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Influence of morphology and permafrost dynamics on hyporheic

exchange in arctic headwater streams under warming climate

conditions

Jay P. Zarnetske,1 Michael N. Gooseff,2 W. Breck Bowden,3 Morgan J. Greenwald,3

Troy R. Brosten,4 John H. Bradford,4 and James P. McNamara4

Received 19 September 2007; revised 29 November 2007; accepted 7 December 2007; published 16 January 2008.

[1] We investigated surface-subsurface (hyporheic)
exchange in two morphologically distinct arctic headwater
streams experiencing warming (thawing) sub-channel
conditions. Empirically parameterized and calibrated
groundwater flow models were used to assess the
influence of sub-channel thaw on hyporheic exchange.
Average thaw depths were at least two-fold greater under
the higher-energy, alluvial stream than under the low-
energy, peat-lined stream. Alluvial hyporheic exchange had
shorter residence times and longer flowpaths that occurred
across greater portions of the thawed sediments. For both
reaches, the morphologic (longitudinal bed topography) and
hydraulic conditions (surface and groundwater flow
properties) set the potential for hyporheic flow.
Simulations of deeper thaw, as predicted under a warming
arctic climate, only influence hyporheic exchange until a
threshold depth. This depth is primarily determined by the
hydraulic head gradients imposed by the stream
morphology. Therefore, arctic hyporheic exchange extent
is likely to be independent of greater sub-stream thaw
depths. Citation: Zarnetske, J. P., M. N. Gooseff, W. B.

Bowden, M. J. Greenwald, T. R. Brosten, J. H. Bradford, and J. P.

McNamara (2008), Influence of morphology and permafrost

dynamics on hyporheic exchange in arctic headwater streams

under warming climate conditions, Geophys. Res. Lett., 35,

L02501, doi:10.1029/2007GL032049.

1. Introduction

[2] Stream-subsurface exchange within the hyporheic
zone is a fundamental process that affects the biogeochem-
istry [Jones and Mulholland, 2000] and residence time
[Haggerty et al., 2002] of stream water. The hyporheic
zone is an important component of stream ecosystems and
most of the understanding of related processes has come
from studies of temperate streams. Recently, Edwardson et
al. [2003] provided an initial documentation of arctic stream
hyporheic processes indicating that hyporheic nutrient re-

generation may be important because nutrients are
extremely limited in most arctic streams.
[3] In temperate stream systems, the dominant driver of

hyporheic exchange is the distribution of head gradients,
established by stream bed topography, which drives advec-
tive flow into and out of the stream bed [Harvey and
Bencala, 1993]. In arctic streams, climate-driven permafrost
and river ice impact channel morphology and bed ice
conditions [Best et al., 2005]. Consequently, advective
hyporheic processes are likely controlled by ice-influenced
channel morphology and sediment conditions. Similar to
temperate streams, climate also dictates many of the phys-
ical conditions under which arctic stream morphologies
develop (e.g., snow-melt dominated hydrographs), except
that climate has also led to the development and dynamic
nature of the active-layer. Permafrost underlies an active-
layer of thawed sediment that develops and increases
downward (e.g., as much as 0.2 to >1.0 m in vegetated
tundra landscapes) during the summer thaw period from
May to September [Osterkamp and Romanovsky, 1999].
[4] When the streambeds thaw seasonally, there is a

potential for hyporheic exchange to occur. Recent sub-
stream thaw investigators [Bradford et al., 2005] observed
much greater depths of thaw under stream channels than
under the adjacent terrain, suggesting that streams cause
preferential thaw. Brosten et al. [2006], found that the
active-layer beneath low-energy streams (i.e., shallow
stream gradients) responded slowly to seasonal energy input
and maintained thaw depths longer throughout the late
season, whereas the seasonal thaw depths beneath high-
energy streams increased and decreased rapidly at the
beginning and end of the thaw season. Warming of the
arctic climate is expected to result in more persistent thaw
seasons causing thicker active-layer conditions and warm-
ing of surface waters [Osterkamp and Romanovsky, 1999].
Thus thaw layers under stream channels will likely deepen
and persist over longer periods of time under a warmer
arctic climate.
[5] Our goal was to characterize the current influence of

sub-stream thaw depth on hyporheic exchange dynamics in
arctic streams, as well as the influence of greater thaw
depths predicted under a warmer climate. Previous efforts
toward this goal were complicated by the presence of many
hyporheic system controlling variables (e.g., dynamic dis-
charges and active layers) [Zarnetske et al., 2007]. Conse-
quently, we have designed a modeling investigation to
distinguish the effects of thaw depth from channel mor-
phology. We used empirical results derived from tracer
experiments and measurements of sub-stream thaw, hydrau-
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lic, and channel morphology conditions to inform ground-
water flow and particle tracking models. These types of
models have been successfully used to investigate hypo-
rheic exchange elsewhere [e.g., Kasahara and Wondzell,
2003; Saenger et al., 2005]. Here we specifically assess
hyporheic flowpath extents and cumulative distributions of
residence times for simulated particles moving through the
hyporheic zone (CDRTs) under a variety of sub-stream thaw
conditions.

2. Methods

2.1. Study Site

[6] Two study streams, an alluvial and a peat-lined reach,
are located in the northern tundra foothills of the Brooks
Range, Alaska (68�380N, 149�380W) and are underlain by
continuous permafrost with a seasonally dynamic thaw
layer [Brosten et al., 2006]. The alluvial reach (AS) is
188 m long, with a cobble and sand bed, moderately steep
(0.7%), shallow, single-thread, pool-riffle morphology. The
peat-lined reach (PS) is 175 m long, with a shallow (0.03%),
deep and narrow, single-thread, beaded channel morpholo-
gy. The reaches are separated by <0.5 km and are in the
Kuparuk River drainage, which runs north to the Arctic
Ocean. These reaches represent the two dominant morpho-
logic types of headwater streams found in this region of the
Arctic (for more detail see Zarnetske et al. [2007] and
references therein).

2.2. Measurements

[7] Solute injection experiments (SIEs) were conducted
twice at each stream site during the summer of 2005.
Rhodamine WT (Turner Designs, Sunnyvale, CA), was
injected at a constant rate to the head of each study reach
until a stable in-stream tracer concentration was achieved at
the base of the reach, as determined by real-time, in-stream
monitoring with a field fluorometer (SCUFA, Turner
Designs).
[8] Prior to the SIEs, multilevel streambed sampler nests

were deployed in both reaches to collect subsurface water
[Greenwald, 2007]. Sampler nests were placed in the
dominant longitudinal channel morphologic units (e.g.,
riffle head). In total, 9 nests, each with 3 samplers at
staggered depths, were installed in AS, in each unit type -
riffle heads, riffle tails, and pools, to depths between 11 and
136 cm. PS had 9 nests, each consisting of two samplers, in
each unit type - run heads, run tails, and pools, to depths
between 10 and 42 cm (Table S1 of the auxiliary
material1). Tracer samples were collected in the surface
flow and from all subsurface samplers at regular intervals
throughout the SIEs. All samples were analyzed in a
laboratory with a 10-AU fluorometer (Turner Designs)
within 3 days of collection.
[9] Alluvial SIEs occurred on 18 June and 8 August and

PS SIEs occurred on 27 June and 11 August 2005. All four
SIEs were executed under low flow conditions. From the
tracer break through curve at each sampler, we computed
median observed arrival times, tMEDOBS,

2 as half the time

interval from the initial tracer arrival to the peak tracer
concentration for any given sampler location.
[10] We collected detailed thalweg surface water and bed

surface topography data in June 2005 for both reaches using
a Topcon (Model GTS-226) total station and standard
surveying methods with spatial resolution of x � 1 m, y �
1 m, z � 0.01 m. Stream sediment hydraulic conductivities
for each reach stream unit (n = 8 per unit) were deter-
mined with the Hvorslev falling-head slug method [Freeze
and Cherry, 1979].
[11] We used ground penetrating radar (GPR) profiles to

estimate the depth of thaw in and adjacent to both reaches.
Following the methods by Brosten et al. [2006], we col-
lected two-dimensional (2-D) GPR surveys across pool,
riffle, and run units at fixed cross-sections in both reaches.
These surveys provided estimates of reach-average thaw
depths for each stream unit.

2.3. Model Simulations

[ 1 2 ] The numer ica l groundwater f low model
MODFLOW was used to simulate 2-D flow in the stream
substrate. Our use of a 2-D longitudinal representation of
the stream is appropriate within the context of previous
modeling efforts [Harvey and Bencala, 1993; Kasahara and
Wondzell, 2003], which demonstrated that longitudinal dis-
continuities in the stream profile dominate hyporheic ex-
change in headwater streams. Furthermore, permafrost is
assumed to limit lateral exchange in the subsurface. The
model domain represents the longitudinal channel cross
section of the thalweg for each study reach (Figure 1). Each
model was partitioned into 0.5 m longitudinal columns with
an additional 10 m of simplified stream length (i.e., the bed
surface was linear and set equal to the measured streambed
surface gradient) added to the top and bottom of each reach
to reduce the influence of upstream and downstream bound-
ary conditions. The subsurface was divided into 7 layers,
with thicknesses appropriate to generate cells matching the
vertical resolution of discrete subsurface samplers. The
streambed elevations were imported from the topographic
survey. A constant head boundary condition, established by
the measured surface water elevations, was assigned to the
top layer in the models, and a basal no-flow boundary
condition simulated the presence of permafrost beneath the
lowest layer. The thawed layer thickness was defined by the
appropriate June or August GPR survey for riffles, runs, and
pools. For all sediment layers, anisotropy of hydraulic
conductivity (K) was incorporated such that KX (horizontal)
was an order of magnitude greater than KZ (vertical) [Freeze
and Cherry, 1979]. Groundwater and lateral surface inflow
or outflow was considered negligible and was not incorpo-
rated into the model design because these stream reaches are
effectively bound by permafrost (no observed thaw expan-
sion below the banks) and had negligible observed lateral
flow exchange. However, future observations of subsurface
dynamics may alter these model design assumptions, and
require the use of alternative models (e.g., a 3-D model
domain).
[13] Three distinct K zones (riffle head, riffle tail, and

pool) were longitudinally distributed along the AS model,
and only two K zones were incorporated into the PS model,
because field K values indicated no difference in the
hydraulic properties between run head and run tail units.

1Auxiliary materials are available in the HTML. doi:1029/
2007GL032049.

2The mathematical terms tMEDOBS, KX, KZ, tMEDSIM, AHZ*, AHZ,i /AHZ,max,

AHZ , ATD , i, L
�1 , L s �1 , m s� 1, and tHZ have been corrected here and

throughout. The article as originally published is online.
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MODFLOW coupled with MODPATH particle tracking
models were then calibrated by simulating water particle
transport time from observation cell to bed surface cells
(median arrival time of 40 particles, tMEDSIM). These
results were then compared to the observed tracer transport
time (median arrival time, tMEDOBS, defined in section 2.2)
for each sampler, using the mean empirical K values as
initial conditions (AS K = 0.016 m s�1 and PS K =
0.002 m s�1). Porosity for AS and PS models were 0.3
and 0.2, respectively. Each K zone value was varied until a
minimum root mean squared error between observed and
simulated travel times was achieved.
[14] In each calibrated model of June and August con-

ditions, the maximum allowable number of particles (16)
was assigned at the top of all uppermost sediment cells (i.e.
the stream bed surface). MODFLOW and MODPATH
simulations were then run to steady-state for June and
August models. The August models for both reaches were
modified to assess deeper thaw scenarios, because they
represent the maximum observed thaw depths for 2005.
The influence of different thaw depths was explored by
either compressing or expanding the thawed sediment layer
thickness above the permafrost. Eight different simulations
were run for each stream, ranging from 25–200% of the
observed August thaw depth condition.
[15] An inter-scenario and inter-site comparison of the

spatial hyporheic development of sub-channel thaw region
was conducted, where flowpaths that originated and termi-
nated at the streambed defined the hyporheic zone. For this

spatial hyporheic analysis, the dimensionless area of hypo-
rheic exchange, AHZ*, for each simulation (i) was deter-
mined as AHZ,i/AHZ,max, where AHZ is the measured
longitudinal cross-sectional area with hyporheic exchange
for a simulation, and AHZ,max is the maximum AHZ

calculated across all simulations for a reach (see Figure 1).
Furthermore, the ratio of AHZ,i to ATD,i, where ATD is the
longitudinal cross-sectional area of the thawed depth, facil-
itated both inter-scenario and -site evaluations of hyporheic
development.

3. Results

3.1. Field Conditions and Experiments

[16] The depths of thaw under both streams increased
from June to August. Under AS, the average thaw depths
were 1.21 m under riffles and 1.26 m under pools (29 June
2005). These thicknesses increased to 1.83 m under both
riffles and pools by 5 August 2005. Under PS, the average
thaw depth under the runs was 0.40 m on 28 June 2005 and
0.60 m on 4 August 2005, and under the pools thaw depth
increased from 0.68 to 0.97 m from June to August.
[17] The AS 18 June and 3 August 2005 injections

occurred for 2.63 and 2.33 hr, respectively, in-stream tracer
plateau conditions were 40.5 and 45.3 mg L�1, and the
measured discharges were 31 Ls�1 and 25 Ls�1, respec-
tively. The PS SIE injection periods were 6.00 and 9.77 hr
for 27 June and 11 August 2005, respectively, and had in-
stream tracer plateaus of 86.3 and 122.7 mg L�1, respec-
tively. Discharges in the PS were 24 L s�1 in June and 20 L
s�1 in August. Stream water temperatures differed <3.0�C
between injections for each reach.
[18] In both June and August, tracer penetration was

observed at greater depths in AS compared to PS with a
1.01 m maximum occurring in August. The maximum depth
of tracer observed in the peat-lined reach was 0.15 m during
the June SIE. Additionally, the observed mean arrival times,
tMEDOBS, beneath AS were generally much shorter (1980–
930 6 s ) t h a n b e n e a t h PS ( 8 3 70 – 19 , 4 5 8 s )
(Table S1).

3.2. Hyporheic Exchange Modeling

[19] For both AS SIEs, the highest KX values were
found in the riffle tail K zones (0.020 and 0.023 m s�1,
in June and August respectively, Table S2) and the lowest
KX values were identified for the pool zones (0.006 and
0.011 m s�1, in June and August respectively). In PS, the
highest KX values were simulated for the run zones (0.0045
m s�1 for both June and August), while the pool zone KX

were the lowest (0.004 and 0.003 m s�1, in June and
August respectively). Accordingly, the greatest tMEDSIM

(21,062 s) occurred at a PS pool sampler, and the lowest
tMEDSIM (1092 s) occurred at an AS riffle head sampler
(Table S1).
[20] The forward MODPATH simulations for both sites

represent 10 days (864,000 s) of particle transport time. The
longitudinal hyporheic flowpaths for AS were longer and
more continuous across the length of the reach than those in
PS (Figure 1). The AS flowpaths primarily deepened with
increased thaw depth. However, with deepening flowpaths,
some flowpaths also elongated (e.g., between June and
August AS simulations some flowpaths elongated as much
as 74.5 m). In the peat-lined reach, minor elongation of

Figure 1. Schematics of (a) the alluvial (AS) and (b) the
peat-lined (PS) reaches for the August model domain and
design showing stream surface elevation and simulations of
the hyporheic particle flow paths and area (AHZ). For
brevity, only the August cases are presented. Note: vertical
exaggeration is 10:1, dark-grey region is permafrost, and
light-grey is thawed substrate (ATD). The channel morpho-
logic units of the domain are shown by ‘‘P’’ for pools and
‘‘R’’ for riffles (Figure 1a) or runs (Figure 1b). Inset aerial
photos have dots signifying the top and bottom of a study
reach, and cross-hairs representing hydraulic conductivity
measurement locations.

L02501 ZARNETSKE ET AL.: HYPORHEIC EXCHANGE IN ARCTIC STREAMS L02501

3 of 5



hyporheic flowpaths occurs as a result of deeper penetration
in the August model (Figure 1). Additionally, the majority
of the simulated flowpaths in PS for both models were
located at the top of the reach and at run locations where
heads decreased longitudinally. Hydraulic head gradients
were more varied along AS than PS. The deepest hyporheic
flowpaths mimic the topography of the thaw extent. Where
the hydraulic head gradient was sufficient, some flowpaths
in all simulations penetrated the full thickness of the thawed
subsurface.
[21] The simulated CDRTs are very different between the

two reaches for the June and August forward simulations.
Of the particles released in the June AS model, 98.4% were
simulated to return to surface flow or pass out of the bottom
of the reach (i.e., boundary conditions set to capture
released particles), and all particles returned to the stream
in the August model (Figure 2). However, only 71.5 and
66.8% of the hyporheic particles for June and August PS
models, respectively, return to the stream within the 10 day
simulation. The unaccounted for hyporheic particles were

those still in the subsurface at the end of the simulation. The
median simulated hyporheic residence time for all particles
in a reach, tHZ, was also calculated. In PS, the August tHZ
value was �3� greater than the June tHZ value (40,440
and 14,700 s, respectively). However, the AS tHZ values
were comparable between June and August simulations
(20,280 and 14,460 s, respectively).
[22] Across the broader range of thaw depths, the value of

tHZ increased with thaw thickness in the AS reach but
decreased in the PS reach with greater thaw (Figure 2). The
CDRTs for each thaw scenario, show that the AS late-time
distribution continued to account for larger portions of the
simulated particle residence times as the thaw increased
from 25 to 200% of the August thickness. However, for the
125–200% thaw depth scenarios in AS, the cumulative
percentage of particles with residence times >10,000 s did
not differ significantly. Likewise, the CDRTs of PS collapse
upon one another, but across a broader range of thaw depths
(100 to 200%). Additionally, the PS CDRTs differ less at
times <10,000 s than in AS. Independent of the thaw
thickness, approximately half of the simulated particle
transport times are <68,700 s in PS, while in AS the same
proportion of particles had transport times <22,080 s.
Furthermore, all simulations with greater than 75% thaw
in AS had particle residence times <10 d (i.e., all particles
captured). There were no PS scenarios where all particles
had residence times <10 d. The greatest percentage of
particles captured in PS occurred at the shallowest thaw
scenario (25% thickness).
[23] The spatial analysis of simulated flowpaths for each

site showed that the relative shifts in AHZ* were similar
for thaw scenarios 150 to 200% (Figure 2). However,
AHZ* values for the AS reach had a larger range of
inter-scenario variation for simulations up to 150% thaw.
Between sites, hyporheic occupation (i.e., AHZ:ATD) of the
AS thawed depth was much greater than that of the PS
reach, ranging from 0.48 for the 200% scenario up to 0.81
for the 50% thaw scenario (Figure 2). The PS hyporheic
occupation ranged from 0.19–0.37 (200% and 25% thaw
scenario, respectively).

4. Discussion and Conclusions

[24] At 100% thaw depth condition in August, the PS
hyporheic flowpaths and transport rates are not limited by
permafrost. When the morphologic and surface water char-
acteristics are held constant, differences in thaw depth had a
limited effect on the hyporheic flow conditions. In all thaw
thickness scenarios beyond the conditions observed in
August, there was little change in the CDRT shape and
the portion of thaw occupied by hyporheic exchange
(Figure 2). Low-energy, peat-lined streams of the Arctic
have hyporheic zones that are morphology-limited through-
out most of the year (i.e., the extent of hyporheic flow is
limited by the hydraulic gradients established by surface
flows, longitudinal bed topography, and sediment K values).
[25] In the AS reach we observed that across thaw

scenarios the majority of the residence times increase with
greater thaw and that a portion of the flowpaths maintain an
interface with the permafrost boundary, which suggests that
permafrost might limit hyporheic dynamics in some cases.
However, in both the PS and AS reaches, the rates of

Figure 2. (a) Cumulative distribution of residence times
(CDRTs) of simulated hyporheic particle for thaw scenarios
in the alluvial reach (AS) and peat-lined reach (PS). (b)
Comparison of inter-scenario and -site median simulated
hyporheic residence time for all reach particles, tHZ
(‘‘time’’ labeled values), and evaluations of simulated
hyporheic occupation (‘‘occ’’ labeled values, the ratio of
AHZ to ATD as defined in section 2.3).
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change in hyporheic residence time and extent begin to
diminish and become asymptotic under most of the thicker
thaw scenarios. For AS, this active-layer condition occurs at
approximately 125% of the August thaw thickness as shown
by the collapse of the CDRTs onto one distribution and the
minimal rate of change for tHZ and AHZ:ATD for condi-
tions beyond 125% (Figure 2). The same threshold obser-
vations were made for PS, but they occurred at the 75%
thaw scenario. Both streams were similar in that across
thaw thicknesses, most of the exchange occurs at relatively
short residence times. This is consistent with simulations of
hyporheic exchange in both smaller [Wroblicky et al., 1998]
and larger [Saenger et al., 2005] streams. The difference
between the two stream hyporheic particle recoveries
(Figure 2) is a result of the different hydraulic and perma-
frost properties of each stream system. For example, relative
to AS, fewer particles are recovered over the simulation
period in PS because particle transport times are increased
by the low K values, weak hydraulic head gradients, and
tortuous flowpaths created by a irregular permafrost bound-
ary geometry.
[26] These two streams represent end-members along a

permafrost-hyporheic continuum that is bounded by the
extremes of morphology-limited and permafrost-limited
systems. Within this continuum, most streams will be
operating under both limitations, but at different periods
and durations of the thaw season. As reported by Brosten et
al. [2006] and Zarnetske et al. [2007], the mean thaw
thickness under most headwater streams in the Arctic
increases very rapidly at the beginning of the thaw season
and appears to reach a stable thickness that persists through-
out the majority of the thaw period. In all stream cases, this
stable depth was achieved by August. Thus, the conditions
we observed in August likely represent the near-equilibrium
state created under the balance of prevailing surface flow,
bed morphology, and permafrost conditions, as evidenced
by the minor changes in the CDRTs at 100%+ thaw
scenarios (Figure 2).
[27] This investigation illustrates that morphologic and

hydraulic conditions (i.e., surface and groundwater flow
properties) set the potential for hyporheic flow, and that no-
flow conditions such as permafrost (or similarly, shallow
subsurface bedrock or very low conductivity sediments) can
constrain this hyporheic flow potential. The modeling also
indicates that, if the established hyporheic flow conditions
are insufficient to create an interface with an underlying no-
flow condition and there is no influence from a larger
groundwater aquifer, the hyporheic exchange will be inde-
pendent of the no-flow features.
[28] Ultimately, to best predict the implications of a

warming climate on hyporheic exchange in streams under-
lain by permafrost, we will need to forecast how the
morphology of the channels will adjust to the climate driven
perturbations. This understanding is beyond the scope of
this investigation. However, in the absence of this complete
understanding, we have established that without changes to
the stream surface morphology, a deepening subsurface

thaw will only affect hyporheic exchange until a threshold
depth is achieved, and that this depth is primarily deter-
mined by the hydraulic head gradients imposed by the
dominant morphology of the stream.
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