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METHODOLOGY ARTICLE Open Access

GenHtr: a tool for comparative assessment of
genetic heterogeneity in microbial genomes
generated by massive short-read sequencing
GongXin Yu

Abstract

Background: Microevolution is the study of short-term changes of alleles within a population and their effects on
the phenotype of organisms. The result of the below-species-level evolution is heterogeneity, where populations
consist of subpopulations with a large number of structural variations. Heterogeneity analysis is thus essential to
our understanding of how selective and neutral forces shape bacterial populations over a short period of time. The
Solexa Genome Analyzer, a next-generation sequencing platform, allows millions of short sequencing reads to be
obtained with great accuracy, allowing for the ability to study the dynamics of the bacterial population at the
whole genome level. The tool referred to as GenHtr was developed for genome-wide heterogeneity analysis.

Results: For particular bacterial strains, GenHtr relies on a set of Solexa short reads on given bacteria pathogens
and their isogenic reference genome to identify heterogeneity sites, the chromosomal positions with multiple
variants of genes in the bacterial population, and variations that occur in large gene families. GenHtr accomplishes
this by building and comparatively analyzing genome-wide heterogeneity genotypes for both the newly
sequenced genomes (using massive short-read sequencing) and their isogenic reference (using simulated data). As
proof of the concept, this approach was applied to SRX007711, the Solexa sequencing data for a newly sequenced
Staphylococcus aureus subsp. USA300 cell line, and demonstrated that it could predict such multiple variants. They
include multiple variants of genes critical in pathogenesis, e.g. genes encoding a LysR family transcriptional
regulator, 23 S ribosomal RNA, and DNA mismatch repair protein MutS. The heterogeneity results in non-
synonymous and nonsense mutations, leading to truncated proteins for both LysR and MutS.

Conclusion: GenHtr was developed for genome-wide heterogeneity analysis. Although it is much more time-
consuming when compared to Maq, a popular tool for SNP analysis, GenHtr is able to predict potential multiple
variants that pre-exist in the bacterial population as well as SNPs that occur in the highly duplicated gene families.
It is expected that, with the proper experimental design, this analysis can improve our understanding of the
molecular mechanism underlying the dynamics and the evolution of drug-resistant bacterial pathogens.

Background
Microevolution is defined as any evolutionary changes
below the species level. It is the study of short-term
changes within a population or a species of its alleles
(alternative genes) and their effects on the phenotype of
organisms that make up that population. The result of
the below-species-level evolution is heterogeneity, where
populations are made up of subpopulations with a large
number of structural variations. Heterogeneity analysis

is, therefore, essential to our understanding of how the
selective and neutral forces shape bacterial populations
over a short period of time [1-4].
In S. aureus, the role of microevolution is especially

significant, in which heterogeneity is hypothesized to be
the basic molecular mechanism for drug resistance [5].
Indeed, pre-existing drug-resistant mutants were often
detected, from which drug-resistant mutants emerged
during drug therapy or on the drug-containing growth
medium. S. aureus strain of PC-1, PC-2 and PC-3 are
great examples [6]. They were isolated at different stages
of vancomycin therapy. The first two were recovered
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from a patient in the early stages of vancomycin therapy,
whereas the third was isolated one day before the
patient’s death. The minimal inhibitory concentration of
vancomycin is 2 μg per milliliter for PC-1 and PC-2,
while PC-3 is capable of growing on agar plates contain-
ing vancomycin at a concentration of 8 μg per milliliter
at a frequency of approximately 10-3. PC-3* is a colony
picked from PC-3 strains capable of growing on agar
containing 8 μg of vancomycin per milliliter. The new
isolate can even grow on 16 μg of vancomycin per milli-
liter at a frequency of approximately 10-5, a strong indi-
cator for the existence of subpopulations. Similarly,
mutants with higher vancomycin resistance were also
picked from MM66 plated on vancomycin containing
agar with a minimum inhibitory concentration [7,8].
The heterogeneity is not unique to S. aureus. It is

found in the population of Mycobacterium tuberculosis
and many other bacterial pathogens, where the pathogen
can gain drug resistance under the selective pressure of
drug therapy. Post et al identified drug-resistant subpo-
pulations within TB patients [9], in which four of the 13
patients acquired additional drug-resistance mutations
during the course of treatment [9]. On the other hand,
the bacterial pathogen could also lose its pathogenicity
when selective pressure is absent, leading to the in vitro
accumulation of attenuated mutants. A systematic analy-
sis of individual clones isolated from subcultured
M. tuberculosis H37Rv and a non-subcultured frozen
stock detected a mixed population in H37Rv containing
wild-type cells as well as neutral red and Phthiocerol
Dimycocerosate (PDIM) mutants [10]. Microarray analy-
sis confirmed a significant heterogeneity [10]. Heteroge-
neity was also found in natural bacterial populations of
Escherichia coli [11], Salmonella enterica [12], Neisseria
meningitidis [13], Haemophilus influenzae [14], Helico-
bacter pylori [15], Streptococcus pneumoniae [16] and
Pseudomonas aeruginosa [17]. From these bacterial
pathogens, hypermutation and the pre-existence of
drug-resistant subpopulations were detected. It is thus
logical to conjecture that the heterogeneity in bacterial
populations is fundamental to the development of drug-
resistant strains in these and possibly other bacterial
species. Analysis tools that possess the ability to study
heterogeneous bacterial populations and the dynamic of
genetic changes in the populations would greatly
improve our understanding of the molecular mechan-
isms of microevolution.
Molecular epidemiological analysis tools play critical

roles in our current understanding of bacterial microe-
volution. The tools include IS6110-based restriction
fragment length polymorphisms (RFLP); spoligotyping
and the mycobacterial interspersed repetitive-unit-vari-
able-number tandem-repeat (MIRU-VNTR) typing in
the study of M. tuberculosis populations; multilocus

sequence typing (MLST); amplified fragment length
polymorphism analysis (AFLP); double-locus sequence
typing (DLST); and spa typing in the analysis of S. aur-
eus population. All of these techniques, however, have
severe limitations. First, these tools focus on small sets
of genome components, such as DNA sequences of
internal fragments of multiple (usually seven) house-
keeping genes in MLST [18], single-strand sequencing
of partial repeat sequences of genes clfB and sp in
DLST [19], and DNA sequence analysis of variable
repeat regions of the protein A gene in spa typing [20].
Consequently, either the genetic heterogeneity could not
be detected at all or its frequency is seriously underesti-
mated [21-23].
The Solexa Genome Analyzer is a sequencing system

powered by the next-generation Solexa sequencing tech-
nology [24]. It is based on massively parallel, shotgun,
clonal sequencing-by-synthesis and is characterized by
high throughput and precision in base calls. With this
platform, millions of short reads can be obtained with
an accuracy of up to 99% [25], allowing massively paral-
lel picoliter-scale amplification and sequence determina-
tion of individual DNA molecules [26]. For example, a
mixture of three HIV-1 envelope variants pooled in pro-
portions of 89%, 10%, and 1% can be accurately detected
[27]. Recently, Wang et al. detected an average of 58
variants per clinical HIV plasma samples using this
technology compared to an average of eight variants per
sample using conventional direct-PCR dideoxynucleotide
sequencing [28]. It can be hypothesized that, with these
technologies, bacterial genomes in a heterogeneous
population can be adequately sequenced so that popula-
tion dynamics in respect to genetic heterogeneity can be
studied at the whole genome level.
Heterogeneity analyses are straightforward due to the

small size of the viral genome and the rarity of sequence
duplications in the genome. However, the heterogeneity
analysis is expected to face a significant challenge in
bacterial genomes. Sequence duplications, insertions and
deletions are ubiquitous features of bacterial genomes,
which resulted in gene families and super-families with
many paralogs [29-32]. The resulting complexity would
make it especially difficult to determine whether particu-
lar heterogeneity sites are due to mutations that occur
between the paralogs or spontaneous mutations that
generate heterogeneous bacterial populations.
A few computational tools have been developed for

genome-wide variant analysis, including BFAST [33],
RMAP [34] and Maq [35]. This software facilitates the
fast and accurate mapping of short reads to detect
sequencing errors, single nucleotide polymorphisms
(SNPs) and indels with well-defined statistics. For exam-
ple, Maq calls the consensus based on a statistical
model that maximizes the posterior probability [35]. All
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these tools, however, have limited or no capability for
genetic heterogeneity analysis. Even though heterozy-
gotes are called in the Maq analysis process, all analyses
are local in nature, meaning that the process narrows
down particular genome positions without considering
global genome contexts. As a consequence, it is difficult
to determine whether the heterogeneity is due to intra-
genome variation or to the heterogeneous population. In
addition, like many other tools, Maq has limited capabil-
ity to reveal mutations that occur in repetitive DNA. As
a matter of fact, SNPs lying in repetition were intention-
ally excluded from analysis [36].
Here, a new tool referred to as GenHtr was established.

GenHtr is unique in that it could detect variants within
the context of whole genomes. Specifically, the software
first establishes the genotype in genetic heterogeneity at
all chromosomal positions for both newly sequenced
bacterial strains (based on the Solexa reads) and their
isogenic reference genomes (based on the simulated
data). Comparative genotype analysis allows for the
identification of heterogeneity sites where the chromo-
somal positions are heterogeneous in newly sequenced
genomes but homogenous in the isogenic reference gen-
ome. Together with Maq, the software then provides
clues to determine whether the multiple variants are
due to intra-genome duplications, sequencing artifacts
or spontaneous mutations, thus helping to prioritize the
variants for experimental validation. In addition, Gene-
Wise [37,38] was integrated so that synonymous/non-
synonymous mutations can be analyzed as well.
To prove this concept, I applied this approach to

SRX007711, the Solexa sequencing data downloaded
from NCBI Sequence Read Archive (SRA) for a newly
sequenced S. aureus subsp. USA300 cell line. The data
set was chosen as a user model organism for the follow-
ing reasons: First, completely sequenced genomes of two
USA300 strains are available in the NCBI [Genome
Assembly/Annotation Projects]; second, S. aureus is one
of the leading causes of infectious disease mortality; and
third, heterogeneity has been implicated in the process
of drug-resistance development where S. aureus under-
goes genetic shifts during treatment, resulting in the
acquisition of subtle genetic changes in S. aureus subpo-
pulations [39]. It is imperative to find cures effective in
treating S. aureus infections since failures can lead to a
dire consequence: the selection and spread of multiple
drug-resistant strains [40]. This paper illustrates the
analysis procedure and presents partial results.

Methods
Genome sequence data
The Solexa genome sequences (Raw Solexa sequence
reads) of S. aureus strain were downloaded from ftp://ftp.
ncbi.nlm.nih.gov/sra/static/SRX007/SRX007710/. The

S. aureus is a USA300 strain that was sequenced using
Illumina sequencing technology by the BROAD Institute
in the Staphylococcus_aureus_Assembly_Development
project. In addition, the completely sequenced S. aureus
genome of S. aureus USA300 FPR3757 was downloaded
from NCBI ftp://ftp.ncbi.nih.gov/genomes/Bacteria/
Staphylococcus_aureus_USA300_FPR3757/. Like the
newly sequenced strain, this strain belongs to the aureus
USA300 subspecies. Its genome includes a chromosome
of 2872769 base pairs (bps) (NC_007793) and three plas-
mids of 3125 bps (NC_007790), 4439 bps (NC_007791),
and 37136 (NC_007792), respectively. The USA300 sub-
species is methicillin-resistant, community-acquired
(CA-MRSA) and has been involved in epidemiologically
unassociated outbreaks of skin and soft tissue infections
in healthy individuals in at least 21 U.S. states, as well as
in Canada and Europe [41].

GenHtr Steps
GenHtr is based on a seamless integration of various
computational tools such as MegaBlast, Blat and Gene-
Wise as well as some in-house-developed Perl modules.
MegaBlast uses a greedy algorithm for the nucleotide
sequence-alignment search, up to 10 times faster than
more common sequence-similarity programs [42]. Blat
is a BLAST-Like Alignment Tool, designed specifically
for accurate and faster sequence alignments [43]. For
the heterogeneity analysis of a particular bacterial strain,
a completely sequenced genome of an isogenic strain is
selected as a reference genome, named IRG for short.
GenHtr is partitioned into four conceptual steps (Fig. 1).

The first step is to create the database Reference
Genome DNA Fragments (RGDF), an entire set of non-
overlapped DNA fragments from the IRG (Fig.1 I.a). The
RGDFs have a pre-defined length, e.g. a default length of
1,000 base pairs, which was empirically determined.
Larger RGDFs often present a significant challenge since
Solexa creates massive sequencing reads in certain geno-
mic areas that often overwhelm MegaBlast, a key tool in
this analysis. In such case, no sequence alignments will
be displayed.
Once established, RGDF is used to search genome-

specific databases of Solexa short reads via MegaBlast to
identify its candidate trace sequences (Fig.1 I.b). Mega-
Blast is run with all default parameters except -v and -b.
Both are assigned a value of 1,000,000 to allow all possi-
ble database sequences to show one-line descriptions
(-v) and alignments (-b). The candidate trace sequences
were defined as those that display at least 95% sequence
identity with a given RGDF. The 95% is used to limit
alignments between Solexa Reads and RGDFs to those
of at most two mismatches.
Candidate trace sequences are then mapped to the IRG

based on the alignments from the MegaBlast analysis
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(Fig.1 I.c) to define genetic heterogeneity within a newly
sequenced bacterial strain (treated as a population). In
the mapping, nucleotide identities (Dij) are determine at
each chromosomal position, where Dij represents the jth

alternative nucleotide at chromosomal position i. Dij is
identical either to those in the reference genome or to
those that are substituted, deleted or inserted. Further-
more, the numbers of candidate Trace sequences (Mij)
used to derive nucleotide identity j at position i as well as
the percentage sequence identities (Pij) between the can-
didate trace sequences and the RGDF are recorded. As a
result, the genetic heterogeneity genotype in the format
of Pi1:Di1:Mi1, Pi2:Di2:Mi2 ... Pii:Dij:Mij ... Pin:Din:Mik

will be established for all chromosomal positions. More-
over, a 2-2-5 rule is designed specifying that any chromo-
somal position will be defined as candidate genetic
heterogeneity sites if the following conditions are satis-
fied: First, there must exist at least two alternative
nucleotides at certain positions; and second, among the
alternative nucleotides at these positions, there must be

at least five Solexa reads per an alternative with an aver-
age Phred value of 13 (a probability of p that is no greater
than 0.05 to be incorrect base calls) [26]. At least five
reads were empirically required for accurate single
nucleotide mutation calling [44].
The second step is a simulation procedure to analyze

genome complexities of DNA mixtures derived from the
isogenic reference genome. The procedure first creates an
IRG-specific DNA database, where all possible N-base pair
“Solexa read-like” DNA fragments are generated from the
IRG (Fig.1 II.a). A moving window of N-base pairs is used
to scan over the genome to generate DNA fragments. The
length of Solexa reads determines the size of the moving
window (N = 37 base pairs in this analysis). Then the ana-
lysis follows the exact procedures from Fig.1 I.b and I.c to
identify candidate sequences from the IRG-specific DNA
database (Fig.1 II.b) and establish genome-wide “heteroge-
neity” genotypes (Fig.1 II.c). For consistency, the term
“heterogeneity” is still used in this section, but instead of
describing the heterogeneous bacterial population, it is

Figure 1 The four-step analysis procedure for heterogeneity analysis of bacterial population. The first step is to establish genome-wide
heterogeneity phenotypes for the newly sequenced bacterial strain (a clone population) (I.). The step first creates a database of Reference
Genome DNA Fragments (RGDF) with a set of non-overlapped DNA fragments from the isogenic reference genome (IRG) (I.a); Once established,
RGDF is used to search the database of Solexa short reads of the bacterial strain via MegaBlast to identify its candidate trace sequences (I.b),
which are then mapped to the IRG to define genetic heterogeneity (I.c). The second step is a simulation procedure to study the genome
complexity of the IRG (II.). The procedure creates an IRG-specific DNA database, covering all possible N-base pair “Solexa read-like” DNA
fragments from the IRG (II.a), Then the analysis follow the same procedure from I.b to I.c to identify candidate sequences from the IRG-specific
DNA database (II.b) and to establish genome-wide “heterogeneity” genotypes (II.c). The genotypes from step I and II are comparatively analyzed
(III.). The genetic heterogeneity sites were analyzed with genewisedb for synonymous/non-synonymous mutations (IV).
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used to portray the genome complexity of the IRG. The
read depth from simulated data varies from genomic area
to genomic area, depending on the complexity of the
DNA. In the areas of single copy, the read depth is equal
to N, the width of the moving window.
The genotypes from this and the previous step are

compared (Fig.1 III.) to identify the genetic heterogeneity
sites where alternative nucleotides were found from the
analysis of Solexa sequence data but not from the analy-
sis of the reference genome. Once the genetic heteroge-
neity sites were predicted, synonymous/non-synonymous
mutations at the sites were analyzed with genewisedb
(GeneWise) [37,38] (Fig.1, IV.), where candidate trace
sequences with heterogeneity sites were comparatively
analyzed with their orthologous proteins from the iso-
genic reference genome. The genewisedb is run with all
default parameters.
GenHtr runs are semi-automated. A run of GenHtr on

the 700 M base pairs of S. aureus takes ~ 10 h on a 500
MB RAM Pentium 4 computer running Linux. Running
time increases linearly with the size of the Solexa gen-
ome sequences and genome length.

Results and discussion
Characterization of the model genome
In heterogeneity analyses, a key pre-requirement is the
existence of completely sequenced, assembled genomes
of an isogenic bacterial strain. In NCBI, many comple-
tely sequenced S. aureus genomes are available, includ-
ing those for FPR3757 and TCH1516, two strains of S.
aureus subspecies USA300. The data set SRX007711, a
USA300 strain, was selected as the model organism.
The SRX007711 comes from the same subspecies. It
was assumed that the newly sequenced genome was
highly similar to the two sequenced subspecies. Indeed,
using S. aureus subspecies USA300 FPR3757 as a tem-
plate, GenHtr can reconstruct the entire genome of
SRX007711 with merely five gaps to a total of 410 base
pairs (Additional file 1 Table S1). Moreover, only 101
substitutions, 2 insertions and 3 deletions were revealed,
suggesting that SRX007711 is isogenic to FPR3757.
Another critical pre-requirement is the size of the
sequencing data. This analysis indicated that SRX007711
has massive coverage of the bacterial genome with an
average number of up to 130 Solexa reads per mapped
chromosomal position. Among these chromosomal posi-
tions, about 77.37% have greater than 100 of Solexa
reads, with a maximum of 1,346.

Analysis of the isogenic reference genome
The results indicated that the simulation in GenHtr

could characterize genome complexity of the IRG. First,
it determined whether chromosomal positions occur in
single-copy-DNA fragments or in duplicated DNA

fragments (Additional file 2 Table S2). The analysis also
revealed “heterogeneity” within the IRG, a mixture of
DNA fragments derived from recent duplication and
subsequent mutations. A total of 981 “heterogeneity
sites” were detected at genic areas (Additional file 3
Table S3). A majority of the “heterogeneity sites” are
present in proteins important to pathogenesis (about
84% if genes encoding phage-like, transposase and hypo-
thetic proteins were excluded). These include 5 sites on
the gene for the immunoglobulin G binding protein A
precursor, 8 sites on the gene for the superantigen-like
protein, 12 sites on the gene for the cell surface pro-
teins, 18 sites on the gene of teichoic acid biosynthesis
protein, 36 sites on the gene of fibronectin binding pro-
tein A/B, 71 sites on the genes of clumping factor A/B,
191 sites on the genes of sdrC/D/E proteins and 135
sites on the genes of staphylococcal tandem lipoprotein.
Many of those genes encode surface proteins that have
a common C-terminal LPXTG/NPQTN cell wall attach-
ment motif, a sequence fragment that plays an essential
role in host colonization, biofilm formation, and the eva-
sion of host defense [45]. For example, wall teichoic
acids (WTA) have been shown to be essential for the
survival of Bacillus subtilis [46] and function as viru-
lence factors in S. aureus [47,48]. Deficient WTA-
mutants were impaired in their adherence to nasal cells
and were unable to colonize cotton rat nares [47,49].
The superantigen-like protein is a bacterial protein
toxin that binds to the major histocompatibility complex
class II and T-cell receptor to stimulate large numbers
of T cells, leading to toxic shock syndrome [50].
The detection of extensive “heterogeneity” from the

isogenic reference genome, especially on the pathogen-
esis-related genes, is not surprising. Gene duplication
has long been recognized as one of the most important
mechanisms in the evolution of bacterial genomes,
creating multiple homologs within a genome. The para-
logous gene groups are further involved in mutations
and genome rearrangements that help the bacteria adapt
to ever-changing environments [51]. By “heterogeneity”
analysis, GenHtr can characterize the genome dynamics
of bacterial pathogens.

Heterogeneity analysis of the newly sequenced S. aureus
subsp. USA300 cell line
The genetic heterogeneity analysis of SRX007711, the
Solexa data from the newly sequenced USA300 cell line,
detected a similar phenomenon. A total of 2,056 hetero-
geneity sites were identified through heterogeneity ana-
lysis. Among them, 204 are unique to the new cell line
when compared to the “heterogeneity” genotypes of its
isogenic reference genome. Many of them were also
detected by Maq as single nucleotide polymorphisms
(SNPs) and passed the “SNPfilter” when Solexa reads
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that cover the heterogeneity sites were extracted and
used as an alternative Maq input (Section I in Table 1).
The heterogeneity site that was detected at the gene
coding for sensor histidine kinase is a good example.
Among the 123 candidate trace sequences mapped to
this site, 115 have a nucleotide that is identical to the
isogenic reference genome and 7 with a G- > C substi-
tution. All seven substitutions have a Phred value
greater than or equal to 27 in the base calling and three
of them have a Phred value of 40, the highest possible
quality value in the data set. A value of 40 has a con-
verted probability of 0.0001 incorrect reads. In contrast,
the position is homogeneous in the isogenic reference
genome. The same phenomenon was observed at other
heterogeneity sites, including those at the genes encod-
ing for the sulfatase family protein, the lipoate-protein
ligase A family protein, the penicillin-binding protein 3,
the lantibiotic epidermin biosynthesis protein EpiC, the
oxacillin resistance-related FmtC protein, and the puta-
tive fibronectin/fibrinogen binding protein. Furthermore,
a majority of the heterogeneity sites are located in the
single-copy DNA fragment in the isogenic reference
genome.

Heterogeneity analysis of the genes of single DNA copies
Further analysis indicated that the genetic heterogeneity
has certain unique properties. First, a majority of the
genetic heterogeneity sites were detected in unique
genomic areas. Many of them have non-synonymous
mutations, leading to amino acid alterations in target
proteins (Table 2). For example, the genetic heterogene-
ity leads to a Q59- > K59 substitution on putative fibro-
nectin/fibrinogen binding protein, a C717- > Y717 on
oxacillin resistance-related FmtC protein at a ratio of
3.87% [T:6 G:145], and 3.7% [A:5 G:128] out of the
detected candidate sequences, respectively. The genetic
heterogeneity also leads to truncated proteins, e.g. at
genes encoding sensor histidine kinase at a percentage
of 5.74% [C:7 G:115], and phosphotransferase system,
glucose-specific IIABC component at a percentage of
2.85% [A:5 C:170].
The genetic heterogeneity is involved in some patho-

genesis-related genes, including penicillin-binding pro-
teins (PBP), fibrinogen/fibronectin-binding proteins
(Fnbp), and lipoate-protein ligase A family protein. PBP
is a key player in the bacterial cell cycle and drug-resis-
tance processes. Altered PBPs with a reduced affinity to
penicillin lead to penicillin resistance in clinical isolates
of S. pneumoniae [52-54]. Fnbp is a major platelet-acti-
vating factor on the surface of S.aureus [55]. Truncated
derivatives of the genes promote platelet activation
when expressed on the surface of S.aureus or Lacto-
coccus lactis, indicating two distinct mechanisms of acti-
vation. fmtC is a gene that affects oxacillin resistance in

methicillin-resistant S. aureus. Its mutants showed
increased susceptibility to beta-lactam antibiotics and
bacitracin [56]. The gene of lipoate-protein ligase A
family protein is upregulated by daptomycin [57]. The
antibiotic induces the S. aureus cell wall stress stimulon
and genes responsive to membrane depolarization.
As indicated above, Maq was used as an important tool

for validation. However, many genetic heterogeneity sites
could not pass the “SNPfilter” (Section II in Table 1), but
it is worth illustrating them from the functional perspec-
tive because of their potential roles in the pathogenicity
and microevolution of S. aureus strains. The sites include
a LysR family transcriptional regulator gene with a geno-
type of [A:5 G:92]. A nonsense mutation results in a trun-
cated LysR family transcriptional regulator. This protein is
a global transcriptional regulator, acting as either activa-
tors or repressors of single or operonic genes. It regulates
a diverse set of genes, including those involved in viru-
lence, metabolism, quorum sensing and motility [58,59].
In mycobacteria, the lack of mismatch correction is recog-
nized as a promoter of mycobacterial evolution [60]. It is,
however, not completely clear how the genetic variation
and phenotypic diversity are created in S. aureus. The dis-
covery of the multi-variants in the genes that are known
to be associated with hypermutability will shed light
on the molecular mechanisms. The first such site is
located at the gene encoding DNA mismatch repair pro-
tein MutS. The heterogeneity site has a genotype of [C:115
G:5]. The C- > G substitution at the chromosomal posi-
tion of 1,309,034 results in a nonsense mutation, leading
to a truncated protein with a loss of 77 amino acids at the
C-terminal of the protein. The finding of truncated DNA
mismatch repair protein MutS in the newly sequenced
S. aureus subsp. USA300 cell line is new but not a sur-
prise. This gene is part of the bacterial mismatch repair
system. It functions to correct point mutations and small
insertions/deletions that fail to be proofread by DNA poly-
merase activity. Previous experiments indicated that its
disruption is related to the high-frequency hypermutability
and drug-resistant mutants. In P. aeruginosa, mutS
mutants displayed an increase in antibiotic-resistance.
Furthermore, antibiotic-resistant levels of the generated
mutants were higher than those measured from sponta-
neous resistant mutants derived from wild-type cells [61].
In S. aureus, the inactivation of MutS or MutL was asso-
ciated with the emergence of a hypermutator phenotype
that favors the acquisition of antibiotic resistance and
facilitates bacterial adaptation during long-term persis-
tence [62]. Drug-resistant subpopulations with mutant
genes coding for DNA repair enzymes, referred to as
strong mutators, were found in the laboratory populations
of E. coli [63]; S. enterica serovar Typhimurium [12] and
in natural populations of E. coli [11]; S. enterica [64];
N. meningitidis [13]; and P. aeruginosa [65]. All of them
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Table 1 Characterization of the genetic heterogeneity Sites and SNP in large gene families

Maq Chrom
Position

Genotype profile at
selected loci of
SRX007711

Genotype profile at
selected loci of

FPR3757

Read
Depth

SRX007711
Mean Phred

Values

Max
Phred
Value

Functional Description

I. Heterogeneity sites that passed the SNPfilter and have an average of per-base Phred value greater than 13

* 778416 T:6 G:140 G:37 6 31.5 40 sulfatase family protein

* 2512836 C:7 G:115 G:37 8 31.25 40 sensor histidine kinase

* 107624 A:5 C:110 C:37 5 29.8 40 hypothetical protein

* 435033 T:5 G:98 G:37 5 28.2 38 hypothetical protein

* 1021087 T:5 G:151 G:37 5 26.2 40 lipoate-protein ligase A family
protein

* 1662849 A:5 C:134 C:37 6 24.66 40 penicillin-binding protein 3

* 2648343 A:5 C:192 C:37 5 24.6 40 drug transporter phosphotransferase
system, glucose-

* 2674216 A:5 C:170 C:37 5 24.6 40 specific IIABC component

* 1542366 T:6 G:129 G:37 6 24.5 40 hypothetical protein lantibiotic
epidermin biosynthesis

* 1950547 A:5 C:164 C:37 5 23.4 40 protein EpiC

* 105211 A:6 G:132 G:37 8 20.3 40 hypothetical protein

* 1857182 A:14 G:85 G:37 14 19.42 40 hypothetical protein
phiSLT ORF2067-like protein, phage

* 1558524 T:5 G:56 G:37 7 17.57 40 tail tape measure protein
phi77 ORF014-like protein, phage
anti-

* 2122182 C:122 G:6 C:37 6 17.28 38 repressor protein

* 1383603 A:5 G:128 G:37 5 15.8 20 oxacillin resistance-related FmtC
protein

(A:2) T:5 lactose phosphotransferase system

* 2333470 C:164 C:37 7 15.28 40 repressor

putative fibronectin/fibrinogen
binding

* 1206348 A:1 T:6 G:145 G:37 7 14.71 25 protein

A:153 (T:1)

* 2262790 G:6 A:37 7 13.14 29 cation efflux family protein

II. Heterogeneity sites that did not pass the SNPfilter but have an average per base Phred value greater than 13

1180638 T:5 G:97 G:37 5 40 40 cell division protein ftsA

2-oxoglutarate dehydrogenase E1

1437922 C:149 G:5 C:37 5 39.2 40 component

2212436 A:5 C:107 C:37 5 37.8 40 thiamine-phosphate
pyrophosphorylase

257712 T:5 G:101 G:37 5 35.6 40 sensor histidine kinase family protein

861340 A:9 C:136 C:49 10 34 40 clumping factor A

acetyl-CoA carboxylase, biotin
carboxyl

1714319 T:6 C:95 C:37 6 34 40 carrier protein

1252956 T:9 G:125 G:37 9 33 40 DNA topoisomerase I

lantibiotic epidermin leader peptide

1948255 A:5 C:169 C:37 5 32.8 40 processing serine protease EpiP

955972 A:5 C:145 C:37 5 32.6 40 Hypothetical protein

2123183 A:25 X:29 A:37 29 31.44 40 putative phage transcriptional
regulator

2638027 A:5 C:112 C:36 5 31 40 gluconate kinase

1829558 T:5 G:118 G:37 5 30.8 40 septation ring formation regulator
EzrA

putative maltose ABC transporter,

247386 A:5 C:163 C:37 5 30.4 40 maltose-binding protein

2262622 C:5 G:156 G:37 5 30.4 40 cation efflux family protein
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Table 1: Characterization of the genetic heterogeneity Sites and SNP in large gene families (Continued)

344352 C:460 G:7 C:131 8 29.5 40 Hypothetical protein

346978 C:383 G:7 C:113 8 29.5 40 Hypothetical protein

472492 T:5 G:194 G:37 5 29.4 40 Hypothetical protein

2175831 A:585 G:8 A:229 9 28 40 5 S ribosomal RNA

1753468 C:96 G:5 C:37 5 27.2 40 Hypothetical protein

1503664 A:113 T:6 A:37 6 27.16 40 Hypothetical protein

617974 A:374 T:5 A:99 5 26.2 38 sdrD protein

154794 A:5 C:136 C:37 5 25.6 40 Fe/Mn family superoxide dismutase

1943616 C:5 G:110 G:37 5 25.2 32 serine protease SplA

2064321 C:113 G:6 C:37 6 24.8 40 Hypothetical protein

910508 A:177 T:6 A:37 7 24 40 lipoyl synthase

5-
methyltetrahydropteroyltriglutamate–

408863 T:6 G:160 G:37 6 23.16 40 homocysteine S-methyltransferase

2417570 A:5 G:109 G:37 5 22.8 39 Na+/H+ antiporter NhaC

glycerol uptake operon
antiterminator

1311574 A:5 C:181 C:37 5 22.6 40 regulatory protein

capsular polysaccharide biosynthesis

175115 X:6 G:136 G:37 6 21.33 40 protein Cap5B

2775087 A:14 T:107 T:49 14 20.4 29 clumping factor B

2678195 A:5 G:92 G:37 5 19.4 27 LysR family transcriptional regulator

451366 C:5 G:119 G:37 5 19.2 33 Superantigen-like protein 5

1633215 A:5 C:83 C:37 5 18.4 28 putative traG membrane protein

2114835 A:6 C:136 C:37 7 17.14 27 phiPVL ORF046-like protein

1859648 C:5 X:1 G:121 G:37 6 16 24 FtsK/SpoIIIE family protein

467549 A:89 T:23 A:58 23 15.56 40 Staphylococcal tandem lipoprotein

2123177 A:57 X:5 A:37 5 15.4 21 putative phage transcriptional
regulator

36501 A:29 G:391 G:192 29 15.13 40 putative transposase

1857109 A:162 G:12 A:37 12 14 40 hypothetical protein

950365 A:5 C:113 C:37 5 13.8 17 Exonuclease RexB

801123 T:5 G:91 G:37 5 13.4 28 transferrin receptor

2481059 T:5 G:148 G:37 5 13.4 21 response regulator protein

1545118 A:15 T:109 T:37 15 13.2 40 putative lipoprotein

IV. Heterogeneity sites at RNA genes that pass the SNPfileter when single RNA genes were used as reference sequence.

* 1997102 A:69 T:13 A:37 13 7.0 30 Leu tRNA

1996261 T:7 C:76 C:55 8 14.25 30 Met tRNA

* 1961354 T:12 C:25 C:55 12 20.16 40 Met tRNA

517898 T:581 C:8 T:231 8 31.37 40 5 S ribosomal RNA

* 556291 T:560 C:16 T:225 16 20.56 40 5 S ribosomal RNA

561501 T:580 C:8 T:229 8 31.37 40 5 S ribosomal RNA

1997607 A:569 G:8 A:218 8 31.37 40 5 S ribosomal RNA

2292385 A:549 G:8 A:218 8 31.37 40 5 S ribosomal RNA

516288 A:34 G:408 G:185 34 14.11 40 23 S ribosomal RNA

517172 T:6 G:495 G:185 6 13.83 26 23 S ribosomal RNA

559891 A:34 G:408 G:185 34 14.1 40 23 S ribosomal RNA

560775 T:6 G:495 G:185 6 13.83 26 23 S ribosomal RNA

1998333 A:6 C:495 C:185 6 13.8 26 23 S ribosomal RNA

1999217 T:34 C:408 C:185 34 14.11 40 23 S ribosomal RNA

2176557 A:6 C:495 C:185 6 13.83 26 23 S ribosomal RNA

2177441 T:34 C:408 C:185 34 14.1 40 23 S ribosomal RNA

2293111 A:6 C:495 C:185 6 13.83 26 23 S ribosomal RNA
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Table 2 Synonymous and non-synonymous analysis of mutations in the heterogeneity sites

Chrom
Position

Types of
Mutations

Genotype
at

SRX007711

Genotype
at

FPR3757

Alignment with Orthologous Proteins Gene and Function

gi 87161249 ref 423 EKDATIEKSNTG

E DATIEKSNTG

ENDATIEKSNTG

SRR022865_26088 1 gaggaagataag

778416 NONSYN T:6 G:140 G:37 aaacctaacacg

attattgaacat sulfatase family protein lipoate-protein ligase A
family protein

1021087 Query: 36
VKLAMEEYVLKN

1

NONSYN T:5 G:151 G:37 + LAMEEYVLKN

Sbjct: 14
LNLAMEEYVLKN

25

gi 87162345 ref 143 AGIGRYLLNRVD

AGIGRYLLNR+D

AGIGRYLLNRLD

SRR022865_32431 -37 Ggagattcaatg lantibiotic epidermin biosynthesis protein EpiC

Cgtggattagta

1950547 NONSYN A:5 C:164 C:37 Tgagatgataat

gi 87160275 ref 122 NCLPVYKILLEK

NCLPVYKILL+K

NCLPVYKILLKK

SRR022865_59666 -36 attcgtaattaa Lactose phosphotransferase system repressor
phosphotransferase system, glucose-specific IIABC
component

agtctaatttaa

2333470 NONSYN T:5 C:164 C:37 ttgggtatgaaa

Query: 36
LV*IAPWLKNDI

1

LV IAPWLKNDI

2674216 TRUNC A:5 C:170 C:37 Sbjct: 41
LVEIAPWLKNDI

52

gi 87161394 ref 71 KKVLLTGLGIVI

KK+LLTGLGIVI

KKLLLTGLGIVI

SRR022865_30969 1 aatctagtgaga

2648343 NONSYN A:5 C:192 C:37 aatttcgtgttt drug transporter

aaatagagaaac

gi 87160343 ref 120 EVQSKEMLIISI

EVQSKEMLI+SI

EVQSKEMLIVSI

SRR022865_47009 2 ggctagatagaa

2262790 NONSYN A:153 G:6 A:37 atacaattttgt cation efflux family protein

ataaaagacttt

gi 87160156 ref 825 SDSDSDSDSDSD

SDSDSDSDSDSD

SDSDSDSDSDSD

SRR022865_28556 -37 agtgtgagtgtg

861340 SYN A:9 C:136 C:49 gacacagacaca clumping factor A

ctatatctatac

gi 87160605 ref 4 FTQLSDRIKKAI

FTQLSDRIKK I

FTQLSDRIKKDI
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Table 2: Synonymous and non-synonymous analysis of mutations in the heterogeneity sites (Continued)

SRR022865_49291 -36 tactagaaaaga

1542366 NONSYN A:14 G:85 G:37 tcatgagtaaat hypothetical protein

ttagttacaacc

gi 87160966 ref 476 RNDMVEFFGEKL 5-

RN+MVEFFGEKL

RNEMVEFFGEKL Methyltetrahydropteroyltriglut amate–
homocysteine S- Methyltransferase

SRR022865_53088 1 cagaggttggat

gaattattgaat

408863 NONSYN T:6 G:160 G:37 ttagtaccaaaa

gi 87161941 ref 177 VDVLDVYSDAY

VD+LDVYSDAY

VDLLDVYSDAY

SRR022865_54601 3 ggttggttggt

1180638 NONSYN T:5 G:97 G:37 tattatacaca cell division protein ftsA

ttaattcttat

gi 87160920 ref 104 KGDIIGYVEAMK

KGDIIGYVEA+K

KGDIIGYVEAIK

SRR022865_82913 -37 aggaagtgggaa acetyl-CoA carboxylase, biotin carboxyl carrier
protein

agattgatacta

1714319 NONSYN T:6 C:95 C:37 gattaattagaa

gi 87162179 ref 415 AKSEVWRQMMSD

AKSEVWRQM+SD

AKSEVWRQMISD

SRR022865_51952 -36 gaaggtccaatg

cagatggattca

2638027 NONSYN A:5 C:112 C:36 gataagtagtat gluconate kinase

gi 87161981 ref 47 DIAVVDIMMDGM

DIAVVDIMMD M

DIAVVDIMMDVM

SRR022865_55616 -36 gaggggaaagga

atcttatttatt

2481059 NONSYN T:5 G:148 G:37 ttagattggttg response regulator protein

gi 87161886 ref 196 KSENIEKTVNRF

K ENIEKTVNRF

KIENIEKTVNRF

SRR022865_56405 1 aagaagaagact

ataataactagt thiamine-phosphate pyrophosphorylase

2212436 NONSYN A:5 C:107 C:37 atattagtttac

gi 87161325 ref 64 PVVKELKKHAK

P VKELKKHAK

PFVKELKKHAK

SRR022865_71442 3 ctgagtaacga

cttaataaaca

1252956 NONSYN T:9 G:125 G:37 ttaaagaataa DNA topoisomerase I

gi 87162241 ref 319 SMDNVVTVGSTD

SM NVVTVGSTD

SMYNVVTVGSTD lantibiotic epidermin leader

SRR022865_97728 2 tataggaggtag

1948255 NONSYN A:5 C:169 C:37 ctaattctgcca peptide processing serine

tgctctaaatat protease EpiP
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have a defective mismatch repair system due to the inacti-
vation of mutS or mutL genes.
Additional candidates to establishing the genetic diver-

sity necessary for the evolution of drug-resistant strains
are the variants found at genes of exonuclease RexB and
DNA topoisomerase I. The former has a genotype of
[A:5 C:113] at the chromosomal position of 950,365,
and the latter has a genotype of [T:9 G:125] at the chro-
mosomal position of 1,252,956. Substitutions at both
positions lead to non-synonymous mutations, causing
amino acid replacements: Q620- > K620 at exonuclease
RexB protein and V65- > F65 at topoisomerase I protein.
The RexB is part of the cellular system that plays a cru-
cial role in homologous recombination for the repair of
a variety of DNA damage, involving in the maintenance
of chromosome integrity and the generation of genetic
variability [66]. Topoisomerases are essential enzymes
that solve topological problems arising from the double-
helical structure of DNA. It is, then, related to the status
of DNA supercoiling, a critical factor that modulates the
expression of virulence genes in pathogenic bacteria at
different phases of the host-pathogen relationship [67].
Validation of the heterogeneity sites by targeted-sequen-
cing with different technologies would improve our
understanding of the molecular mechanisms underlying
the evolution and pathogenicity of S. aureus.

Detection of mutations in the large gene families
Mutations were not only detected in the unique genes
but also in large gene families, e.g. 5 S rRNA and 23 S

rRNA genes (Section III in table 1). The mutations in
these gene families were further validated through Maq
with high confidence, where individual sequences from
the genes were used as references. The results are not
surprising. Previous experiments established a clear
association between mutations in the ribosomal genes
and hypermutability. Canu et al. detected a variety of
ribosomal mutations that conferred resistance to macro-
lides, clindamycin, streptogramin, and
telithromycin in Streptococcus pneumoniae [68]. Pru-

nier et al. provided additional support for the role of the
rRNA gene in drug resistance and hypermutability,
where six strains of S. aureus were isolated from cystic
fibrosis patients after treatment with azithromycin and
all carried either A2058G/U or A2059G mutations within
the 23 S rRNA gene and all acquired cross-resistances to
azithromycin and erythromycin, the two therapeutic
agents [69].
Mutations were also detected in the sequences that

coded for clumping factor A/B and sdrD proteins.
Clumping factor A/B and sdrD protein are pathogenic
factors from two large gene families in the S. aureus.
Clumping factor A (ClfA) is a fibrinogen-binding pro-
tein expressed on the S. aureus cell surface and has pre-
viously been shown to act as a virulence factor in
experimental septic arthritis [70]. Clumping factor B
(ClfB) is one of the microbial surface components that
recognizes adhesive matrix molecules, mediates the
adherence of S. aureus to immobilized fibrinogen and
promotes bacterial clumping in soluble fibrinogen [71].

Table 2: Synonymous and non-synonymous analysis of mutations in the heterogeneity sites (Continued)

1309034 TRUNC C:115 G:5 C:37 Query: 35
ASAGKKSSI*N

3 b DNA mismatch repair protein MutS

Sbjct: 754
ASAGKKSSISN

764

gi 87161934 ref 619 QQANVELSPTSD

Q+ANVELSPTSD

QKANVELSPTSD

SRR022865_10478 2 cagaggtacatg

950365 NONSYN A:5 C:113 C:37 aacatatgccca

ggttcgataaat exonuclease RexB

Query: 1
FK*YFKQFEENY

36

FK YFKQFEENY

Sbjct: 223
FKSYFKQFEENY

234

2512836 TRUNC C:7 G:115 G:37 sensor histidine kinase

Query: 3
Q*IINDEVDIG

35

Q IINDEVDIG LysR family transcriptional regulator

2678195 TRUNC A:5 G:92 G:37 Sbjct: 137
QQIINDEVDIG

147

Note. TRUNC: truncated protein; NONSYN: non-synonymous mutation and SYN: synonymous mutation. a: align with Genewisedb and b: align with Blastx.
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Just like clumping factor B, the serine-aspartic acid
repeat protein SdrD can also promote adhesion to squa-
mous cells [72]. A mutant strain that lacks SdrD pro-
teins can cause defective in adherence [73].

Advancement of the tool
The success of the demonstration indicated that GenHtr

is an improvement over available tools to calculate
genetic heterogeneity. For instance, one of the biggest
challenges in the Solexa-based heterogeneity analysis,
specifically with Maq, is the low frequency of mutant
subpopulation [6]. Using the new sequence data of the
S. aureus USA300 cell line, Maq detected about 119 sin-
gle nucleotide polymorphisms (SNPs) but missed a
majority of the heterogeneity sites detected by the
GenHtr analysis. Improvement was made when Solexa
reads that cover the heterogeneity sites were extracted
and used as an alternative Maq input. Additional hetero-
geneity sites were indeed rediscovered but not all of
them. This is because a greater part of the heterogeneity
sites detected have read depths less than 10, a threshold
used to identify SNP between strains of the highly
monomorphic pathogen Salmonella Paratyphi A [36].
Furthermore, the analysis with a simulation procedure
indicated that the read depth might contribute to the
failure in this data set (Additional file 4Table S4). In
the simulation, 1,000 Solexa data sets were created sepa-
rately for the depth of 4, 6, 8 and 10. Each set consists
of unique Solexa reads that were randomly sampled
from the 38 Solexa reads covering SNP identified by
Maq at the position of 395,176. All failed to pass the
Maq filter (SNPfilter) except the data sets of the read
depth of 10, where SNPs were detected in 99.9% of the
simulated data. SNPfilter is one of the programs in the
Maq package, which helps to filter SNPs according to
predefined rules of the package.
Like many other computational tools, Maq analyses

are local and all analyses narrow down to particular
genome positions without considering global genome
contexts. So, it is difficult to determine whether the het-
erogeneity is due to intra-genome variation or the het-
erogeneous population. This is exactly the case for five
chromosomal positions detected in the gene-encoding
putative transposase, where Maq identified them as het-
erozygotes (Additional file 5 Table S5). The genotypic
analysis indicated that they are indeed heterogeneous in
the newly sequenced genome; however, they are also
heterogeneous in the simulated sequence population
from the isogenic reference genome, implying intra-gen-
ome variation at these sites (Additional file 6 Table S6).
In the SNP analysis, Maq detects potential SNPs via

comparing the consensus sequence to the reference gen-
omes, which are then filtered by a set of predefined
rules [35]. The filtering rules out SNPs if they are,

among other constraints, falling in a possible repetitive
region. It is understandable to rule out repetitive regions
from SNP analysis due to possible intra-genome varia-
tions. The filtering, however, may have an unexpected
consequence. As illustrated above, gene duplication and
subsequent mutations are vital in pathogenic bacteria
because they help the bacteria adapt to ever-changing
environments [51]. By establishing and comparatively
analyzing the heterogeneity genotypes at the newly
sequenced strains as well as their isogenic reference
strain, GenHtcan identify SNPs/heterogeneity sites that
fall in the highly repetitive regions. This can be demon-
strated in the comparative analysis between S. aureus
JH9 and S. aureus JH1. Using the simulation procedure
(See MATERIALS AND METHODS for detailed proce-
dure), three differentiating loci were identified within
the 23 S ribosomal RNA genes (Additional file 7 Fig. S1
and Additional file 8 Table S7). Among them, two loci
are heterogeneous in JH1 but homogeneous in JH9.

Future improvement
Despite the success of the demonstration, there are minor
concerns in the development and application of GenHtr.
First, GenHtr utilized MegaBlast for the mapping of the
Solexa reads and the identification of the genetic heteroge-
neity sites. The program uses a greedy algorithm for the
nucleotide sequence-alignment search, up to 10 times fas-
ter than more common sequence-similarity programs [42].
The alignment tool is able to handle the massive data that
Solexa generated but would sacrifice certain levels of
accuracies. Besides its speed, another reason for choosing
MegaBlast is its intolerance for mismatches between
aligned sequences. For example, runs using MegaBlast
with default MegaBlast parameters permit only two mis-
matches in an alignment of 37 base pairs, which allow the
identification of Solexa reads that are likely to be ortholo-
gous to the reference genome. One of the alternative tools
for aligning genome sequences with Solexa reads is Blat.
A trial with the alignment tool indicated that it could pro-
vide much better alignments; for example, when the DNA
fragment of the first 1,000 base pairs of the isogenic refer-
ence genome was run against the Solexa reads, MegaBlast
achieved a full sequence alignment and a 100% sequence
identity for 250 homologous Solexa reads while the num-
ber was much larger when Blat was applied – 1,530 in
total. As a result, genome coverage was increased. The
average Solexa reads per position was up 12.3% from 130
to 146 when MegaBlast was replaced with Blat on the gen-
ome analysis of SRX07711. Blat was applied with default
parameters, except with the option -out=blast. However,
Blat took a much longer alignment time than MegaBlast,
roughly 35 hours to align 2,873 Reference Genome DNA
Fragments (RGDFs) against the Solexa read data while
MegaBlast took approximately 8 hours. On the other
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hand, Blat is much faster if Solexa reads were used as
queries against the isogenic reference genome, taking only
a few minutes to finish the analysis of the entire Solexa
data. The problem is that substitutions could disrupt the
alignments when they occur at sub-centric positions
(Additional file 9 Table S8). The sub-centric positions
mean that the substitutions divide the read into a large
DNA fragment of about 28 to 32 base pairs and a small
fragment of 5-9 base pairs. Instead of making the align-
ment with the mismatches, Blat simply aligns the larger
one, then searches downstream for the sequence identical
to the smaller one and aligns with it. Approximately
81,135 such alignments were found when a Solexa data set
was mapped to the USA300 isogenic reference genome.
The result indicated that such analysis could compromise
the SNP and heterogeneity analysis if not corrected.
Second, the sequencing errors are the main concerns.

GenHtr used the Phred value of 13 (base quality) as a
measure to determine whether the base calls from
Solexa reads are real or are derived from sequencing
artifacts. However, a weighted function will be neces-
sary. First, the quality scores are unevenly distributed
along the 37-bp Solexa reads (Additional file 10 Table
S9). Overall, base calls at the 5’ end of the Solexa read
have a high-quality score that gradually decreases as
sequencing reaches the 3’ end [74]. For example, a
majority of the base calls at the first position of these
reads are high quality, where less than 5% of base calls
have Phred values of less than 13. In the contrast, 10%
of the base calls from position 2 to 13, 25% from 14 to
19, 50% from position 20 to 28, and 75% from position
29 to 37 are considered to be incorrect base calls based
on the threshold. Therefore, the geographical location of
the bases in the Solexa reads is an important factor in
evaluating data quality. On the one hand, bases with a
low Phred score are not necessarily wrong base calling.
Indeed, previous experiments estimated that the error
rate per base read of SNPs detected by Solexa and
checked by Sanger sequencing for the Maq b5 (base
quality ≥5) is 1.0 × 102, indicating that the majority of
the base calling with a low Phred score is correct. On
the other hand, a higher base quality is not a guarantee
of correct base calling. For the Maq b20 (base quality
≥20), the error rate is still 1.0 × 103 although tenfold
lower. In addition, genotypes at some heterogeneity sites
with a low Phred value showed the exact same patterns
as those from the isogenic reference genome (Additional
file 11 Table S10). This also indicates that a base calling
with a low-quality score can still be correct.
Another approach to evaluate the quality of the het-

erogeneity sites is to determine the general tendency of
base substitutions. As described above, the progressive
deterioration in quality scores as the sequencing pro-
ceeds leads to higher noise levels. The consequence is

intensity more close to the background, which results in
misleading base calling, e.g. it is more likely to be called
T than A, or C than G [74]. If sequencing errors are the
only cause of the heterogeneity, there should be more
A- > T and G- > C substitutions than any other types of
substitutions at the heterogeneity sites. Detailed exami-
nation of the heterogeneity genotypes found no such
tendency. In Section III of table 1, there are more C- >
A (23%) than any other substitutions. This is followed
by G- > T (13.4%) and C- > G (11.5%). In fact, there are
only 7% in both A- > T and G- > C substitutions, indi-
cating that the resulting alternative nucleotides at the
heterogeneity sites are not likely entirely from sequen-
cing errors.
Third, the frequency of subpopulations in bacterial

clone populations represents a great challenge in hetero-
geneity analysis. Rates from 10-3 to 10-6 of more highly
vancomycin-resistant cells in hVISA cultures appear to
define hVISA strains at the moment. It is certainly below
the proven polymorphism detection limit. Evidence also
indicated that the frequency, however, varied from strain
to strain and condition to condition. Generally, strains
with a higher level of drug-resistance appear to have
higher frequencies of drug-resistant subpopulations when
cultured at a medium with a lower drug concentration.
For example, NYH-2*, an hVISA strain, has a minimum
inhibitory concentration of 8 μg/ml. The frequency of
drug-resistant subpopulations in NYH-2* is 100% at a
vancomycin concentration of 2 μg/ml, 10% at 4 μg/ml
and 6 × 10-2 % at 8 μg/ml [6]. PC-3* another hVISA
strain with a minimum inhibitory concentration of
16 μg/ml, has a drug-resistant subpopulation frequency
of 100% when cultured at all three vancomycin concen-
trations: 2 μg/ml, 4 μg/ml, and 8 μg/ml [6]. Thus, a better
experimental design plus greater genome coverage are
expected to overcome the low polymorphism detection
limit.
Finally, the complexity of bacterial genomes will make it

difficult to assess the heterogeneity status of particular
chromosomal positions if they occur in the DNA frag-
ments with multiple copies, e.g. those observed in 5S/23 S
ribosomal RNA and genes encoding sdrE protein and
clumping factor A/B (Table 2). In these cases, the hete-
rogeneity sites can be interpreted to be due either to
mutations between paralogs (within the genome) or to
mutation in orthologs (between genomes of different sub-
populations). On the other hand, the heterogeneity sites
detected in the single-copy DNA fragments are less pro-
blematic. These sites cover many positions in protein-
encoding genes, including those at penicillin-binding
protein 3, exonuclease RexB, DNA topoisomerase I, and
DNA mismatch repair protein MutS, and involve in 48 dif-
ferent functions. It will be a rare event for all these genes
to be duplicated in such a short period of time between
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the isogenic isolates. In addition, no recent duplication
events are detected at this or the 14 other completely
sequenced S. aureus genomes. This allows us to predict
that the sites are truly heterogeneous, which likely repre-
sent multi-variants in the bacterial populations.

Conclusions
In summary, GenHtr was developed and tested with a
newly sequenced S. aureus USA 300 cell line. Although
it is much more time-consuming when compared to
Maq, a popular tool for SNP analysis, GenHtr is able to
build genome-wide heterogeneity genotypes for both
newly sequenced genomes (using massively parallel
short-read sequencing) and their isogenic reference gen-
ome (using simulated data). From that, GenHtr can pre-
dict potential multiple variants that pre-exist in the
bacterial population as well as SNPs that occur in highly
duplicated gene families. In addition, the establishment
of genome-wide heterogeneity genotypes for newly
sequenced genomes and their isogenic reference gen-
omes allows the heterogeneity to be quantified. For
example, we plan to use an evolving distance (d) to
quantify how many newly sequenced strains are evolved
from the isogenic reference strains and characterize loci
that have a greater complexity than those that happened
in the 23 S rRNA genes. The successful implementation
and testing of GenHtr is expected to have a large impact
on the research of bacterial pathogen. Rather than iden-
tifying sequence variations from strains to strains or iso-
lates to isolates [75-81], the Solexa technology and
GenHtr will allow bacterial strains/isolates to be studied
as heterogeneous populations instead of as mono-
morphic clones [5]. By this approach, the population
dynamics of bacterial populations can be carefully char-
acterized and comparatively analyzed with respect to
genetic heterogeneity. With the paradigm shift, we
expect that the evolutionary forces that shape bacterial
populations can be evaluated at the DNA sequence level
on the whole genome scale.
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