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GPU-accelerated Large-Eddy Simulation of Turbulent Channel
Flows

Rey DeLeori and Inanc Senocéak
Department of Mechanical and Biomedical Engineering Boise State University, Boise, |daho, 83725

High performance computing clusters that are augmented with casand power efficient graphics processing
unit (GPU) provide new opportunities to broaden the use of large-édy simulation technique to study high
Reynolds number turbulent flows in fluids engineering applications. Inthis paper, we extend our earlier work
on multi-GPU acceleration of an incompressible Navier-Stokes solvéo include a large-eddy simulation (LES)
capability. In particular, we implement the Lagrangian dynamic subgrid scale model and compare our results
against existing direct numerical simulation (DNS) data of a turbulert channel flow at Re- = 180. Overall, our
LES results match fairly well with the DNS data. Our results show tha the Re, = 180 case can be entirely
simulated on a single GPU, whereas higher Reynolds cases can benffim a GPU cluster.

[. Introduction

Large eddy simulation (LES) is a humerical technique focwalating a majority of energy containing eddies
allowing for the resolution of vortical flow structures artetprediction of turbulent flow statistics. LES technique
finds applications in several areas such as atmosphericdbogihayers, turbomachinery flows and combustion, to
name a few. LES of high Reynolds number flows need spatial emgaral resolutions that can easily overwhelm
individual workstations. Researchers continue to targgtdr Reynolds number flows using LES because of its better
predictive capabilities?. Cheng et af applied OpenFOAM to pollution transportation in idealized two-dimensional
street canyons computation mesh of 13.5 million elemenitee domputation of 100 dimensionless time units on an
eight-core machine was reported to have taken approxiynai@00 hours. Such long turn-around times makes LES
impractical for applications in industry. But recent inatiens in multi- and many-core computing architecturesssho
great promise in broadening the adoption of LES in industry.

Scientific computing with graphics processing units (GPB§ hecome a new paradigm in supercomputing. As
of November 2011, three of the top five supercomputers in thidvadopt GPUs as acceleratersThe upcoming
Titan supercomputérat Oak Ridge National Laboratory (expected to make its debeiarly 2013) is projected to be
the fastest supercomputer in the world with a peak perfoomaf over 10 petaflops (i.e. 10 trillion floating point
operations per second). Titan will be powered by NVIDIA GRbat is expected to power efficient. Furthermore,
an exascale supercomputer is expected to arrive in 20G6®Us are currently viewed as a key technology that will
contribute to the goal of maintaining an overall power congtion of under 20 MW for a supercomputeHowever,
this phenomenal growth in supercomputing capacity has tméiehed with a software infrastructure. Developing
scalable scientific software, massive data storage andtsesisualization of exascale simulations are going to be
challenging. To this end, research towards effectivelpgisnultiple GPUs on large computing clusters for scientific
applications brings us closer to sustaining exascale pegoce on future supercomputers.

To date, there have been numerous studies on using GPUs nety\af fields, some focusing on single GPU
implementations and others focusing on multiple GPU im@etations on clusters. In the field of computational fluid
dynamics (CFD), some of the examples include: Thibault &mb8ak who focused on an incompressible flow solver,
Jacobsen et al. who transformed the work of Thibault and &@nmto a Navier-Stokes solver for GPU clustérs
with a full-depth amalgamated parallel 3D geometric muitignethod, Corrigan et aft? explored techniques to
accelerate execution of unstructured mesh CFD codes on GBhhan and Molemakét performed simulations
of Rayleigh-Bernard convection problems, Antoniou et‘adleveloped a GPU-accelerated weighted essentially non-
oscillatory scheme for supersonic flows, Brandvik and Pdflaeveloped a GPU accelerated 3D Navier-Stokes solver
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for turbomachinery, Griebel and Zasp&treated a 3D incompressible solver for two phase flows, anvelGeet al.
who present libraries for Lattice-Boltzmann based CFDiapfibns on multi- and many-core machinés

GPU's massively parallel, many-core architecture allowdifie-grain parallelism making it well-suited for many
numerical code¥. With the introduction of NVIDIA's Compute Unified Device 8hitecturé® (CUDA) in 2007, sci-
entific computing with GPUs made a quantum leap forward. Reekforts have made CUDA available for a broader
set of applications by allowing programs developed with @UD be executed on multicore x86 CPU architectures
and GPUs from other vendors. In an effort to produce a dynaomwpilation framework for heterogeneous computing
systems, Kerr et al. created Ocefdwvhich is capable of executing Parallel Thread Execution{PTe. CUDA pro-
grams, on NVIDIA CUDA-enabled GPUs, AMD GPUs, or multico®xCPU architectures without recompilation of
the CUDA source code. When running PTX on x86 architectures)dd can either emulate PTX on a x86 architec-
ture or translate the PTX binary to the Low Level Virtual Mawh (LLVM) compiler infrastructure for execution on
multicore x86 CPUs. The Portland Group Inc. recently reddaBUDA-x86 which gives flexibility to programmers
by allowing CUDA applications to be tested on CUDA-enabledE, multicore x86 CPU architectures, or both.
CUDA-x86 is the first native CUDA compiler capable of dirgotreating a binary from CUDA source code for x86
platforms. NVIDIA and the Portland Group Inc. are also makine GPU’s computational power more readily avail-
able to a larger scientific community by creating CUDA FORTNRA, an extension to the FORTRAN language for
GPU computing.

With CFD simulations taking on ever increasing Reynolds bers, even the more powerful GPUs such as the
Tesla M2090 or the Tesla C2075, both of which have 6 GB of cardhanemory, may not be enough. There is a
need for GPU clusters and multi-GPU parallel CFD modelsudysturbulent flows that are common in engineering
practice. For the near future, dual-level parallelism ih&trleaves CUDA with Message Passing Interface (MPI)
appear to be an adequate choice to address multi-GPU piarafi'516, Jacobsen and Senoddknvestigated tri-
level parallelism using CUDA, MPI, and OpenMP for clusterishwnultiple GPUs per node. Their results did not
show a significant performance gain over dual-level pdrsitewith MPI-CUDA.

Our present work on LES on a GPU cluster builds upon early worie by Thibault and Senociknd Jacobsen
et all% where they developed a 3D MPI-CUDA parallel incompressflde solver, called GIN3D. Governing
equations are solved using a projection algorithion a staggered, Cartesian grid with a full-depth parallehgetric
multigrid pressure Poisson solver. In the present work, Mmduce a large-eddy simulation capability in GIN3D.
In particular, we implement the Lagrangian dynamic Smaugbty mode?® for its flexibility for complex geometry
flows with no homogeneous directions. For validation puegog/e simulate turbulent channel flows at Re180 and
compare with the direct numerical simulation (DNS) of Me#ém and Mansouf®.

II. Governing Equations and Numerical Approach

A. Governing Equations for LES of Incompressible Flows

The basic principle of LES is to separate a turbulent flow field large- and small-scales using a mathematical filter.
The large-scales are explicitly resolved by the simulatitvereas the small-scales, also called subgrid-scales)(SGS
are treated as statistically universal and their intesaatiith the resolved flow is modelétl The governing equations
used in LES of incompressible flows are the filtered form ofNlagier-Stokes equations,

Ju;
/A 1
oz, 0 1)
ou; g __ . 10p 0 —
6t + 6733] (uzuj) - p@ml + axJ (21/51] 7—2]) 9 (2)
where
1 [/ du; (9ﬂj
S”"Q(@:gj - azy-) @)
is the deformation tensor, and
Tij = Uill; + Wil (4)

is the tensor representing the interaction of the subgrédies on the resolved large-scales. The overbar in these
equations represents a filtered quantity.
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B. Subgrid Scale Models

For turbulence closure, subgrid-scale motions are tresgestiatistically universal and replaced by an SGS model. The
original Smagorinsky modé has well-known deficiencies, particularly near wall boune®. An ad hoc fix to the
problem is to use van Driest dampitfgo make the eddy viscosity vanish near the wall. In 1991, Geworet al’?
proposed an alternative method to dynamically calculaethpirical parameters in an SGS model using information
from the resolved velocity field. The dynamic Smagorinskydelantroduced by Germano et al. correctly predicts a
decaying eddy viscosity near wall boundaries, but it hagitbedvantage of requiring homogeneous directions in the
flow problem at hand, which has later been addressed by abearcher®3233, In the following we briefly present
the original and the dynamic Smagorinsky models.

The original Smagorinsky model creates a proportionatimahip between the local SGS stresses and the local
rate of strain on the large-scale eddies. Itis given by

_ 1 ou;  Ou, 1
Tij = RSy Tl = (axj i axi) Tl ©)

wherey, is the turbulent or SGS eddy viscosity and is calculated by

fy = ,O(CSA)Z\/ 255 (6)

A is the filter width and can be defined by either a mathematitet fie.g., top-hat filter ) or by using the numerical
grid. Cs is the model coefficient and is a constant parameter in tlggnali Smagorinsky model. Choosing a proper
Cs value, which depends upon the mesh and the flow problem bewegtigated, is critical. For wall boundaries in
a channel flow, the model parametés must be adjusted to reflect the vanishing eddies by multiglgis with the
van-Driest damping functiold which is given as

| — eap (‘ff) , @)

wherey™ is the non-dimensional distance given in wall units &nid a constant that is approximately 25. Damping
the Smagorinsky coefficient through an arbitrary functigmgicantly improves the LES results, but the procedure is
ad-hoc and does not easily extend to complex geometry. Hnicplar shortcoming is overcome by the adopting the
dynamic procedure.

The first dynamic subgrid scale model was proposed by Gerragal®. In their dynamic procedure, a second
filter with a larger width, denoted by the hat, is applied tesalved field. The basis of the dynamic procedure is the
Germano identity

Lij = Tij — Tij. 8)

The individual terms in this algebraic relation are given by

T = sty — Uiy, ©)
Tij = Ul — U;Uj. (10)

The tensor/L;;, is referred to as the Leonard stresses and can be calcatfetiows

—

Lij = Wity — Uit (11)
Using the Germano identity and the Smagorinsky model, Geoneaal3! proposed to calculat€'s by

o 1(L;Si)

— 12
5 2(My;Sy) 42

which uses spatial averaging in homogeneous direction®asted by the angle brackets. The advantages of this
method are that an arbitrary damping function is no longguired to make eddy viscosity diminish near walls and
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determination of aa priori C's is no longer necessary. The dynamic Smagorinsky model wexstedified by Lilly3*
who used a least-squares method to obtain

1 (Li; M;j)
2 2\ i
Cs =3 (M;; M) (13)
In both cases, the tensadk;;, is given by
Mij = 2A2 [‘?lgl] — a2\§|§i]} 5 (14)

wherea represents the ratio of filters and is typically 2.

The dynamic Smagorinsky mod&has the disadvantage of requiring spatial averaging in lyemeous directions
to smoothC’s and stabilize the computations. Ghosal e¥?gbut the dynamic procedure on a better mathematical foun-
dation through a constrained variational formulation vehilie averaging of the dynamic coefficient in homogeneous
direction is justified. But most practical flow problems lackomogeneous direction. Therefore, Meneveau &t al.
proposed a dynamic model from a Lagrangian perspective bsaging along the flow pathlines rather than in ho-
mogeneous directions. The idea is to minimize the errorexhiby using the Smagorinsky model and the Germano
identity by taking previous information along the pathlioeobtain a current value. This formulation applies to fully
inhomogeneous turbulent flows as seen in many engineeriplgcations and requires less computational resources
than other localized dynamic modéstherefore making it a practical option in fluids enginegrihe Lagrangian
dynamic model uses backward time integration and an expiaheveighting function that decreases the weight of
past events and allows the backward time integration to liteewras the relaxation-transport equations of

(;t/M u - Vg7L1\/[ - T (LZJMJ ‘-7L1W) ’ ( )
ONEY — = _ —

where T is the relaxation time scale. Meneveau et al. chodeftoeT” as

T = 1.5A (T o) 5. (17)
Cjs is then calculated using the relation,
JLm
C% =", 18
57 Tum (18)

C. Numerical Approach

The governing equations are discretized on a Cartesiagestad grid. Second-order central-difference and Adams-
Bashforth schemes are used for spatial and temporal deesatespectively. The projection algoritAfnis then
adopted to solve the discretized set of equations, in wiietvelocity field is predicted as follows

u* =ul + At (—utV ~ul + I/V2ut) . (19)
A Poisson equation for pressure can then be written by imgosidivergence free condition on the velocity field at
timet + 1,

vipttl = Ly (20)

At
The pressure field at timet 1 is found by solving EquatioB0with a geometric, three-dimensional multigrid method
with full-depth amalgamation designed for GPU clustérsThe pressure field is then used to correct the predicted
velocity, u* as follows

A
u'tt = u* - —tVPtH. (21)
P

4
American Institute of Aeronautics and Astronautics



We use double precision in the computations and use the datigmal mesh as the base filter. In the case of
the Lagrangian dynamic model, which requires a second, filterused a simple top-hat filter. Time advancement in
the Lagrangian dynamic model (Equatictisand 16) is performed using the first-order schemes recommended by
Meneveau et at® which are given by

Pt ) = H {e[Ly My (0 + (1 - ) T (x —w"An) }, (22)
bt (%) = € [Mi Mig]"™™ (%) + (1 = €) Ty (x — W AW), (23)
where
_AYTT
Ny (24)

and T is defined in Equatiahv. The ramp function in Equatic®2is needed to clip away negati¢& values that result
from numerical inaccuracies. We use a trilinear interpofascheme to evaluate the “upstream” values atu” At.

lll.  MPI-CUDA Implementation Details

LES capability was integrated into the MPI-CUDA 3D incongsible flow solver developed by Thibault et®al.
and Jacobsen et & In their implementation, communication is overlapped with calculations to increase per-
formance. In this section, we give a brief summary of theirkvd=or further details, we direct the reader to three
aforementioned references.

SGS models considered in the present study do not requirmadifications to the existing code other than adding
CUDA kernels and incorporating a turbulent eddy viscogityhie velocity prediction step. The Smagorinsky model
was relatively easy to implement, requiring only one kew#l to calculate the sub-grid viscosity. The Lagrangian
dynamic model required several more kernel calls, a spdwi@iakdown given in SectioB.

A. MPI-CUDA 3D Incompressible Flow Solver

A basic outline for this implementation is shown in Listihg At the beginning of a time step, scalar values (e.g.
temperature, eddy viscosity) are calculated first. Nex,fgredicted velocity is calculated as well as the resulting
divergence. Using the divergence field, Equafris solved. The resulting pressure field is then used to cotinec
predicted velocity field. At the end of each time step, thaypointers are rotated.

The dual-level parallelism adopted in GIN3D starts by degosing the 3D domain of siZ&X x NY x NZ into
subdomains of siz&X x NY x NZ/#GPUs and are stored in a single 1D array for efficient memory trenssbe-
tween host and device. This decomposition allows for dngdip the number of layers that each GPU calculates. The
partial domain within a GPU is further decomposed into a tojgldle, and bottom sections to accommodate overlap-
ping of communication with computations. The GPU executestiddle section such that MPI communication and
host-device memory transfers of the top and bottom secfeuges) happen simultaneously with the calculation of
the middle section, which helps with achieving better duéitg. The overlapping of computations with MPI commu-
nication and GPU transfers is made possible by CUDA stredrhs.EXCHANGE function in Listing1 is when the
ghost cells of each GPU are filled up with the computed edges freighboring processes.

The pressure Poisson equation (Equagifyis solved with a full-depth amalgamated geometric muitigolver'?.

The multigrid method can be separated into four parts: shiogtrestriction, coarse grid solve and prolongatif.

The smoothing operation in our implementation is a weighltadobi method that is applied at each level with a
weighing coefficient of 0.86. The restriction stage takesiarfmesh and uses full-weighted averaging to transfer it
to a coarser mesh that contains half as many grid cells in éiaettion. The problem is then directly solved at the
coarse grid, and then the result is interpolated back to tiee fnesh in the prolongation stage. Listidgresents the
psuedo-code for the multigrid method with a V-cycle.
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//time stepping |oop

for (t=0; t < nsteps; t++)
{
i f (TURBULENCE) ({

turbul ence_nmodel ( u, v, w, nu_turb );
turbul ence_nodel _bc ( nu_turb );

}

if (TEMPERATURE) {

tenperature <<< grid, block >>> ( u, v, w, phiold, phi, phinew);
tenperature_bc <<< grid, block >>> ( phinew);

EXCHANGE( phi new );

nonentum <<< grid, block >>> ( uold, u, unew, vold, v, vnew, wold, w, wnew, nu_turb, phinew);
monmentum bc <<< grid, block >>> ( unew, vnew, wnew );
EXCHANGE( unew, vnew, wnew );

di vergence <<< grid, block >>> ( unew, vnew, wnew, div );

/1 mgd is data structure containing pointers to pressure arrays and grid coarsening paraneters
multigrid ( ngd, p, pnew, div );

correction <<< grid, block >>> ( pnew, unew, vnew, wnew );
nonentum bc <<< grid, block >>> ( unew, vnew, wnew );

EXCHANGE( unew, vnew, wnew );
ROTATE_ALL_PO NTERS() ;
}

Listing 1. Host-side psuedo-code outline for the projectin algorithm ?* to solve the incompressible Navier-
Stokes equations.

/1 mgdata_t data structure stores all paranmeters for each level ( grid spacings, pointers, etc. )
/1 mis the coarsening |evel

/'l mgend is the total anopunt of restrictions that can take place

mgcycle ( ngdata_t* ngd, int m int ngend )

{

/'l Smooth the result
ng_snoot her(ngd, m nlterations);

/'l Coarsen the nesh
restriction(ngd, m;

if ( ml >= ngend )
ng_coar se_sol ve(ngd, mtl);
el se

ngcycl e(mgd, m+1l, ngend);

/'l Create finer nesh from coarsened nesh
prol ongati on(ngd, mtl);

/1 Snooth the result
nmg_snoot her(ngd, m nlterations);

Listing 2. Pseudo-code for a multigrid VV-cycle where the finemesh is restricted until coarsening is no longer
possible.
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Multigrid methods have excellent convergence rates, batrallel implementation of a multigrid method requires
special care. Grid coarsening should be applied to thessrdimputational domain, but the coarsening process is prone
to loss of data-parallelism on decomposed domains. Triarcaf the grid coarsening process hinders convergence
rates substantionally. One possible solution that is impleted in Jacobsen et al. is to use amalgamation. Once
coarsening is no longer possible within each GPU, the coatspartial domains are gathered on a single GPU process,
and the V-cycle multigrid method proceeds. Once the cycfmished, the result is scattered back to the other GPU
processes and prolongation step starts on each processes.

B. GPU Implementation of the Lagrangian Dynamic Model

The Lagrangian dynamic model requires considerably mameskealls than the Smagorinsky model: three for veloc-
ity filtering; two for the calculation ofS;;| and|S;;|; six calls for each component §f; andS;;; 18 for L,; (three per
filtering operation for six times); 24 fal/,; (three for filtering and one for calculation, each calledtsnes); the cal-
culation of L;; M;; and M, ; M;; called six times; and one for the solving of the relaxati@nsport equations. Listing
3is an outline of our CUDA implementation of the Lagrangiamasic model. In order to minimize memory usage
on the GPU, we calculate the product of each component ey and adding them to a running total rather than
storing the entire tensor. THeor loop in Listing 3 serves this purpose. To reduce the amount of code, arrags wer
created for holding the proper pointers as well as the prépgandédx; values corresponding to the component being
calculated. The arraydxi anddxj hold the different values faiz; anddz;, respectively, andii anduj hold the
pointers foru; andw;, respectively. The tensor calculations require commuitiaebetween processes, particularly
with filtering operations. ThEXCHANGE function in Listing3 is the same as in Listinty where edges of subdomains
are placed in the ghost rows. The same overlapping techsepeeapplied here as well.

IV. Simulation Setup

We simulate a periodic turbulent channel flow at-Re180 for validation purposes. All calculations were per-
formed in double precision. The dimensions of our compoiteti domain aré2md, 76, 20) in (z,y, z) whered is
the channel half-height;, 4 and z are the streamwise, spanwise and wall-normal directi@spectively. We used
two grids in our simulations, a coarse resolution mesh withx664 x 96 points, and a fine resolution mesh with
128x96x 128 points. We did not apply grid stretching in the wall-nairdirection as we plan to adopt a structured
adaptive mesh refinement strategy in the future.

The flow was initialized in an approach similar to Goward¥athat superimposes a sinusoidal fluctuating com-
ponent on a logarithmic profile. AC’s value of 0.1 was chosen for the original Smagorinsky modehe Ta-
grangian dynamic model was initialized with the initial ditions recommended in Meneveau et?2lthat sets
Jim = CsM;; M;; and Ty = M, M;;, with Cg also being 0.1. Periodic boundary conditions were applied
in the stream- and span-wise directions to both velocity ssadar quantities. On channel walls, the no-slip con-
dition was imposed on the velocity field, and Neumann boundanditions for pressure and the scalar quantities
found in the Lagrangian dynamic model were set to zero. Thewlas maintained by imposing a height independent
constant pressure gradient in the streamwise directidnighg /5. The simulation was allowed to develop for 200
dimensionless time units.{t/). Statistics were sampled for 20 dimensionless time units.
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/1 Apply the hat filter

filter_sweep_i <<< grid, block >>> (u, v, w, uf, vf, w);
filter_sweep_j <<< grid, block >>> (uf, vf, w);
filter_sweep_k <<< grid, block >>> (uf, vf, wf);
velocity_bc <<< grid, block >>> (uf, vf, wf);
EXCHANGE(d_uf, d_vf, d_wf);

/1 Calculate |S

magSij <<< grid, block >>> (u, v, w, nmagS);
scal ar_bc <<< grid, block >>> (magS);
EXCHANGE( magS) ;

/1 Calculate filter(]S|)
magSij <<< grid, block >>> (uf, vf, wf, magsf);

/] Calculate LijMj and MjM]j on a conponent-w se basis
for (m=0; m< 6; mH+)

//Calculate Sij. Store in Lij.

if (m< 3) /1 cal cul ate di agonal conponents
Sij_diag <<< grid, block >>> (dxi[m, ui[m, Lij);
el se /1 calculate symmetrical conponents

Sij_symm<<< grid, block >>> (dxi[m, dxj[m, ui[m, uj[m, Lij);
scal ar_bc <<< grid, block >>> (Lij);
EXCHANGE( Li j ) ;

// Calculate filter(|S|Sij).

Mj_sweep_i <<< grid, block >>> (Lij, magS, M]j
Mj_sweep_j <<< grid, block >>> (Lij, magS, Mj
Mj_sweep_k <<< grid, block >>> (Lij, nmagS, M

/'l Calculate filter(Sij). Store in Lij.

if (m< 3) /'l cal cul ate diagonal conponents
Sij_diag <<< grid, block >>> (dxi[n], ufi[n, Lij);
el se /1 cal cul ate symmetrical conponents

Sij_symm<<< grid, block >>> (dxi[nm, dxj[nm, ufi[n], ufj[m, Lij);

/'l Conplete Mj
Mj_calc <<< grid, block >>> (Lij, nmagSf, Mj);

/1 Calculate Lij

/'l Sweeps calculate filter(u_i*u_j). filter(u_i)*filter(u_j) is in last function
Lij_sweep_i <<< grid, block >>> (ui[n], uj[n], Lij);

Lij_sweep_j <<< grid, block >>> (ui[m, uj[m, Lij);

Lij _sweep_k <<< grid, block >>> (ui[n], uj[n], Lij, ufi[m, ufj[n);

/1 Calculate LijMj and MjMj scal ar val ues
/1 symm det ermi nes whether a conponent is nultiplied by two

if ( m<3) { /] cal cul ate diagonal conponents
symm = 0. 0;
LijMj_MjMj <<< grid, block >>> (synm Lij, Mj, LM MVY;
} else { /] cal cul ate symmetrical conponents
symm = 1. 0;

LijMj MjMj <<< grid, block >>> (symm Lij, Mj, LM M);
}

/'l Solve the transport rel axation equations of the Lagrangi an dynani c nodel
solve_transport <<< grid, block >>> ( LM MM JIm Jlmew, Jnm Jmmew);
scal ar_bc <<< grid, block >>> (Jl mew);

scal ar_bc <<< grid, block >>> (Jmmew);

EXCHANGE( JI mmew, Jnmmmew) ;

ROTATE_PO NTERS(JI m JI mew) ;

ROTATE_PQO NTERS(Jmm  Jnmmew) ;

Listing 3. The host code for the Lagrangian dynamic model. Dagonal refers to equal tensor indices, i.e. i =],
and symmetric to unequal indices.
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Mean Streamwise Velocity Profile
20 T .
Smag - coarse
+ LagDyn — coarse
18{ © Smag - fine _
* LagDyn - fine e
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16~ - -Log Law e s —
+ Viscous Sublayer

Figure 1. A comparison of the mean streamwise velocity profds using different models and mesh sizes (coarse
- 64 x 64 x 96, fine - 128x 96 x 128): [, Smagorinsky on coarse grid;+, Lagrangian dynamic on coarse grid,;
o, Smagorinsky on fine grid; *, Lagrangian dynamic on fine grid.

V. Results and Discussion

Figure 1 shows the mean velocity profiles for the fine and coarse gritls e Smagorinsky model with van
Driest damping and the Lagrangian dynamic model. The psofilere compared to both the theoretical law of the
wall and the DNS performed by Moser, Kim and Mans8uis expected, the finer mesh did considerably better than
the coarse mesh, having two points in the viscous sublayeppssed to one.

The x-z component of the Reynolds shear stress is depicteédume2. All the simulations did quite well with this
statistic. The Smagorinsky model gave a higher Reynoldsrgteess near the wall than the DNS while the Lagrangian
dynamic model gave lower values than the DNS. Both models ager values of Reynolds shear stress away from
the wall, particularly the Lagrangian dynamic at the cogrse resolution.

The root mean square (rms) values of the velocity fluctuatame shown in Figures, 4 and5. With the stream-
wise velocity fluctuations in Figur8, the coarse grid Lagrangian dynamic model does worse thaodarse grid
Smagorinsky toward the center of the channel but betterrtbttee wall. However, the fine grid approaches yields the
exact opposite, with the Smagorinsky model performingdoétiward the wall but worse away from the wall. With the
velocity fluctuations in the spanwise direction (Figdjeand the wall-normal direction (Figui®, the Smagorinsky
model gives better results than the Lagrangian dynamic modeboth grids. The streamwise energy spectra from
both models on the fine resolution mesh were compared to #wdtical -5/3 slope of the Kolmogorov spectrum
in Figure 6. Both models produced very similar results and gave a sltgme do theoretical one roughly around
wavenumbers five through ten.
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X-Z Component of Reynolds Shear Stress
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-0.8f e
Smag - coarse
+ LagDyn - coarse
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Figure 2. A comparison of the x-z component of the Reynolds gar stress tensor using different turbulence
models at different grid resolutions. Note our non-traditional coordinate system has z being the wall-normal
direction. [J, Smagorinsky on coarse grid (64x 64 x 96); +, Lagrangian dynamic on coarse grid;o, Smagorin-
sky on fine grid (128 x 96 x 128); x, Lagrangian dynamic on fine grid.
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Figure 3. The rms values of streamwise velocity fluctuations ], Smagorinsky on coarse grid (64< 64 x 96); +,
Lagrangian dynamic on coarse grid;o, Smagorinsky on fine grid (128x 96 x 128); «, Lagrangian dynamic on
fine grid.
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Figure 4. The rms values of spanwise velocity fluctuations:], Smagorinsky on coarse grid (64x 64 x 96); +,
Lagrangian dynamic on coarse grid;o, Smagorinsky on fine grid (128x 96 x 128); x, Lagrangian dynamic on
fine grid.
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Figure 5. The rms values of wall-normal velocity fluctuatiors: [ ], Smagorinsky on coarse grid (64x 64 x 96);
+, Lagrangian dynamic on coarse grid;o, Smagorinsky on fine grid (128x 96 x 128); %, Lagrangian dynamic
on fine grid.
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Figure 6. Streamwise spectra of turbulent kinetic energy namalized with friction velocity at approximately
z+ ~ 50 for Re, = 180 on fine resolution mesh (12& 96 x 128).

VI. Conclusions and Future Work

We demonstrated LES of incompressible turbulent channesflan GPU computing platforms. We considered
both the original and Lagrangian dynamic Smagorinsky nsdel our implementation we use MPI for coarse-grain
parallelism and CUDA for fine-grain parallelism on GPUs. @sults compared fairly well with existing DNS results.
While the original Smagorinsky model with the van-Driest giémg function and a fine-tuned coefficient showed better
turbulent statistics on the fine mesh than the Lagrangiammyn model, the Lagrangian dynamic model produced
results that are in good agreement with DNS data without aning in the model. Lagrangian dynamic model also
has the advantage of being applicable to turbulent flows witomplex geometry, which will be the focus of our

future work.
When compared to the original Smagorinsky model, the Lagaandynamic model increased the overall simula-

tion time by approximately 30%. This is a significant numbmau seducing it would be worthwhile. A possibility that
we haven't investigated yet would be to use concurrent kemoecalculate the tensors. Concurrent kernels is a new
feature provided by the CUDA Toolkit version 4%that allows kernels to be run simultaneously on NVIDIA'S fRer
GPU architecture and will be investigated in a future work.
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