 
theoretical results on electrostatic contributions leading to a change in the direction of 
thermophoresis are wrong due to an incorrect use of the principle of local equilibrium in the 
hydrodynamic approach [see discussion in (Semenov, Schimpf, 2005)]. 
The relative role of the electrostatic mechanism can be evaluated by the following ratio: 

 
 

 


    

22
2 1

2 3
1 11 2121 21

8 s D en v v
T kT

              (67) 

The physicochemical parameters contained in Eq. (67) are separated into several groups and 

are collected in the respective coefficients. Coefficient 
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contains the parameters related 

to concentration and its change with temperature, 
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D is the coefficient reflecting the 

respective lengths of the interaction, 
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v
reflects the geometry of the solvent molecules, and 
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e

kT
is the ratio of energetic parameters for the respective interactions. Only the 

first two of these four terms are always significantly distinct from unity. The characteristic 
length of the interaction is much higher for electrostatic interactions. Also, the characteristic 
density of ions or molecules in a liquid, which are involved in their electrostatic interaction 
with the colloidal particle, is much lower than the density of the solvent molecules. The 

values of these respective coefficients are 



2
3

2
21

10D and 


 32

1
10sn v

T
for typical ion 

concentrations in water at room temperature. The energetic parameter may be small, (~0.1) 
when the colloidal particles are compatible with the solvent. Characteristic values of the 
energetic coefficient range from 0.1-10. Combining these numeric values, one can see that 
the ratio given by Eq. (67) lies in a range of 0.1-10 and is governed primarily by the value of 
the electrokinetic potential  and the difference in the energetic parameters of the Hamaker 
interaction  11 21 . Thus, calculation of the ratio given by Eq. (67) shows that either the 
electrostatic or the Hamaker contribution to particle thermophoresis may prevail, 
depending on the value of the particle’s energetic parameters. In the region of high Soret 
coefficients, particle thermophoresis is determined by electrostatic interactions and is 
positive. In the region of low Soret coefficients, thermophoresis is related to Hamaker 
interactions and can have different directions in different solvents.  

8. Material transport equation in binary molecular mixtures: Concentration 
dependence of the Soret coefficient 

In this section we present the results obtained in (Semenov, 2011). In a binary system in 
which the component concentrations are comparable, the material transport equations 
defined by Eq. (18) have the form 
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Eq. (68) can be used in the thermodynamical definition of the Soret coefficient [Eq. (59)]. The 
mass and thermodiffusion coefficients can be calculated in the same way as the Soret coefficient.   
The microscopic models used to calculate the Soret Coefficient in (Ghorayeb, Firoozabadi, 
2000; Pan S et al., 2007) ignore the requirement expressed by Eq. (10) and cannot yield a 
description of thermodiffusion that is unambiguous. Although the material transport 
equations based on non-equilibrium thermodynamics were used, the fact that the chemical 
potential at constant pressure must be used was not taken into account. In these articles 
there is also the problem that in the transition to a dilute system the entropy of mixing does 
not become zero, yielding unacceptably large Soret coefficients even for pure components. 
An expression for the Soret coefficient was obtained in (Dhont et al, 2007; Dhont, 2004) by a 
quasi-thermodynamic method. However, the expressions for the thermodiffusion coefficient 
in those works become zero at high dilution, where the standard expression for osmotic 
pressure is used. These results contradict empirical observation. 
Using Eq. (27) with the notion of a virtual particle outlined above, and substituting the 
expression for interaction potential [Eqs. (24, 28)], we can write the combined chemical 
potential at constant volume  *

V
 as 
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In order to proceed to the calculation of chemical potentials at constant pressure using Eq. 
(29), we must calculate the local pressure distributioni using Eq. (32). We can 

subsequently use Eqs. (29) and (33) to obtain an expression for the gradient of the combined 
chemical potential at constant pressure in a non-isothermal and non-homogeneous system: 
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    (70) 

Here  i is the thermal expansion coefficient for the respective component, 



3
1 22

3
2 12

v
v

 is the 

parameter characterizing the geometrical relationship between the different component 

molecules, and 
  2 3

12 12

19
a

v
is the energetic parameter similar to the respective parameter in 

the van der Waals equation (Landau, Lifshitz, 1980) but characterizing the interaction 
between the different kinds of molecules. Then, using Eqs. (20), (70), we can write:  
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where  cT T is the ratio of the temperature at the point of measurement to the critical 

temperature 
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k

, where phase layering in the system begins. 

Assuming that  1 , the condition for parameter cT  to be positive is as    11 22 122 . This 
means that phase layering is possible when interactions between the identical molecules are 
stronger than those between different molecules. When    11 22 122 , the present theory 
predicts absolute miscibility in the system.  
At temperatures lower than some positive cT , when  1  only solutions in a limited 

concentration range can exist. It this temperature range, only mixtures with *
1  ,   *

2 can 

exist, where  *
1,2 1 1 2    , which is equivalent to the equation that defines the 

boundary for phase layering in phase diagrams for regular solutions, as discussed in 
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(Kondepudi, Prigogine, 1999).       12 1 2iT i iiS a kT is the “potential” Soret coefficient 

related to intermolecular interactions in dilute systems. These parameters can be both positive 
and negative depending on the relationship between parameters  ii  and 12 . When the 
intermolecular interaction is stronger between identical solutes, thermodiffusion is positive, 
and vice versa. This corresponds to the experimental data of Ning and Wiegand (2006).  
When simplifications are taken into account, the equations expressed by the non-
equilibrium thermodynamic approach are equivalent to expressions obtained in our 
hydrodynamic approach (Schimpf, Semenov, 2004; Semenov, Schimpf, 2005). Parameter 

kin
TS  in Eq. (71) is the kinetic contribution to the Soret coefficient, and has the same form as 

the term in square brackets in Eq. (37).  In deriving this “kinetic” Soret coefficient, we have 
made different assumptions regarding the properties and concentration of the virtual 
particles for different terms in Eq. (70).  
In deriving the temperature derivative of the combined chemical potential at constant 
pressure in Eq. (70) we used assumption a) in Section 4, which corresponds to zero entropy 
of mixing. Without such an assumption a pure liquid would be predicted to drift when 
subjected to a temperature gradient. Furthermore, the term that corresponds to the entropy 
of mixing       ln 1k will approach infinity at low volume fractions, yielding 

unacceptably high negative values of the Soret coefficient. However, in deriving the 
concentration derivative we must accept assumption b) because without this assumption the 
term related to entropy of mixing in Eq. (70) is lost. Consequently, the concentration 
derivative becomes zero in dilute mixtures and the Soret coefficient approaches infinity.  
Thus, we are required to use different assumptions regarding the properties of the virtual 
particles in the two expressions for diffusion and thermodiffusion flux. This situation 
reflects a general problem with statistical mechanics, which does not allow for the entropy 
of mixing for approaching the proper limit of zero at infinite dilution or as the difference in 
particle properties approaches zero. This situation is known as the Gibbs paradox.  
In a diluted system, at  1 , Eq. (71) is transformed into Eq. (37) at any temperature, 

provided  *
1 . At   1 , when the system is miscible at all concentrations, TS  is a linear 

function of the concentration 

      1 21 kin
T T T TS S S S                      (72)

             

 

Eq. (72) yields the main features for thermodiffusion of molecules in a one-phase system. It 
describes the situation where the Soret coefficient changes its sign at some volume fraction. 
Thus a change in sign with concentration is possible when the interaction between 
molecules of one component is strong enough, the interaction between molecules of the 
second component is weak, and the interaction between the different components has an 
intermediate value. Ignoring again the kinetic contribution, the condition for changing the 
sign change can be written as       22 11 12 112  or       22 11 12 112 . A good 

example of such a system is the binary mixture of water with certain alcohols, where a 
change of sign was observed (Ning, Wiegand, 2006).  

9. Conclusion 

Upon refinement, a model for thermodiffusion in liquids based on non-equilibrium 
thermodynamics yields a system of consistent equations for providing an unambiguous 
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description of material transport in closed stationary systems. The macroscopic pressure 
gradient in such systems is determined by the Gibbs-Duhem equation. The only assumption 
used is that the heat of transport is equivalent to the negative of the chemical potential. In 
open and non-stationary systems, the macroscopic pressure gradient is calculated using 
modified material transport equations obtained by non-equilibrium thermodynamics, where 
the macroscopic pressure gradient is the unknown parameter. In that case, the Soret 
coefficient is expressed through combined chemical potentials at constant pressure. The 
resulting thermodynamic expressions allow for the use of statistical mechanics to relate the 
gradient in chemical potential to macroscopic parameters of the system.  
This refined thermodynamic theory can be supplemented by microscopic calculations to 
explain the characteristic features of thermodiffusion in binary molecular solutions and 
suspensions. The approach yields the correct size dependence in the Soret coefficient and 
the correct relationship between the roles of electrostatic and Hamaker interactions in the 
thermodiffusion of colloidal particles. The theory illuminates the role of translational and 
rotational kinetic energy and the consequent dependence of thermodiffusion on molecular 
symmetry, as well as the isotopic effect. For non-dilute molecular mixtures, the refined 
thermodynamic theory explains the change in the direction of thermophoresis with 
concentration in certain mixtures, and the possibility of phase layering in the system. The 
concept of a Laplace-like pressure established in the force field of the particle under 
consideration plays an important role in microscopic calculations. Finally, the refinements 
make the thermodynamic theory consistent with hydrodynamic theories and with empirical 
data. 

10. List of symbols 

a   Energetic parameter characterizing the interaction between the different 
  kinds of molecules 

ma   Empiric coefficient in Eq. (38) 

ib   Empiric coefficient in Eq. (38) 

E   Electric field strength 

ie   Electric charge of the respective ion 

ijg   Pair correlation function for respective components 

h  Planck constant 

1 2, ,I I 3I  and Principal values of the tensor of the moment of inertia 

J   Total material flux in the system 


eJ   Energy flux 


iJ   Component material fluxes 

k  Boltzmann constant 
Li and LiQ Individual molecular kinetic coefficients 
l   Thickness of a spherical layer around the particle 

im   Molecular mass of the respective component 

1Nm   Mass of the virtual particle 

N  Number of components in the mixture 
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ikN
  

Number of the molecules of the k’th component that are displaced by a 

  molecule of i’th component 
1 21N N  Number of solvent molecules displaced by the solute in binary systems 

n  Ratio of particle to solvent thermal conductivity 

sn   Numeric volume concentration of salt 

in   Numeric volume concentration of the respective component 

P   Internal macroscopic pressure of the system 

iq   Molecular heat of transport 

r   Coordinate of the correlated molecule when the considered particle is  
  placed at  0r

 
0r   Unit radial vector 

ir   Coordinate of internal molecule or atom in the particle 

R  Radius of a colloidal particle  
S   Surface area of a spherical layer around the particle 

TS   Soret coefficient in binary systems 

iTS   Contribution of the intermolecular interactions in Eq. (38)and in the Soret 

  coefficient for diluted systems. 
 310s

TS  Characteristic Soret coefficient for the salts 
kin
TS    Contribution of kinetic energy to the Soret coefficient 

T  Temperature 

cT   Critical temperature, where phase layering in binary systems begins 
t   Time 

i
outV   Volume external to a molecule of the i’th component 
i
inV   Internal volume of a molecule or atom of the i’th component 

kv   Partial molecular volume of respective component 

kv   Its specific molecular volume 

x   Distance from the colloid particle surface to the closest solvent molecule 
  surface 
y   Dimensionless distance from the colloid particle surface to the closest  

  solvent molecule surface 

rotZ   Rotational statistical sum for polyatomic molecules  

rot

iZ   Rotational statistical sum for the respective component 

i
vibZ   Vibrational statistical sum for the respective component 

ik

rot

NZ   Rotational statistical sum for the virtual particle of the molecules k’th  

  component displaced by the molecule of i’th component 
 i   Thermal expansion coefficient for the respective component    

   Parameter characterizing the geometrical relationship between the  
  different component molecules   
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I   Difference in the moment of inertia for the molecules constituting the  
  binary mixture 
M   Difference in the mass for the molecules constituting the binary mixture 
 ij   Energy of interaction between the molecules of the respective components     

 ij r   Interaction potential for the respective molecules 

 ik

j

N   Total interaction potential of the atoms or molecules included in the  
  respective virtual particle 

 *
1i r   Hamaker potential of isolated colloid particle   

   Macroscopic electrical potential     
  e e   Electrostatic interaction energy  

 2   Volume fraction of the second component in binary mixtures 

i   Volume fraction of the respective component  

 *
1,2   Boundary values of stable volume fractions in binary systems below the 

  critical temperature 
 i   Molecular symmetry number for the respective component 


1N   Molecular symmetry number for the virtual particle in binary mixture 

   Parameter which describes the gradual “switching on” of the   
  intermolecular interaction 
D   Debye length 

i   Chemical potential of the respective component 

0i   Chemical potential of the ideal gas of the molecules or atoms of the  

  respective component 
    i
ik i k

k

v
v

 Combined chemical potential for the respective components  

    *
21P P  Combined chemical potential at the constant pressure for the binary  

  systems 
 ,iP iV  Chemical potentials of the respective component at the constant pressure 

  and volume, respectively 
2

e   Electrostatic contribution to the chemical potential at the constant volume 

  for the charged colloid particle     
2

e
P   Electrostatic contribution to the chemical potential at the constant pressure 

  for the charged colloid particle   
i   Local pressure distribution around the respective molecule  or particle 

e   Electrostatic contribution to the local pressure distribution around the  

  charged colloid particle 
 ij   Minimal molecular approach distance 

   Electrokinetic potential  
 cT T   Ratio of the temperature at the point of measurement to the critical 

temperature 
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