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Results 
 

 Compare stability of superlattice and disordered  

phases 

 Calculate electronic density of states for the stable 

phases 

 Determine methodology for estimating electrical 

conductivity properties 
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Vienna ab-initio simulation package (VASP) has been performed to 

optimize geometry and structure. Due to the ferromagnetic natures of 

Fe and Co, we have supplied initial magnetic moments of 4µB and 1µB, 

respectively. Additional input parameters include a conjugate electronic 

minimization algorithm and a 400 eV cutoff energy for plane-wave basis 

set. In order to study electronic properties, DFT+U has been used to 

account for d and f orbitals of certain elements. 

 Increasing disorder yields lattice parameters and 

bond lengths similar to experimental values. 

 Total energy minimization calculations indicate 

that disordered phase of Pr 2(FeCo)O6 is more stable 

than its superlattice, agreeing well with experimental 

observation. 

 Overlapping peaks in the DOS plot suggest 

bonding covalency in the R2(FeCo)O6 structure. 

Our electronic structure calculations suggest that 

Pr 2(FeCo)O6 is semiconducting with an electronic 

band gap of 0.43 eV. 

Computational modeling techniques have been used 

to provide detailed insights into the structure-

property relationships of materials. We have 

collaborated with the National Institute of Standards 

and Technology (NIST) to develop various perovskite 

compounds with desired thermoelectric properties. 

We have used density functional theory-based 

approaches to study structural stability and electrical 

properties of R2(FeCo)O6 perovskite compounds       

(R = Pr, Nd, Sm, Eu and Gd), for which Fe and Co 

randomly occupy the B-site. Superlattice and locally 

disordered phases have been compared through a 

total energy minimization approach.  
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Below are theoretical lattice parameters, cell volumes, and bond lengths 

for Pr2(FeCo)O6 options as well as experimental values from a TEM.  The 

local density of states (LDOS) is shown for stable disordered structure II. 

 

 Perovskite: any material with the same type of 

crystal structure as calcium titanate (CaTiO3) 

 Expand perovskite unit cell: the center atom 

alternates between two different atoms [1] 

Perovskite Compounds 

Material Application: Thermoelectrics 

 

Initial Guess 
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Calculate Effective Potential 

𝑣𝑒𝑓𝑓 𝑟 = 𝑉𝑒𝑛 𝑟 +  
ρ(r′)

|𝑟 − 𝑟′|
𝑑𝑟′ + 𝑉𝑥𝑐[ρ r ] 

 

Solve Kohn-Sham Equations 
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Evaluate the Electron Density & Total Energy 

𝜌 𝑟 = |Ψ𝑖 𝑟 |
2 𝐸𝑡𝑜𝑡 𝜌 𝑟 =

𝑖
… Converged? 
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 Thermoelectric  (TE) effect:  direct conversion 

of temperature differences to electric voltage  

 TE figure of merit: ZT = S2σT/κ, where S is the 

Seebeck coefficient, σ is the electrical conductivity, T 

is the temperature and κ is the thermal conductivity 
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 TE material uses: 

power generation 

and refrigeration 

 Factors affecting 

TE advancement: 

cost, thermal stability, 

and toxicity [2] [3] 

Pr2(FeCo)O6  Lattice Parameters 
 

a (Å) b (Å) c (Å) Volume (Å3)  

Experimental 5.466 7.702 5.443 229.17 

Superlattice 

     Structure I 5.528 7.567 5.282 220.96 

     Structure II 5.642 7.499 5.209 220.36 

     Structure III 5.533 7.563 5.301 221.81 

Disordered 

     Structure I 5.493 7.487 5.462 224.64 

     Structure II 5.614 7.495 5.463 229.87 

Pr2(FeCo)O6  Bond Lengths (Å) 
 

Pr-O4 Pr-O4 Pr-O5 Pr-O5 Pr-O5 Co/Fe-O4 Co/Fe-O5 Co/Fe-05 

Experimental 2.370 2.484 2.540 2.790 2.369 1.970 1.986 1.978 

Superlattice 

     Structure III 2.284 2.350 2.414 2.634 2.414 2.000 2.037 2.033 

Disordered 

     Structure I 2.282 2.282 2.406 2.671 2.406 1.963 2.027 1.999 

     Structure II 2.293 2.275 2.418 2.647 2.422 1.976 2.084 2.051 

Superlattice: 

Disordered: 

Structure I Structure II Structure III 

Structure I Structure II 


