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This work demonstrates that prostate tumour progression in vivo can be analysed by using solutions of a mathematical model sup-
plemented by initial conditions chosen according to growth rates of cell lines in vitro. The mathematical model is investigated and
solved numerically. Its numerical solutions are compared with experimental data from animal models. The numerical results confirm the
experimental results with the growth rates in vivo.
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1. Introduction

The purpose of this paper is to analyse the C3(1)/Tag-Pr cell lines introduced in [1], [2], [3] and to develop
a mathematical model which has a potential to describe the growth rates of Pr-cell lines in vivo. We have
shown that the numerical solutions of the mathematical model can be used to predict the behaviour of
the cancer cell populations in vivo.

Mathematical models of cancer growth have been the subject of research activity for many years. The
models of [4–8] have used DNA content as a measure of the generic term ’cell size’ to investigate the
dynamics of the human cell cycle. For earlier studies on cell cycle dynamics, see [9–13]. Models which
describe interactions between cancer cells and immune systems have been proposed e.g. in [14–16]. Another
mathematical model for tumour growth has been recently studied in [17]. This model is formulated in radial
coordinates and corresponds to brain cancer progression after surgical therapy. Different initial conditions
explored in [17] correspond to a small remnant of tumour tissue left after surgical resection.

In this paper we have explored the model of [14] for the analysis of the C3(1)/Tag-Pr cell lines dynamics.
The model is composed of five partial integro-differential equations. We supplement the model equations
by different initial conditions which are chosen according to the experimental data described in [3]. The
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different Pr-cell lines in vitro from [3] are used as initial values for the model. Our goal is to solve the
resulting initial-value problems and analyse their solutions, which show different progressions of tumours.

We construct numerical solutions for the initial-value problems and compare the computed approxima-
tions with the C3(1)/Tag cell lines in vivo, which are described in [3]. The approximations show a good
agreement between the experimental data of [3] and the data predicted by the model. They also show that
the cancer progression is larger in the cases of larger initial values (larger number of cancer cells injected)
than in the cases of smaller initial values imposed as the initial conditions in the model. This confirms the
correlation (illustrated in [3]) between the in vitro growth characteristics of the cell lines and the in vivo

growth of tumours.
The organization of the paper is the following. Section 2 describes in vitro cell growth in flasks and in

vivo cell growth in C3(1)Tag Mice. Then the mathematical model of the cancer growth is described in
Section 3. Numerical approximations to the solutions of the model are constructed in Section 4. Results of
our numerical experiments are presented and compared with experimental data in Section 5. Concluding
remarks and future goals are described in Section 6.

2. In vitro cell growth in flasks and in vivo cell growth in C3(1)Tag Mice

Over 220 000 men in the USA are diagnosed with prostate cancer every year [18]. Of these, 26 000 will
succumb to the disease as a result of widespread metastasis to secondary organs, primarily the bones, lungs
and liver [19]. These statistics suggest the need for improved early detection techniques and treatment
options.

Prostate cancer progression is characterized by distinct morphological characteristics signifying various
stages. PIN, prostatic intraepithelial neoplasia, is believed to be the precursor lesion to prostate adeno-
carcinoma [20]. Inevitably, invasive adenocarcinoma will enter into systemic circulation and potentially
develop secondary tumours as metastases. These highly aggressive, metastatic cells are the source of many
complications associated with cancer in addition to the ultimate cause of death [21]. Good model systems
are needed that allow for an increased understanding of the molecular alterations occurring during human
prostate tumour progression.

The C3(1)/Tag transgenic mouse model of prostate cancer was developed by expressing the transforming
sequences of the SV40 large T antigen (SV40 Tag) in tissues utilizing the regulatory sequences of the rat
steroid binding protein C3(1) ( [22], [23]). Prostates of transgenic mice develop low and high grade PIN
from 2−7 months of age and adenocarcinoma after 6 months [24]. Based upon the predictable progression
of tumour development in this model, a series of cell lines from C3(1)/Tag mice at different cancer stages
were established, including the low-grade PIN cell line, Pr111 [1] and the high-grade PIN cell line, Pr117 [3].
Pr14 was established in tissue culture from a 6 month old C3(1)/Tag mouse prostate and is an aggressive
adenocarcinoma cell line [2]. Nude mouse studies involving the subcutaneous injection of Pr14 cells resulted
in a rare lung metastasis. These lesions were isolated and established in culture as novel metastatic cell
lines, Pr14C1 and Pr14C2 [3].

In both in vitro and in vivo analyses, the five cell lines could be distinguished by their growth charac-
teristics. Using an in vitro proliferation assay, early passage (5-10) cells were cultured on collagen-coated
flasks (Corning, NY) in mammary epithelial growth media (MEGM) (Bio-Whittaker, Walkersville, MD)
supplemented with 2% fetal bovine serum (Invitrogen, Carlsbad, CA) and 4 nM of the synthetic androgen
mibolerone (Sigma, St. Louis, MO) [3]. 104 cells/well were grown for 5 days in 6-well plates, trypsinized,
and counted daily using a Neubauer hemacytometer chamber (Hausser Scientific, Horsham, PA). The low-
grade PIN cell line Pr111 had the lowest proliferation rate, Pr117, Pr14, and Pr14C2 had intermediate
growth rates, and the metastatic Pr14C1 had the fastest rate of proliferation [3] (see Fig. 1).

The in vivo growth rate of the cell lines correlated well with the in vitro results. 106 cells/0.2ml saline
were subcutaneously injected into 5 − 6 month old syngeneic C3(1)/Tag male mice [3]. Only three of
five mice injected with Pr111 cells developed small tumours (< 200 mm3) 10 − 11 weeks after injection.
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Figure 1. Morphological features and growth rates of C3(1)/Tag cell lines. Top and middle panels, histology of the same type of prostate
lesion from which the C3(1)/Tag cell lines were isolated and morphological features of the cells in culture. A, LG-PIN-like lesions in the prostate
of a 3-4-month-old C3(1)/Tag mouse. D, Pr111 cells in culture, isolated from a prostate with LG-PIN-like lesions. B, HG-PIN-like lesions in the
prostate of a 5-month-old C3(1)/Tag mouse from which the Pr117 line is derived. E, Pr117 cells in culture. C, adenocarcinoma in the prostate

of a C3(1)/Tag mouse. F, morphology of Pr14 cells in culture isolated from a C3(1)/Tag mouse adenocarcinoma. Cells are small and lack
cytoplasm processes compared with Pr111 and Pr117. Pr14C1 and Pr14C2 cells were isolated from lung metastasis found in nude mice after

injection of Pr14. G, Pr14C1 cells in culture. H, growth rates of Pr-cells line in vitro. Pr111 has the lowest rate of proliferation, whereas Pr14C1
has the highest rate of proliferation, with the other cells lines having intermediate rates. I, growth rates in vivo correlate with in vitro results.

Injection of all of the other cell lines produced large tumours that grew rapidly in five of five mice between
2 and 6 weeks after injection. Pr14C1 cells were the most aggressive [3]. These cell lines establish a model
system with a cell line of low tumourigenicity (Pr111), cell lines with intermediate tumourigenicity (Pr117,
Pr14, Pr14C2), and a cell line with high tumourigenicity (Pr14C1).

3. Mathematical model

We follow the idea of [14] and investigate the development of cancer cells by means of mathematical
equations. As in [14] we denote by

fi(t, u), fi : [0,∞) × [0, 1] → R+, i = 1, . . . , 6,
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the distribution density of the i-th population with activation state u ∈ [0, 1] at time t ≥ 0. Moreover, let

ni(t) =

∫ 1

0
fi(t, u)du, ni : [0,∞) → R+, i = 1, . . . , 6, (1)

be the concentration of the i-th cells at time t ≥ 0. Here, the subscript i = 1 refers to the cancer cells (CCs).
The other five populations described in our model are the helper T cells (Th), denoted by the subscript
i = 2, the cytotoxic T lymphocytes (CTLs), denoted by the subscript i = 3, the antigen presenting cells
(APCs), denoted by the subscript i = 4, the antigen-loaded APCs ([Ag-APC]), denoted by the subscript
i = 5, and the cells of the host environment (HE), denoted by the subscript i = 6.

Here, the activation state of a given CC denotes the probability of recognition of this CC by APCs. The
higher the probability, the higher is the possibility of the immune system to perform effective destruction
of the tumour cell. On the contrary, if the activation state of a CC is small (u ≈ 0) then the CC is
”invisible” for the APCs, e.g. due to antigenic modulation [25] (the disappearance of detectable tumour-
specific antigens from the surface of the CC). Therefore, the smaller the activation state of a CC, the more
dangerous is the tumour cell.

In our model, the activation state of a given CTL is defined as the probability of the destruction of
a recognized CC after the interaction with the given CTL. The population of Th cells is involved in the
activation and the proliferation of immune cells (e.g. APCs, CTLs, Th cells, B cells) by the production and
the secretion of cytokines leading to the generation and the activation of immune cells [26]. In our model,
the activation state of a given Th cell is defined as the quantity of cytokines produced by the Th cell after
its interaction with antigen-loaded APC, normalized with respect to the maximal possible production of
cytokines.

As a simplification of the biological reality we admit the following assumptions. For the populations
denoted by i = 4, 5 and 6, we neglect the possible change of their activity and assume that only some
fixed state of activation (say u = 0.5) is possible. The distribution function f6 of the HE is assumed to be
constant in time. We take into account only binary cell interactions which are supposed to be homogeneous
in space and without time delay. These encounters may change the activation state of cells as well as create
or destroy cells.

Our model describes the cellular immune response against cancer [25]. The following interactions are
taken into account. We assume that the interactions between CCs and HE lead to the production of new
CCs as well as to decreasing the possibility of the immune system to recognize the CCs (thus they become
more dangerous). The production of new cancer cells is assumed to be proportional to the number of
existent CCs. The respective gain term is

p
(1)
16

1
∫

0

f1(t, v) dv .

The activation state of CCs decreases and this change of activity is described by the term

t
(1)
16

(

2u

∫ 1

u

f1(t, v)dv − u2f1(t, u)

)

.

Specific Th1 cells and CTLs are involved in the elimination of cancer cells. We assume that the number
of destroyed CCs is proportional to the activation states of Th cells and CTLs and the respective loss



October 26, 2007 17:53 Computational and Mathematical Methods in Medicine cor6˙2

Correlation between animal and mathematical models for prostate cancer progression 5

terms are

d1if1(t, u)

1
∫

0

vfi(t, v) dv , i = 2, 3, u ∈ [0, 1] ,

see [14] for more details. Thus we obtain the equation

∂f1

∂t
(t, u)=p

(1)
16

∫ 1

0
f1(t, v)dv + t

(1)
16

(

2u

∫ 1

u

f1(t, v)dv − u2f1(t, u)

)

−d12f1(t, u)

∫ 1

0
vf2(t, v)dv − d13f1(t, u)

∫ 1

0
vf3(t, v)dv

(2)

for the time evolution of the CCs.
In our model, the time evolution of the populations i = 2 and 3 depends on the following factors: the

constant production of T cells (Th cells and CTLs) by HE, the generation of T cells as well as the increasing
of the activation states of Th cells and CTLs due to the interactions between Th cells and antigen-loaded
APCs, the destruction of T cells resulting from their interactions with cancer cells, the natural death of T
cells and the possible inlet of T cells.

There are observations that the HE constantly produces T cells and APCs [26]. The activity of newly
generated T cells is small and it increases during their development and selection [25]. We model the
process of the production of Th cells and CTLs by the gain terms

p
(i)
16 (1 − u), i = 2, 3.

The interactions between Th cells and antigen-loaded APCs induce a generation of new Th cells and
CTLs. We assume that the rate of this production is proportional to the activation states of Th cells and
that the probability of creation of very active T cells is less than the probability of the creation of less
active T cells. The respective gain terms are

p
(i)
25 (1 − u)n5(t)

1
∫

0

vf2(t, v) dv , u ∈ [0, 1], i = 2, 3.

The interactions between Th cells and antigen-loaded APCs lead to an increase in the activation states
of Th cells and CTLs. We assume that the change of the activity of Th cells depends on the number of
antigen-loaded APCs and is described by the term

t
(2)
25 n5(t)

(

2

∫ u

0
(u−v)f2(t, v)dv−(1−u)2f2(t, u)

)

.

We assume that the change of the activity of CTLs depends on the number of Th cells and is described
by the term

t
(3)
23

(

2

∫ u

0
(u−v)f3(t, v)dv−(1−u)2f3(t, u)

)

∫ 1

0
f2(t, v)dv.

The interactions between T cells and CCs may result in apoptosis of Th cells and CTLs [26]. We assume



October 26, 2007 17:53 Computational and Mathematical Methods in Medicine cor6˙2

6 Z. Jackiewicz et al.

that the respective loss terms for the populations i = 2 and 3 are

di1fi(t, u)

1
∫

0

f1(t, v) dv , i = 2, 3.

The natural death of Th cells and CTLs is described by the terms

di6fi(t, u), i = 2, 3,

and the possible influx of Th cells and CTLs is described by

Si(t, u), i = 2, 3.

In this way, we obtain

∂f2

∂t
(t, u) = p

(2)
16 (1 − u) + p

(2)
25 (1 − u)n5(t)

∫ 1

0
vf2(t, v)dv − d21f2(t, u)

∫ 1

0
f1(t, v)dv

−d26f2(t, u) + t
(2)
25 n5(t)

(

2

∫ u

0
(u−v)f2(t, v)dv−(1−u)2f2(t, u)

)

+S2(t, u)
(3)

and

∂f3

∂t
(t, u) = p

(3)
16 (1 − u) + p

(3)
25 (1 − u)n5(t)

∫ 1

0
vf2(t, v)dv − d31f3(t, u)

∫ 1

0
f1(t, v)dv

+t
(3)
23

(

2

∫ u

0
(u−v)f3(t, v)dv−(1−u)2f3(t, u)

)

∫ 1

0
f2(t, v)dv − d36f3(t, u) + S3(t, u)

(4)

for the time evolution of the populations i = 2 and 3, respectively.
For the time evolution of the 4-th population of APCs, we assume their constant production by HE

described by the term p
(4)
16 as well as production of APCs due to the interactions between Th cells and

antigen-loaded APCs with a rate proportional to the state of activity of Th cells described by the term

p
(4)
25 n5(t)

∫ 1

0
vf2(t, v)dv.

A part of APCs is loaded with cancer antigens due to the interactions between APCs and CCs [25]. We
assume that the concentration of new antigen-loaded APCs is proportional to the state of activity of CCs
and is described by the term

b
(5)
14 n4(t)

∫ 1

0
vf1(t, v)dv.

We note that this term is a loss term for the fourth population of APCs and it is a gain term for the fifth
population of [Ag-APCs]. Taking into account also the natural death process of APCs described by the
term

d46n4(t),
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we obtain the equation

d

dt
n4(t) = p

(4)
16 + p

(4)
25 n5(t)

∫ 1

0
vf2(t, v)dv − b

(5)
14 n4(t)

∫ 1

0
vf1(t, v)dv − d46n4(t) (5)

for the time evolution of the population i = 4.
We also consider the possible source term S5(t) of antigen-loaded APCs, the natural death of [Ag-APCs]

described by the term

d56n5(t)

as well as their destruction by cancer cells described by the term

d51n5(t)

∫ 1

0
f1(t, v)dv.

This leads to the equation

d

dt
n5(t) = b

(5)
14 n4(t)

∫ 1

0
vf1(t, v)dv − d51n5(t)

∫ 1

0
f1(t, v)dv − d56n5(t) + S5(t) (6)

for the time evolution of the population i = 5.
The entire model (2)-(6) for the interacting populations is a system of partial integro-differential equa-

tions. Note that (2)-(6) is not complete and has to be supplemented by initial conditions. We apply the
experimental data of [3] for the initial conditions and choose different Pr-cell lines in vitro as initial val-
ues. The values of the parameters of the model can be found by using experimental data and numerical
approximations to the solutions of (2)-(6). The approximations are constructed in Section 4.

4. Approximate solution of the model

The purpose of this section is to construct a numerical solution to the concentrations of cells n i(t), i =
1, . . . , 5, at any time variable t > 0. The concentrations n1(t), n2(t), and n3(t) can be computed from (1)
by using the functions f1(t, u), f2(t, u), and f3(t, u). To compute numerical approximations to the values
f1(t, u), f2(t, u), f3(t, u), n4(t), and n5(t), we discretize the system (2)-(6) with respect to the activation
state u ∈ [0, 1] by applying the uniform grid-points

ui = i∆u, i = 0, . . . , N,

where N is a positive integer and ∆u = 1/N . Then the values f1(t, u), f2(t, u), and f3(t, u) in (2)-(6) can
be replaced by their approximations

fj(t, ui) ≈ fj,i(t), j = 1, 2, 3, (7)

at the state grid-points ui ∈ [0, 1]. Similarly, the values S2(t, u) and S3(t, u) can be replaced by the
approximations

Sj(t, ui) ≈ Sj,i(t), j = 2, 3. (8)
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For every t > 0 and every ui ∈ [0, 1] with i = 0, . . . , N , we apply the approximations (7) for quadrature
formulas to approximate the integrals:

∫ 1

0
fj(t, v)dv ≈ QN

0

[

fj(t, v)
]

, j = 1, 2,
∫ 1

0
vfj(t, v)dv ≈ QN

0

[

vfj(t, v)
]

, j = 1, 2, 3,
∫ 1

ui

f1(t, v)dv ≈ QN
i

[

f1(t, v)
]

,
∫ ui

0
(ui − v)fj(t, v)dv ≈ Qi

0

[

(ui − v)fj(t, v)
]

, j = 2, 3.

(9)

The approximations in (9) represent arbitrary quadratures. For example, in Section 5, the values

QN
0

[

fj(t, v)
]

, QN
0

[

vfj(t, v)
]

, QN
i

[

f1(t, v)
]

, and Qi
0

[

(ui − v)fj(t, v)
]

are computed by the composite trape-

zoidal rule.
The approximations (7), (8), and (9) applied to the partial integro-differential system (2)-(6) result in

the following system of ordinary differential equations:











































































































df1,i

dt
(t) = p

(1)
16 QN

0

[

f1(t, v)
]

+ t
(1)
16

(

2uiQ
N
i

[

f1(t, v)
]

− u2
i f1,i(t)

)

− d12f1,i(t)Q
N
0

[

vf2(t, v)
]

−d13f1,i(t)Q
N
0

[

vf3(t, v)
]

df2,i

dt
(t) = p

(2)
16 (1 − ui) + p

(2)
25 (1 − ui)n5(t)Q

N
0

[

vf2(t, v)
]

− d21f2,i(t)Q
N
0

[

f1(t, v)
]

− d26f2,i(t)

+t
(2)
25 n5(t)

(

2Qi
0

[

(ui−v)f2(t, v)
]

−(1−ui)
2f2,i(t)

)

+S2,i(t)

df3,i

dt
(t) = p

(3)
16 (1 − ui) + p

(3)
25 (1 − ui)n5(t)Q

N
0

[

vf2(t, v)
]

− d31f3,i(t)Q
N
0

[

f1(t, v)
]

+t
(3)
23

(

2Qi
0

[

(ui−v)f3(t, v)
]

−(1−ui)
2f3,i(t)

)

QN
0

[

f2(t, v)
]

− d36f3,i(t) + S3,i(t)

dn4

dt
(t) = p

(4)
16 + p

(4)
25 n5(t)Q

N
0

[

vf2(t, v)
]

− b
(5)
14 n4(t)Q

N
0

[

vf1(t, v)
]

− d46n4(t)

dn5

dt
(t) = b

(5)
14 n4(t)Q

N
0

[

vf1(t, v)
]

− d51n5(t)Q
N
0

[

f1(t, v)
]

− d56n5(t) + S5(t)

(10)

The equations in (10) are solved in Section 5. The numerical solutions fj,i(t), with j = 1, 2, 3 and
i = 0, . . . , N , are then used to compute the approximations to the functions n1(t), n2(t), and n3(t). The
approximations are computed from

nj(t) ≈ QN
0

[

fj(t, v)
]

, j = 1, 2, 3. (11)

5. Numerical experiments

The purpose of this section is to solve system (10) and compare its solutions with the C3(1)/Tag cell lines
and their growth characteristics in vivo presented in [3], Fig. 1I (see Fig. 1). System (10) is not complete
and needs to be supplemented by initial conditions. We apply the C3(1)/Tag cell lines in vitro presented
in [3], Fig. 1H (see Fig. 1) as the initial values for (10).

The composite trapezoidal rule is applied to the approximations (9) and (11). The equations in (10) are
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solved by the code ode15s from the Matlab ODE suite [27]. The numerical solutions of (10) are computed
with AbsTol = 10−6 and RelTol = 10−2. The approximations to f1,i(t), with i = 0, . . . , N , are then applied
to (11).

The computed approximations to n1(t) are presented in Fig. 2(b). For comparison, the experimental
data from [3, Fig. 1I] are given in Fig. 2(a). The experimental and numerical data illustrate the C3(1)/Tag
cell lines and their growth characteristics in vivo.

(a) Experimental data (b) Predicted data
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Figure 2. Experimental versus predicted data.

Fig. 2 indicates that the model describes accurate growth characteristics of the Pr-cell lines in vivo.
The numerical solutions presented in Fig. 2(b) illustrate the in vivo tumour growth rates of the cell lines
Pr111, Pr117, Pr14, Pr14C2, and Pr14C1. The Pr111 cells show low tumourigenicity, while the Pr117,
Pr14, and Pr14C2 cells show intermediate tumourigenicity, and the Pr14C1 show high tumourigenicity.

The numerical solution for the growth rate of the cell line Pr111 is computed from the model (10)
supplemented by the smallest initial value (the smallest in vitro rate of proliferation) indicated in [3,
Fig. 1H] (see Fig. 1). Therefore, the rate of growth indicated in Fig. 2(b) for Pr111 is the smallest (the
solid line close to the time axis). On the other hand, the numerical solution for the growth rate of the cell
line Pr14C1 is computed from (10) with the largest initial value (the largest in vitro rate of proliferation)
indicated in [3, Fig. 1H] and the rate of growth shown in Fig. 2(b) for Pr14C1 is the largest.

The numerical solutions for the growth rates of Pr117, Pr14, and Pr14C2 are presented in Fig. 2(b)
by the dotted, dash-dotted, and dashes lines, respectively. These numerical solutions are computed from
the model (10) supplemented by the initial values chosen from [3, Fig. 1H] for Pr117, Pr14, and Pr14C2,
respectively. These initial values are intermediate between the initial values for Pr111 and Pr14C1 and the
corresponding numerical solutions for Pr117, Pr14, and Pr14C2 are intermediate between the numerical
solutions of Pr111 and Pr14C1.

The numerical results presented in Fig. 2(b) confirm the experimental results of [3] and show that the
in vitro growth characteristics of cell lines correlate well with the in vivo growth of tumours.

6. Concluding remarks

We have presented a correlation between numerical and experimental results. The numerical results have
been obtained by solving a system of partial integro-differential equations. Growth rates of prostate cancer
cell lines in vitro have been used as initial values for the initial conditions supplementing the model
equations. The numerical approximations to the solutions of the resulting model have shown a good
agreement with in vivo growth of tumours. Different kinds of tumourigenic cell lines have been illustrated by
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the numerical solutions of the mathematical model. The numerical results have confirmed the experimental
results by showing that growth rates in vivo correlate with growth rates in vitro.

Our future work will address an efficient algorithm for finding precise parameter values for the model
equations. For this algorithm, we will adopt our method presented in this paper. The method will be used
to compute numerical solutions for the model with different parameter values. The numerical solutions
will then be compared with the experimental data to compute their errors. In order to obtain the model
outputs as close as possible to the experimental data, we will minimize the sum of the squared errors.
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