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GPU-accelerated Large-Eddy Simulation of Turbulent Channel
Flows

Rey DeLeon∗ and Inanc Senocak†

Department of Mechanical and Biomedical Engineering Boise State University, Boise, Idaho, 83725

High performance computing clusters that are augmented with cost and power efficient graphics processing
unit (GPU) provide new opportunities to broaden the use of large-eddy simulation technique to study high
Reynolds number turbulent flows in fluids engineering applications. Inthis paper, we extend our earlier work
on multi-GPU acceleration of an incompressible Navier-Stokes solverto include a large-eddy simulation (LES)
capability. In particular, we implement the Lagrangian dynamic subgrid scale model and compare our results
against existing direct numerical simulation (DNS) data of a turbulent channel flow at Reτ = 180. Overall, our
LES results match fairly well with the DNS data. Our results show that the Reτ = 180 case can be entirely
simulated on a single GPU, whereas higher Reynolds cases can benefitfrom a GPU cluster.

I. Introduction

Large eddy simulation (LES) is a numerical technique for calculating a majority of energy containing eddies
allowing for the resolution of vortical flow structures and the prediction of turbulent flow statistics. LES technique
finds applications in several areas such as atmospheric boundary layers, turbomachinery flows and combustion, to
name a few. LES of high Reynolds number flows need spatial and temporal resolutions that can easily overwhelm
individual workstations. Researchers continue to target higher Reynolds number flows using LES because of its better
predictive capabilities1,2. Cheng et al.3 applied OpenFOAM4 to pollution transportation in idealized two-dimensional
street canyons computation mesh of 13.5 million elements. The computation of 100 dimensionless time units on an
eight-core machine was reported to have taken approximately 1,000 hours. Such long turn-around times makes LES
impractical for applications in industry. But recent innovations in multi- and many-core computing architectures show
great promise in broadening the adoption of LES in industry.

Scientific computing with graphics processing units (GPU) has become a new paradigm in supercomputing. As
of November 2011, three of the top five supercomputers in the world adopt GPUs as accelerators5. The upcoming
Titan supercomputer6 at Oak Ridge National Laboratory (expected to make its debutin early 2013) is projected to be
the fastest supercomputer in the world with a peak performance of over 10 petaflops ( i.e. 10 trillion floating point
operations per second). Titan will be powered by NVIDIA GPUsthat is expected to power efficient. Furthermore,
an exascale supercomputer is expected to arrive in 20187. GPUs are currently viewed as a key technology that will
contribute to the goal of maintaining an overall power consumption of under 20 MW for a supercomputer8. However,
this phenomenal growth in supercomputing capacity has to bematched with a software infrastructure. Developing
scalable scientific software, massive data storage and scientific visualization of exascale simulations are going to be
challenging. To this end, research towards effectively using multiple GPUs on large computing clusters for scientific
applications brings us closer to sustaining exascale performance on future supercomputers.

To date, there have been numerous studies on using GPUs in a variety of fields, some focusing on single GPU
implementations and others focusing on multiple GPU implementations on clusters. In the field of computational fluid
dynamics (CFD), some of the examples include: Thibault and Senocak9 who focused on an incompressible flow solver,
Jacobsen et al. who transformed the work of Thibault and Senocak into a Navier-Stokes solver for GPU clusters10

with a full-depth amalgamated parallel 3D geometric multigrid method11, Corrigan et al.12 explored techniques to
accelerate execution of unstructured mesh CFD codes on GPUs, Cohan and Molemaker13 performed simulations
of Rayleigh-Bernard convection problems, Antoniou et al.14 developed a GPU-accelerated weighted essentially non-
oscillatory scheme for supersonic flows, Brandvik and Pullan15 developed a GPU accelerated 3D Navier-Stokes solver
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for turbomachinery, Griebel and Zaspel16 created a 3D incompressible solver for two phase flows, and Geveler et al.
who present libraries for Lattice-Boltzmann based CFD applications on multi- and many-core machines17.

GPU’s massively parallel, many-core architecture allows for fine-grain parallelism making it well-suited for many
numerical codes18. With the introduction of NVIDIA’s Compute Unified Device Architecture19 (CUDA) in 2007, sci-
entific computing with GPUs made a quantum leap forward. Recent efforts have made CUDA available for a broader
set of applications by allowing programs developed with CUDA to be executed on multicore x86 CPU architectures
and GPUs from other vendors. In an effort to produce a dynamiccompilation framework for heterogeneous computing
systems, Kerr et al. created Ocelot20 which is capable of executing Parallel Thread Execution (PTX), i.e. CUDA pro-
grams, on NVIDIA CUDA-enabled GPUs, AMD GPUs, or multicore x86 CPU architectures without recompilation of
the CUDA source code. When running PTX on x86 architectures, Ocelot can either emulate PTX on a x86 architec-
ture or translate the PTX binary to the Low Level Virtual Machine (LLVM) compiler infrastructure for execution on
multicore x86 CPUs. The Portland Group Inc. recently released CUDA-x8621 which gives flexibility to programmers
by allowing CUDA applications to be tested on CUDA-enabled GPUs, multicore x86 CPU architectures, or both.
CUDA-x86 is the first native CUDA compiler capable of directly creating a binary from CUDA source code for x86
platforms. NVIDIA and the Portland Group Inc. are also making the GPU’s computational power more readily avail-
able to a larger scientific community by creating CUDA FORTRAN22, an extension to the FORTRAN language for
GPU computing.

With CFD simulations taking on ever increasing Reynolds numbers, even the more powerful GPUs such as the
Tesla M2090 or the Tesla C2075, both of which have 6 GB of on-board memory, may not be enough. There is a
need for GPU clusters and multi-GPU parallel CFD models to study turbulent flows that are common in engineering
practice. For the near future, dual-level parallelism thatinterleaves CUDA with Message Passing Interface (MPI)
appear to be an adequate choice to address multi-GPU parallelism10,15,16. Jacobsen and Senocak23 investigated tri-
level parallelism using CUDA, MPI, and OpenMP for clusters with multiple GPUs per node. Their results did not
show a significant performance gain over dual-level parallelism with MPI-CUDA.

Our present work on LES on a GPU cluster builds upon early workdone by Thibault and Senocak9 and Jacobsen
et al.10,11 where they developed a 3D MPI-CUDA parallel incompressibleflow solver, called GIN3D. Governing
equations are solved using a projection algorithm24 on a staggered, Cartesian grid with a full-depth parallel geometric
multigrid pressure Poisson solver. In the present work, we introduce a large-eddy simulation capability in GIN3D.
In particular, we implement the Lagrangian dynamic Smagorinsky model25 for its flexibility for complex geometry
flows with no homogeneous directions. For validation purposes, we simulate turbulent channel flows at Reτ = 180 and
compare with the direct numerical simulation (DNS) of Moser, Kim and Mansour26.

II. Governing Equations and Numerical Approach

A. Governing Equations for LES of Incompressible Flows

The basic principle of LES is to separate a turbulent flow fieldinto large- and small-scales using a mathematical filter.
The large-scales are explicitly resolved by the simulationwhereas the small-scales, also called subgrid-scales (SGS),
are treated as statistically universal and their interaction with the resolved flow is modeled27. The governing equations
used in LES of incompressible flows are the filtered form of theNavier-Stokes equations,

∂uj

∂xj
= 0 (1)

∂ui

∂t
+

∂

∂xj
(uiuj) = −

1

ρ

∂p

∂xi
+

∂

∂xj

(
2νSij − τij

)
, (2)

where

Sij =
1

2

(
∂ui

∂xj
+

∂uj

∂xi

)
(3)

is the deformation tensor, and

τij = uiuj + uiuj (4)

is the tensor representing the interaction of the subgrid-scales on the resolved large-scales. The overbar in these
equations represents a filtered quantity.
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B. Subgrid Scale Models

For turbulence closure, subgrid-scale motions are treatedas statistically universal and replaced by an SGS model. The
original Smagorinsky model28 has well-known deficiencies, particularly near wall boundaries29. An ad hoc fix to the
problem is to use van Driest damping30 to make the eddy viscosity vanish near the wall. In 1991, Germano et al.31

proposed an alternative method to dynamically calculate the empirical parameters in an SGS model using information
from the resolved velocity field. The dynamic Smagorinsky model introduced by Germano et al. correctly predicts a
decaying eddy viscosity near wall boundaries, but it has thedisadvantage of requiring homogeneous directions in the
flow problem at hand, which has later been addressed by other researchers25,32,33. In the following we briefly present
the original and the dynamic Smagorinsky models.

The original Smagorinsky model creates a proportional relationship between the local SGS stresses and the local
rate of strain on the large-scale eddies. It is given by

τij = −2µtSij +
1

3
τiiδij = −µt

(
∂ui

∂xj
+

∂uj

∂xi

)
+

1

3
τiiδij , (5)

whereµt is the turbulent or SGS eddy viscosity and is calculated by

µt = ρ(CS∆)2
√

2SijSij . (6)

∆ is the filter width and can be defined by either a mathematical filter ( e.g., top-hat filter ) or by using the numerical
grid. CS is the model coefficient and is a constant parameter in the original Smagorinsky model. Choosing a proper
CS value, which depends upon the mesh and the flow problem being investigated, is critical. For wall boundaries in
a channel flow, the model parameterCS must be adjusted to reflect the vanishing eddies by multiplying CS with the
van-Driest damping function30 which is given as

1 − exp

(
−y+

A

)
, (7)

wherey+ is the non-dimensional distance given in wall units andA is a constant that is approximately 25. Damping
the Smagorinsky coefficient through an arbitrary function significantly improves the LES results, but the procedure is
ad-hoc and does not easily extend to complex geometry. This particular shortcoming is overcome by the adopting the
dynamic procedure.

The first dynamic subgrid scale model was proposed by Germanoet al.31. In their dynamic procedure, a second
filter with a larger width, denoted by the hat, is applied to a resolved field. The basis of the dynamic procedure is the
Germano identity

Lij = Tij − τ̂ij . (8)

The individual terms in this algebraic relation are given by

Tij = ûiuj − ûiûj , (9)

τ̂ij = ûiuj − ûiuj . (10)

The tensor,Lij , is referred to as the Leonard stresses and can be calculatedas follows

Lij = ûiuj − ûiûi. (11)

Using the Germano identity and the Smagorinsky model, Germano et al.31 proposed to calculateCS by

C2
S =

1

2

〈
LijSij

〉
〈
MijSij

〉 , (12)

which uses spatial averaging in homogeneous directions as denoted by the angle brackets. The advantages of this
method are that an arbitrary damping function is no longer required to make eddy viscosity diminish near walls and
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determination of ana priori CS is no longer necessary. The dynamic Smagorinsky model was later modified by Lilly34

who used a least-squares method to obtain

C2
S =

1

2

〈LijMij〉

〈MijMij〉
. (13)

In both cases, the tensor,Mij , is given by

Mij = 2∆2

[
̂|S|Sij − α2|Ŝ|Ŝij

]
, (14)

whereα represents the ratio of filters and is typically 2.
The dynamic Smagorinsky model31 has the disadvantage of requiring spatial averaging in homogeneous directions

to smoothCS and stabilize the computations. Ghosal et al.32 put the dynamic procedure on a better mathematical foun-
dation through a constrained variational formulation where the averaging of the dynamic coefficient in homogeneous
direction is justified. But most practical flow problems lacka homogeneous direction. Therefore, Meneveau et al.25

proposed a dynamic model from a Lagrangian perspective by averaging along the flow pathlines rather than in ho-
mogeneous directions. The idea is to minimize the error caused by using the Smagorinsky model and the Germano
identity by taking previous information along the pathlineto obtain a current value. This formulation applies to fully
inhomogeneous turbulent flows as seen in many engineering applications and requires less computational resources
than other localized dynamic models32, therefore making it a practical option in fluids engineering. The Lagrangian
dynamic model uses backward time integration and an exponential weighting function that decreases the weight of
past events and allows the backward time integration to be written as the relaxation-transport equations of

∂JLM

∂t
+ u · ∇JLM =

1

T
(LijMij − JLM ) , (15)

∂JMM

∂t
+ u · ∇JMM =

1

T
(MijMij − JMM ) , (16)

where T is the relaxation time scale. Meneveau et al. chose todefineT as

T = 1.5∆ (JLMJMM )
−1/8

. (17)

CS is then calculated using the relation,

C2
S =

JLM

JMM
. (18)

C. Numerical Approach

The governing equations are discretized on a Cartesian staggered grid. Second-order central-difference and Adams-
Bashforth schemes are used for spatial and temporal derivatives, respectively. The projection algorithm24 is then
adopted to solve the discretized set of equations, in which the velocity field is predicted as follows

u
∗ = u

t + ∆t
(
−u

t∇ · ut + ν∇2
u

t
)
. (19)

A Poisson equation for pressure can then be written by imposing a divergence free condition on the velocity field at
time t + 1,

∇2P t+1 =
ρ

∆t
∇ · u∗. (20)

The pressure field at timet+1 is found by solving Equation20with a geometric, three-dimensional multigrid method
with full-depth amalgamation designed for GPU clusters11. The pressure field is then used to correct the predicted
velocity,u∗ as follows

u
t+1 = u

∗ −
∆t

ρ
∇P t+1. (21)
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We use double precision in the computations and use the computational mesh as the base filter. In the case of
the Lagrangian dynamic model, which requires a second filter, we used a simple top-hat filter. Time advancement in
the Lagrangian dynamic model (Equations15 and16) is performed using the first-order schemes recommended by
Meneveau et al.25 which are given by

J n+1

LM (x) = H
{

ǫ [LijMij ]
n+1

(x) + (1 − ǫ)J n
LM (x − u

n∆t)
}

, (22)

J n+1

MM (x) = ǫ [MijMij ]
n+1

(x) + (1 − ǫ)J n
MM (x − u

n∆t), (23)

where

ǫ =
∆t/Tn

1 + ∆t/Tn
(24)

and T is defined in Equation17. The ramp function in Equation22is needed to clip away negativeC2
S values that result

from numerical inaccuracies. We use a trilinear interpolation scheme to evaluate the “upstream” values atx − u
n∆t.

III. MPI-CUDA Implementation Details

LES capability was integrated into the MPI-CUDA 3D incompressible flow solver developed by Thibault et al.9

and Jacobsen et al.10,11 In their implementation, communication is overlapped withthe calculations to increase per-
formance. In this section, we give a brief summary of their work. For further details, we direct the reader to three
aforementioned references.

SGS models considered in the present study do not require anymodifications to the existing code other than adding
CUDA kernels and incorporating a turbulent eddy viscosity in the velocity prediction step. The Smagorinsky model
was relatively easy to implement, requiring only one kernelcall to calculate the sub-grid viscosity. The Lagrangian
dynamic model required several more kernel calls, a specificbreakdown given in SectionB.

A. MPI-CUDA 3D Incompressible Flow Solver

A basic outline for this implementation is shown in Listing1. At the beginning of a time step, scalar values (e.g.
temperature, eddy viscosity) are calculated first. Next, the predicted velocity is calculated as well as the resulting
divergence. Using the divergence field, Equation20 is solved. The resulting pressure field is then used to correct the
predicted velocity field. At the end of each time step, the array pointers are rotated.

The dual-level parallelism adopted in GIN3D starts by decomposing the 3D domain of sizeNX × NY × NZ into
subdomains of sizeNX × NY × NZ/#GPUs and are stored in a single 1D array for efficient memory transfers be-
tween host and device. This decomposition allows for dividing up the number of layers that each GPU calculates. The
partial domain within a GPU is further decomposed into a top,middle, and bottom sections to accommodate overlap-
ping of communication with computations. The GPU executes the middle section such that MPI communication and
host-device memory transfers of the top and bottom sections(edges) happen simultaneously with the calculation of
the middle section, which helps with achieving better scalability. The overlapping of computations with MPI commu-
nication and GPU transfers is made possible by CUDA streams.TheEXCHANGE function in Listing1 is when the
ghost cells of each GPU are filled up with the computed edges from neighboring processes.

The pressure Poisson equation (Equation20) is solved with a full-depth amalgamated geometric multigrid solver11.
The multigrid method can be separated into four parts: smoothing, restriction, coarse grid solve and prolongation35,36.
The smoothing operation in our implementation is a weightedJacobi method that is applied at each level with a
weighing coefficient of 0.86. The restriction stage takes a finer mesh and uses full-weighted averaging to transfer it
to a coarser mesh that contains half as many grid cells in eachdirection. The problem is then directly solved at the
coarse grid, and then the result is interpolated back to the finer mesh in the prolongation stage. Listing2 presents the
psuedo-code for the multigrid method with a V-cycle.
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//time stepping loop
for (t=0; t < nsteps; t++)
{
if (TURBULENCE) {
turbulence_model ( u, v, w, nu_turb );
turbulence_model_bc ( nu_turb );
}

if (TEMPERATURE) {
temperature <<< grid, block >>> ( u, v, w, phiold, phi, phinew );
temperature_bc <<< grid, block >>> ( phinew );
EXCHANGE( phinew );
}

momentum <<< grid, block >>> ( uold, u, unew, vold, v, vnew, wold, w, wnew, nu_turb, phinew);
momentum_bc <<< grid, block >>> ( unew, vnew, wnew );
EXCHANGE( unew, vnew, wnew );

divergence <<< grid, block >>> ( unew, vnew, wnew, div );

// mgd is data structure containing pointers to pressure arrays and grid coarsening parameters
multigrid ( mgd, p, pnew, div );

correction <<< grid, block >>> ( pnew, unew, vnew, wnew );
momentum_bc <<< grid, block >>> ( unew, vnew, wnew );

EXCHANGE( unew, vnew, wnew );
ROTATE_ALL_POINTERS();
}

Listing 1. Host-side psuedo-code outline for the projection algorithm 24 to solve the incompressible Navier-
Stokes equations.

// mgdata_t data structure stores all parameters for each level ( grid spacings, pointers, etc. )
// m is the coarsening level
// mgend is the total amount of restrictions that can take place
mgcycle ( mgdata_t* mgd, int m, int mgend )
{
// Smooth the result
mg_smoother(mgd, m, nIterations);

// Coarsen the mesh
restriction(mgd, m);

if ( m+1 >= mgend )
mg_coarse_solve(mgd, m+1);
else
mgcycle(mgd, m+1, mgend);

// Create finer mesh from coarsened mesh
prolongation(mgd, m+1);

// Smooth the result
mg_smoother(mgd, m, nIterations);
}

Listing 2. Pseudo-code for a multigrid V-cycle where the finemesh is restricted until coarsening is no longer
possible.
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Multigrid methods have excellent convergence rates, but a parallel implementation of a multigrid method requires
special care. Grid coarsening should be applied to the entire computational domain, but the coarsening process is prone
to loss of data-parallelism on decomposed domains. Truncation of the grid coarsening process hinders convergence
rates substantionally. One possible solution that is implemented in Jacobsen et al. is to use amalgamation. Once
coarsening is no longer possible within each GPU, the coarsened partial domains are gathered on a single GPU process,
and the V-cycle multigrid method proceeds. Once the cycle isfinished, the result is scattered back to the other GPU
processes and prolongation step starts on each processes.

B. GPU Implementation of the Lagrangian Dynamic Model

The Lagrangian dynamic model requires considerably more kernel calls than the Smagorinsky model: three for veloc-
ity filtering; two for the calculation of|Sij | and|Ŝij |; six calls for each component ofSij andŜij ; 18 forLij (three per
filtering operation for six times); 24 forMij (three for filtering and one for calculation, each called sixtimes); the cal-
culation ofLijMij andMijMij called six times; and one for the solving of the relaxation-transport equations. Listing
3 is an outline of our CUDA implementation of the Lagrangian dynamic model. In order to minimize memory usage
on the GPU, we calculate the product of each component individually and adding them to a running total rather than
storing the entire tensor. Thefor loop in Listing3 serves this purpose. To reduce the amount of code, arrays were
created for holding the proper pointers as well as the properδxi andδxj values corresponding to the component being
calculated. The arraysdxi anddxj hold the different values forδxi andδxj , respectively, andui anduj hold the
pointers forui anduj , respectively. The tensor calculations require communication between processes, particularly
with filtering operations. TheEXCHANGE function in Listing3 is the same as in Listing1, where edges of subdomains
are placed in the ghost rows. The same overlapping techniques are applied here as well.

IV. Simulation Setup

We simulate a periodic turbulent channel flow at Reτ = 180 for validation purposes. All calculations were per-
formed in double precision. The dimensions of our computational domain are(2πδ, πδ, 2δ) in (x, y, z) whereδ is
the channel half-height,x, y andz are the streamwise, spanwise and wall-normal directions, respectively. We used
two grids in our simulations, a coarse resolution mesh with 64 × 64 × 96 points, and a fine resolution mesh with
128×96×128 points. We did not apply grid stretching in the wall-normal direction as we plan to adopt a structured
adaptive mesh refinement strategy in the future.

The flow was initialized in an approach similar to Gowardhan37 that superimposes a sinusoidal fluctuating com-
ponent on a logarithmic profile. ACS value of 0.1 was chosen for the original Smagorinsky model. The La-
grangian dynamic model was initialized with the initial conditions recommended in Meneveau et al.25 that sets
JLM = CSMijMij andJMM = MijMij , with CS also being 0.1. Periodic boundary conditions were applied
in the stream- and span-wise directions to both velocity andscalar quantities. On channel walls, the no-slip con-
dition was imposed on the velocity field, and Neumann boundary conditions for pressure and the scalar quantities
found in the Lagrangian dynamic model were set to zero. The flow was maintained by imposing a height independent
constant pressure gradient in the streamwise direction that is u2

τ /δ. The simulation was allowed to develop for 200
dimensionless time units (uτ t/δ). Statistics were sampled for 20 dimensionless time units.
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// Apply the hat filter
filter_sweep_i <<< grid, block >>> (u, v, w, uf, vf, wf);
filter_sweep_j <<< grid, block >>> (uf, vf, wf);
filter_sweep_k <<< grid, block >>> (uf, vf, wf);
velocity_bc <<< grid, block >>> (uf, vf, wf);
EXCHANGE(d_uf, d_vf, d_wf);

// Calculate |S|
magSij <<< grid, block >>> (u, v, w, magS);
scalar_bc <<< grid, block >>> (magS);
EXCHANGE(magS);

// Calculate filter(|S|)
magSij <<< grid, block >>> (uf, vf, wf, magSf);

// Calculate LijMij and MijMij on a component-wise basis
for (m = 0; m < 6; m++)
{

//Calculate Sij. Store in Lij.
if (m < 3) // calculate diagonal components

Sij_diag <<< grid, block >>> (dxi[m], ui[m], Lij);
else // calculate symmetrical components

Sij_symm <<< grid, block >>> (dxi[m], dxj[m], ui[m], uj[m], Lij);
scalar_bc <<< grid, block >>> (Lij);
EXCHANGE(Lij);

// Calculate filter(|S|Sij).
Mij_sweep_i <<< grid, block >>> (Lij, magS, Mij);
Mij_sweep_j <<< grid, block >>> (Lij, magS, Mij);
Mij_sweep_k <<< grid, block >>> (Lij, magS, Mij);

// Calculate filter(Sij). Store in Lij.
if (m < 3) // calculate diagonal components

Sij_diag <<< grid, block >>> (dxi[m], ufi[m], Lij);
else // calculate symmetrical components

Sij_symm <<< grid, block >>> (dxi[m], dxj[m], ufi[m], ufj[m], Lij);

// Complete Mij
Mij_calc <<< grid, block >>> (Lij, magSf, Mij);

// Calculate Lij
// Sweeps calculate filter(u_i*u_j). filter(u_i)*filter(u_j) is in last function
Lij_sweep_i <<< grid, block >>> (ui[m], uj[m], Lij);
Lij_sweep_j <<< grid, block >>> (ui[m], uj[m], Lij);
Lij_sweep_k <<< grid, block >>> (ui[m], uj[m], Lij, ufi[m], ufj[m]);

// Calculate LijMij and MijMij scalar values
// symm determines whether a component is multiplied by two
if ( m < 3 ) { // calculate diagonal components

symm = 0.0;
LijMij_MijMij <<< grid, block >>> (symm, Lij, Mij, LM, MM);

} else { // calculate symmetrical components
symm = 1.0;
LijMij_MijMij <<< grid, block >>> (symm, Lij, Mij, LM, MM);

}
}

// Solve the transport relaxation equations of the Lagrangian dynamic model
solve_transport <<< grid, block >>> ( LM, MM, Jlm, Jlmnew, Jmm, Jmmnew);
scalar_bc <<< grid, block >>> (Jlmnew);
scalar_bc <<< grid, block >>> (Jmmnew);
EXCHANGE(Jlmnew, Jmmnew);
ROTATE_POINTERS(Jlm, Jlmnew);
ROTATE_POINTERS(Jmm, Jmmnew);

Listing 3. The host code for the Lagrangian dynamic model. Diagonal refers to equal tensor indices, i.e. i = j,
and symmetric to unequal indices.
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Figure 1. A comparison of the mean streamwise velocity profiles using different models and mesh sizes (coarse
- 64× 64× 96, fine - 128× 96× 128): ¤, Smagorinsky on coarse grid;+, Lagrangian dynamic on coarse grid;
◦, Smagorinsky on fine grid;∗, Lagrangian dynamic on fine grid.

V. Results and Discussion

Figure1 shows the mean velocity profiles for the fine and coarse grids with the Smagorinsky model with van
Driest damping and the Lagrangian dynamic model. The profiles were compared to both the theoretical law of the
wall and the DNS performed by Moser, Kim and Mansour26. As expected, the finer mesh did considerably better than
the coarse mesh, having two points in the viscous sublayer asopposed to one.

The x-z component of the Reynolds shear stress is depicted inFigure2. All the simulations did quite well with this
statistic. The Smagorinsky model gave a higher Reynolds shear stress near the wall than the DNS while the Lagrangian
dynamic model gave lower values than the DNS. Both models gave larger values of Reynolds shear stress away from
the wall, particularly the Lagrangian dynamic at the coarsegrid resolution.

The root mean square (rms) values of the velocity fluctuations are shown in Figures.3, 4 and5. With the stream-
wise velocity fluctuations in Figure3, the coarse grid Lagrangian dynamic model does worse than the coarse grid
Smagorinsky toward the center of the channel but better toward the wall. However, the fine grid approaches yields the
exact opposite, with the Smagorinsky model performing better toward the wall but worse away from the wall. With the
velocity fluctuations in the spanwise direction (Figure4) and the wall-normal direction (Figure5), the Smagorinsky
model gives better results than the Lagrangian dynamic model, on both grids. The streamwise energy spectra from
both models on the fine resolution mesh were compared to the theoretical -5/3 slope of the Kolmogorov spectrum
in Figure 6. Both models produced very similar results and gave a slope close to theoretical one roughly around
wavenumbers five through ten.
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Figure 2. A comparison of the x-z component of the Reynolds shear stress tensor using different turbulence
models at different grid resolutions. Note our non-traditional coordinate system has z being the wall-normal
direction. ¤, Smagorinsky on coarse grid (64× 64× 96); +, Lagrangian dynamic on coarse grid;◦, Smagorin-
sky on fine grid (128× 96× 128);∗, Lagrangian dynamic on fine grid.

Figure 3. The rms values of streamwise velocity fluctuations: ¤, Smagorinsky on coarse grid (64× 64× 96); +,
Lagrangian dynamic on coarse grid;◦, Smagorinsky on fine grid (128× 96× 128);∗, Lagrangian dynamic on
fine grid.
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Figure 4. The rms values of spanwise velocity fluctuations:¤, Smagorinsky on coarse grid (64× 64× 96); +,
Lagrangian dynamic on coarse grid;◦, Smagorinsky on fine grid (128× 96× 128);∗, Lagrangian dynamic on
fine grid.

Figure 5. The rms values of wall-normal velocity fluctuations: ¤, Smagorinsky on coarse grid (64× 64× 96);
+, Lagrangian dynamic on coarse grid;◦, Smagorinsky on fine grid (128× 96× 128); ∗, Lagrangian dynamic
on fine grid.
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Figure 6. Streamwise spectra of turbulent kinetic energy normalized with friction velocity at approximately
z+ ≈ 50 for Reτ = 180 on fine resolution mesh (128× 96× 128).

VI. Conclusions and Future Work

We demonstrated LES of incompressible turbulent channel flows on GPU computing platforms. We considered
both the original and Lagrangian dynamic Smagorinsky models. In our implementation we use MPI for coarse-grain
parallelism and CUDA for fine-grain parallelism on GPUs. Ourresults compared fairly well with existing DNS results.
While the original Smagorinsky model with the van-Driest damping function and a fine-tuned coefficient showed better
turbulent statistics on the fine mesh than the Lagrangian dynamic model, the Lagrangian dynamic model produced
results that are in good agreement with DNS data without any tuning in the model. Lagrangian dynamic model also
has the advantage of being applicable to turbulent flows witha complex geometry, which will be the focus of our
future work.

When compared to the original Smagorinsky model, the Lagrangian dynamic model increased the overall simula-
tion time by approximately 30%. This is a significant number and reducing it would be worthwhile. A possibility that
we haven’t investigated yet would be to use concurrent kernels to calculate the tensors. Concurrent kernels is a new
feature provided by the CUDA Toolkit version 4.019 that allows kernels to be run simultaneously on NVIDIA’s Fermi
GPU architecture and will be investigated in a future work.
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