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[1] In this paper we present a method of incorporating semivariogram constraints into
nonlinear inversion problems. That is, we describe a method of sampling the space of
inverse solutions that honor a specified semivariogram or set of semivariograms and
also explain a set of state data. The approach can be considered a method of
conditional simulation where model conditioning is based upon state data (as opposed
to parameter data). The difference between this approach and other simulation
approaches is that the simulation is posed as an optimization problem with the joint
objective of matching the semivariograms and honoring the state data. This approach
requires computing the sensitivities of the semivariograms with respect to the
distributed parameter. We derive these sensitivities and find that they are efficient to
compute and store, making the method tenable for large models. We demonstrate the
method with one synthetic and one field example using radar velocity tomography,
where radar velocity is related through a petrophysical transform to saturated porosity.
We address biasing issues and demonstrate ensemble generation and the resulting
resolution and uncertainty analysis using ensemble statistics. We also demonstrate how

the method can be applied to existing deterministic inversion codes with the field

example.

Citation: Johnson, T. C., P. S. Routh, T. Clemo, W. Barrash, and W. P. Clement (2007), Incorporating geostatistical constraints in
nonlinear inversion problems, Water Resour. Res., 43, W10422, doi:10.1029/2006 WR005185.

1. Introduction

[2] In order to solve many subsurface environmental and
engineering problems, the physical properties that govern
subsurface processes must be known. Because geologic
properties are often highly spatially variable, it is typically
infeasible or prohibitively expensive to obtain adequate
information about the property in question through direct
sampling. Instead properties must be inferred by the
responses they influence at discrete sampling points. For
instance, a hydrogeologist might infer the distribution of
hydraulic conductivity by pumping from one well, measur-
ing the drawdown response in another, and then finding a
hydraulic conductivity distribution that explains the draw-
down response. Or a geophysicist may infer the porosity
distribution between two wells by measuring the traveltimes
of electromagnetic waves propagating from one well to
another, and then finding a petrophysical model and a
porosity distribution that explain the traveltime data. The
data, such as traveltime, are not direct measurements of the
property in question, such as porosity, but are influenced by
the property in question through some physical process.

[3] The distribution of a physical property is often
estimated by mathematically inverting the equations that
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describe the physical process to find a model (or a solution)
that explains the data. However, for most problems many
reasonable solutions exist that adequately explain the data.
That is, the solutions are nonunique. In addition to compli-
cating the inversion process, solution nonuniqueness natu-
rally adds an element of uncertainty in the estimated
physical properties. To be rigorous, the solution uncertainty
must be quantified in order to identify what a particular data
set can tell us about the subsurface and with what amount of
confidence.

[4] Several techniques for estimating subsurface proper-
ties and their associated uncertainties have been suggested
and most of them can be broadly categorized as either
deterministic [Day-Lewis et al., 2002; Zhou et al., 2001,
Anderman et al., 1996; Hyndman et al., 1994] or stochastic
inversion methods [Medina and Carrera, 2003; Hubbard
and Rubin, 2000; Capilla et al., 1998; Zimmerman et al.,
1998; Copty and Rubin, 1995]. In general, deterministic
methods attempt to estimate a single model that best
describes the resolvable subsurface features given a partic-
ular data set. Uncertainty in the solution is estimated on the
basis of the sensitivity of data to the physical property of
interest. Geostatistical inversions attempt to generate the
posterior probability density function (pdf) of the property
in question given the available data [Cliffon and Neuman,
1982; Kitanidis and Vomvoris, 1983].

[s] The primary limitation of deterministic parameter
estimation is directly related to the nonuniqueness of the
inverse problem. Data rarely provide enough information to
uniquely characterize a discretized model. Thus many
models will minimize the difference between the predicted
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and observed data. In order to remove this nonuniqueness, a
regularization term is often explicitly added to the objective
function of the inversion. The regularization term of the
objective function is minimized at a unique solution, often a
homogeneous solution [Doherty, 2003; Tonkin et al., 2003;
Tikhonov, 1963] or a prior reference solution [Neuman,
1973], which removes the nonuniqueness in the inverse
problem. The inversion is formulated so that the regulari-
zation term of the objective function is minimized (e.g., the
solution is homogeneous or equal to the prior model) in
regions of the model that are not sensitive to the data. The
resulting solutions are smoothed versions of the subsurface
that generally provide information concerning only the
larger-scale subsurface structure.

[6] Smaller-scale structures that may be present in the
subsurface are in the null-space of the data. Thus they are
not required to fit the data, but they are not excluded by the
data either. Instead they are excluded by the regularization
operator. These small-scale features are often important
when considering the objective of characterizing the het-
erogeneity of the subsurface to solve environmental or
engineering problems. For instance, it is known that con-
taminant migration is often sensitive to small-scale varia-
tions in hydraulic conductivity [Anderson, 1997; Neuman,
1994; Sudicky and Huyakorn, 1991].

[7] In groundwater modeling, regularization is often
added implicitly by adhering to the principle of parsimony
[Hill, 1998], which states that an estimated model should
have no more complexity than necessary to explain the data.
Parsimony is often implemented by dividing the inversion
grid into large zones where physical parameters are assumed
to be homogeneous. This reduces the number of parameters
estimated and decreases or eliminates solution nonunique-
ness at the expense of removing the possibility of having
complexity in the model that may be present in the
subsurface. In short, the trade-off for using regularization
to remove the nonuniqueness in the inverse problem is a
solution that favors relatively large-scale structural infor-
mation and lessens the utility of using indirect data to
quantitatively characterize subsurface properties and the
corresponding uncertainty via inversion.

[8] In contrast to deterministic inversion, the goal of
geostatistical inversion is to estimate the conditional poste-
rior pdf of the estimated property. The original versions of
geostatistical inversion required the practitioner to choose
the spatial covariance properties of the estimated model,
such as the model semivariogram [Clifton and Neuman,
1982]. More current methods estimate the spatial covariance
properties as part of a two-step inversion process [Kitanidis
and Vomvoris, 1983]. The first step is to estimate the spatial
covariance structure, and the second is to use the spatial
covariance estimate as prior information in the generation of
the posterior pdf. One of the advantages of geostatistical
inversion over deterministic inversion is that the posterior
pdf naturally gives an estimate of the parameter uncertainty.
Unfortunately, the direct results of geostatistical inversions
(the posterior pdf) provide the expected mean of the
estimated parameter which tends to filter out actual vari-
ability and therefore fails to provide a model which repro-
duces the spatial covariance [Carrera et al., 2005]. In order
to produce a model that reproduces actual variability and
explains the data, one must sample the posterior pdf through
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a method such as Markov Chain Monte Carlo (MCMC)
simulation [Gilks et al., 1996], which is generally compu-
tationally expensive.

[9] In this work we demonstrate a method which provides
realizations of all possible solutions that both fit the data
and obey some spatial covariance properties specified by
one or more semivariogram(s). This approach can be
considered a method of conditional simulation where the
two objectives of fitting the state data and honoring the
semivariogram(s) are explicit goals of a joint optimization
procedure. In order to optimize the semivariogram objec-
tive, the sensitivities of the experimental semivariogram
with respect to the model parameters must be computed. We
derive these sensitivities and find that they are efficient to
compute and store, making the approach tenable for large
models. In addition, the approach can be implemented into
existing deterministic inversion codes by augmenting the
data sensitivity matrix with the semivariogram sensitivity
matrix and modifying the damping and convergence criteria
of the inversion routine.

[10] A critical assumption in this method is that some-
thing is known about the semivariogram with some degree
of certainty. While geostatistical properties of the subsurface
are rarely known precisely, spatial covariance estimates can
often be obtained from indirect sources such as analog sites,
geophysical data, outcroppings, logs, and expert judgment
[Hubbard et al., 1999; McKenna and Poeter, 1995; Jussel et
al., 1994]. For instance, it may be possible to estimate the
vertical semivariogram quite well from well logs which
provide dense vertical data. It may be more difficult to
estimate the horizontal semivariogram. However, it may be
possible to deduce from outcrops or analog sites that the
range of the horizontal semivariogram is likely not less than
some value, and not greater than some other value. When
there is uncertainty in the semivariogram, that uncertainty
should be manifest in the uncertainty of the parameter. In
this work, we show how semivariogram uncertainty may be
included in the parameter estimates using a field example.

[11] Our approach is illustrated conceptually in Figure 1.
The model space consists of all possible solutions to the
inverse problem. Within the model space, a number of
solutions adequately explain the data. These solutions are
bounded by the blue line labeled “Models that fit data
without noise” in Figure 1. Here noise refers to randomly
distributed measurement errors. The existence of multiple
solutions illustrates the nonuniqueness of the problem and
the presence of a null-space. In practice, data are always
contaminated by noise which effectively increases the null-
space and the number of solutions that explain the data
[Parker, 1994]. The space of solutions that explain the noisy
data is bounded by the dashed line in Figure 1.

[12] In addition to solutions that explain the data, there
are also a number of solutions that fit the specified spatial
covariance properties. This space is bounded by the red line
labeled “Models that fit known geostatistics” in Figure 1.
Sampling models from this space alone constitutes uncon-
ditional stochastic simulation [Deutsch and Journel, 1998;
Journel and Huijbregts, 1978]. In practice the optimal
spatial covariance structure is typically not well known,
but reasonable bounds may be placed on semivariogram
parameters. For instance, we may be able to place upper and
lower bounds on the range and/or sill values of the semi-
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known geostatistics

Models that fit -\
uncertain b
geostatistics

Figure 1.

variogram(s). The uncertainty in the spatial covariance
structure is analogous to the presence of noise in the data.
The “noise” in the spatial covariance structure expands the
range of solutions that fit the geostatistics and increases
the geostatistical null-space. The space of solutions that fit
the uncertain covariance properties is represented by the
dotted line in Figure 1.

[13] Assuming data measurement errors are random and
the semivariogram space bounds the optimal semivario-
gram(s) (i.e., the semivariogram(s) that best represent the
spatial covariance), there exists a region in the model space
that includes solutions which both explain the data and fit
the geostatistics. This region, which is represented by the
shaded area labeled ‘solution space’, includes the optimal
model. Here we define the optimal model as the solution
that most accurately depicts the subsurface at the model grid
scale. In this paper, we assume the grid scale is uniform and
is much smaller than the semivariogram range so that small-
scale spatial correlation represented by the semivariogram
can be captured by the model.

[14] Traditional regularization precludes the possibility of
obtaining the optimal solution through inversion unless the
subsurface is homogeneous (or zonally homogeneous in the
implicit regularization case) or equal to the prior model; this
is a consequence of obtaining a unique solution through
regularization. Because traditional regularization imposes
smoothness in unresolved portions of the model, it is
difficult to obtain a model that captures the natural com-
plexity of the subsurface as described by the semivario-
gram(s). Thus it is difficult to use a regularized model to
accurately predict processes that are sensitive to that com-
plexity, such as contaminant transport. By generating an
individual solution that both explains the data and fits a
desired spatial covariance structure, we aim to capture the
natural complexity in the subsurface at scales greater than
the grid scale (but much smaller than the semivariogram
range), and thereby provide the possibility of producing
accurate predictions of processes sensitive to variability at
scales greater than the grid scale. By generating an ensem-
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Conceptual representation of model space.

ble of such solutions we can use statistical analysis to
examine the resolving capability of the data (and of the
covariance constraints) and estimate the uncertainty in the
models and in the predictions they produce.

[15] The ensemble we produce in this work is statistically
different than the ensemble produced by MCMC methods
primarily because the posterior probability distribution is
different for each approach. The traditional posterior pdf
used in MCMC methods describes the probability of every
model within the model space shown in Figure 1. Each
model sampled by the MCMC algorithm has a different
probability of being the optimal model. Models closer to the
optimal model will be sampled more densely than models
much different than the optimal model. However, some
models which fit the data and spatial structure poorly will be
included in the ensemble in order to represent the tails of the
posterior pdf. In other words, with respect to Figure 1, the
MCMC algorithm will sample models more densely within
and near the solution space and less densely outside of the
solution space, but the entire model space will be repre-
sented. In the approach we present here, each model has
equal probability of being the optimal model, and each is
included within the solution space shown in Figure 1. The
probability of each model is the maximum possible proba-
bility given the objective of the inversion, the noise in the
data, and the uncertainty in the semivariogram(s). With
respect to other parameter estimation approaches in the
literature, our approach is most similar in concept to the
self-calibrated algorithm [Gomez-Hernandez et al., 1997].
In the self-calibrated algorithm, an unconditional simulation
(or a conditional simulation conditioned on parameter data)
is generated as a starting model in the first phase. In the
second phase, a perturbation to the starting model is
determined which, when added to the started model, causes
the resulting model to also honor the state data. However,
there is no spatial covariance constraint in the second step,
and thus no guarantee that the final model will honor the
semivariogram(s). In the approach we present here, state
data and structural constraints are both included in the
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inversion objective, and both are honored in the final
models.

[16] We first describe the twofold objective of the inverse
problem which is (1) to minimize the difference between the
predicted and observed data and (2) to minimize the
difference between the experimental and target semivario-
gram(s). Although the method we present is generic in
scope (i.e., it is applicable to many types of parameter
estimation problems), we describe the theory in terms of
ray-based radar velocity tomography. In order to accurately
generate uncertainty estimates through ensemble solution
statistics, models taken from the solution space must be
equally probable and must be sampled in an unbiased
manner. We use the conditional probability distribution to
demonstrate that each solution is equally probable. We
discuss bias caused by the spatial covariance constraints
which we term ’spatial covariance bias’ to facilitate dis-
cussion, and we present a practical approach to eliminating
spatial covariance bias for solutions that are both uncondi-
tional (i.e., solutions constrained to fit the semivariograms
only) and conditional (i.e., solutions constrained to fit both
the semivariograms and the data). Note here that ‘data’ do
not refer to measurements of the parameter we are estimat-
ing (i.e., velocity), but to measurements of state variables
that are related to the field through a physical process (i.c.,
traveltime).

[17] Next we show a field example using radar traveltime
data collected at the Boise Hydrogeophysical Research Site
(BHRS). The BHRS has been shown to exhibit a zonal
geostatistical porosity structure [Barrash and Clemo, 2002].
We use an approximation to Topp’s equation [Ferre et al.,
1996; Topp et al., 1980] to convert zonal porosity semi-
variograms to velocity semivariograms in order to constrain
the inversion. In the field example, we demonstrate how
semivariogram uncertainty is incorporated into the ensem-
ble, and how it affects ensemble statistics by decreasing
resolution in the ensemble mean and increasing the ensem-
ble variance. Finally we discuss the results and offer
concluding remarks.

2. Theory

[18] Although the inversion method described in this
section is general in mathematical terms, we develop the
discussion in terms of radar traveltime tomography and
provide specific examples in the results section. We begin
the theoretical development by stating the twofold objective
of the inversion which is to minimize the function

O(mest) = [[Wa(G(mese) — dobS)H2 + B|[Wy (T (mese) — VobS)H2~
(1)

Here mg is the estimated model parameter vector (e.g.,
velocity distribution), G is the forward traveltime operator
(e.g., the eikonal equation solver [Aldridge and Oldenburg,
1993]), d,ps is the observed traveltime data vector, I' is the
forward semivariogram operator such that I'(m.g) produces
the predicted semivariogram(s), Vops 1S @ vector containing
the desired (or target) model semivariograms, and Wy and
W, are the data and semivariogram weighting matrices
respectively. The parameter 3 determines the importance
placed on fitting the semivariograms at each iteration as
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D(m,y) is minimized in the inversion procedure. The || ||
operator represents the L2 norm.

[19] The second term of the objective function has the
same form as a traditional (e.g., Tikhonov) regularization
constraint [7ikhonov, 1963]. It is also similar in form to
what Neuman [1973] called a plausibility criteria, which
included a reference or prior model. However, with tradi-
tional regularization there is a unique solution that mini-
mizes the regularization term. This removes the null-space
and the ill posedness of the inverse problem. Conversely,
many solutions exactly minimize the second term of equa-
tion (1). That is, many parameter distributions produce
semivariograms that match those specified in vgys. In fact,
minimizing the second term of equation (1) alone consti-
tutes a method of unconditional stochastic simulation. In
general, many of these geostatistically valid solutions will
also minimize the first term of equation (1). Hence many
solutions exist that minimize both terms of equation (1), so
the solutions are still nonunique and the inverse problem is
still ill posed, (i.e., a null-space exists even though the
solutions satisfy the geostatistical constraints). Conceptually,
those solutions that minimize both terms of the objective
function are contained within the solution space shown in
Figure 1.

[20] The inversion objective allows us to sample the
space of solutions that fit both the observed (e.g., travel-
time) data and the geostatistics, thereby providing a means
of estimating solution statistics or uncertainty. By repeatedly
solving the inverse problem with different random starting
models, we generate an ensemble of geostatistically accurate
solutions that explain the data. We take precautions to ensure
that each solution is equally probable so that the solution
space is represented in an unbiased manner. We use the
ensemble to estimate statistical descriptions of the solution
space (e.g., mean and variance for each grid cell). To generate
the ensemble, we must be able to minimize equation (1)
which requires simultaneously minimizing the two nonlinear
and nonunique objective function terms. For the remainder of
this paper we will refer to this method as inverse stochastic
sampling (ISS) in order to simplify forthcoming discussion.

[21] To minimize equation (1) we expand the objective
function by perturbing the model by ém., which gives,
ignoring the second-order and higher-order terms,

(I)(mest + 5mest) = de(G(mest) + JGémest - dobs)H2
+ ﬁ”wv(r(mest) + Jrémeg — Vobs) H27 (2)

where Jg(mes) and Jr(meg) are, respectively, the traveltime
and semivariogram Jacobian operators. The traveltime sen-
sitivities that comprise Jg are computed by ray tracing
[Aldridge and Oldenburg, 1993]; the computation of Jr is
discussed in section 2.2. Taking the gradient of equation (2)
with respect to dm, setting the results to zero, and gathering
terms gives

(JEWadG + BILWLIL) Smese = JEWaddobs + BIEWySVobs,
3)

there 5dobs :~G(mest)r_ dobs, 6Vobs = F(mest) — Vobs> Wd =
WaWg, and W, = W, W, Note that ém. is a perturbation
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to the model mgg; that decreases the value of the objective
function. That is, the updated solution at iteration k + 1 is
given by mbi! = mk, + 6m,. At each iteration k, we solve
equation (3) for smk, and update mX,, for the next iteration.
We determine émb using the LSQR [Paige and Saunders,
1982] algorithm to solve the equation
Walg Waddops
|: \/BWVJI‘ :| [5mest] = I: \/Bwvévobs :I (4)
al 0

for dm,g, where «v is a constant and I is the identity matrix.
Here « is a damping term that controls the magnitude of the
elements of dmeg at each iteration. If « is set too large then
the solution will converge slowly. If « is set too small, then
the solution will oscillate, and may not converge at all. It is
important to note that o and 3 do not affect the properties of
the final model, but are tools used to guide the inversion to a
solution. Because both terms of the objective function are
nonlinear, the algorithms for choosing « and (3 are nontriv-
ial and merit a separate discussion presented in sectlon 2.3.
[22] Let the data norm ®, = |[Wq(G(m) — dgps)||* and let
the semivariogram norm ®, = |[Wy(T'\(m) — Vp,)||>. The
solution converges when &, ~ ¢ and ®, ~ 7. Here € is
chosen on the basis of the noise in the data and 7 is chosen
on the basis of how well the semivariogram is to be
matched. We assume the data and semivariogram values
are uncorrelated so that Wy and W, are diagonal vectors.
Then Wy contains the reciprocal of the standard deviation
of the data noise along the diagonal. Similarly, W, contains
the reciprocal of the standard deviation of the desired
semivariogram misfit, which is user chosen. For example,
in the following examples we use a standard deviation of
1% of the target semivariogram value for the corresponding
diagonal element of W,. The values of ¢ and 7 are
determined by the chi-square criteria ¢ = Ndata® and 7 =
Nvar® where Ndata and Nvar are the number of observed
data and the number of target semivariogram values respec-
tlvely Thus, when the model is appropriately fit, q’d =1and
-1

2.1. On Solution Probability

[23] In order to accurately represent the solution space,
each model in the ensemble must be unbiased and equally
probable. Given the inversion objective stated in equation (2),
the conditional probability distribution is of the form
[Oliver et al., 1997]

1 1
P(meggt) exp<f§<1>d — §<I>V>, (5)

where ¢, and ®,, are the data and semivariogram norms
given above. As discussed in the previous section, ®,; ~ €
and ®, ~ 7 for each solution in the ensemble. Therefore
each solution is equally probable. When there is uncertainty
in the semivariogram, that uncertainty is reflected in the
ensemble by probabilistically varying the value of the target
semivariogram term v,,s contained within ®,. Solutions
with a more probable structure occur more often than
solutions with a less probable structure. Thus the semivar-
iogram uncertainty is contained implicitly within the
ensemble and reflected in the ensemble statistics.
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2.2. Computing the Semivariogram Sensitivities J-

[24] The experimental semivariogram value at a separation
distance (or lag) of % is given by [Isaaks and Srivastava,
1989]

N(h)

Z mijj — ml/ 3 (6)

i=1

where 7 is the index that spans all N(#) parameter cell pairs
separated by lag 4. The pair index 7 is not included in
traditional mathematical descriptions of the semivariogram,
but is added to the notation here in order to facilitate the
forthcoming sensitivity derivation. Note also that ‘cell’
refers to a discrete region of the model where the parameter
being estimated is homogeneous (e.g., a grid cell), and it is
assumed that each cell dimension is much smaller than the
target semivariogram range. The indices j and k span the
individual cells. Thus j # k for all pairs i and m; ; = m;; =
ms; = ... That is, my ;, my;, ms;, .. all represent the same
parameter (i.e., parameter m;), but they belong to different
pairs (e.g., pairs 1, 2, 3, ..).

[25] The variation in ~(#) due to a perturbation in
parameter m; is given by

N(h
Z(m,k (mi; + 6m;))?
i=1
N(h)
m,k m,/ . (7)

57("’)/‘ =

i=1

Note that if cell j does not belong to pair i then m; = 0 and
pair i does not contribute to 6(%);. Thus we may write

67(}’)]' =

1 g
N Z mij — (m,]+5m]))

lag(h

Z mij — m,J , (8)

‘

where nlag(h); is the number of pairs at lag /4 that include
cell j, and i spans all of these pairs. Rearranging constants,
factoring the (m;, — m; J)Z out of the first term, and
expanding the result gives

N (h)ov(h),
- ”’%W (mig — mij)? (1 N i = )
2 : U (m,;k - mi.j) (mz:,k - mi,/)z

Z: m,k—ml, . (9)

When oOm; is small the second-order term in 6m; is
insignificant. Neglecting the second-order term in om;,
collecting the results and simplifying gives

nlag(h)j

2N (h)é~y(h) :—2 E mig — m,/)émj

i=1

(10)
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Dividing equation (10) by 2N(h)ém; gives

5’7(}1)]' 1 nlag(h)j
= W IZZ] (mu - m,;,k)

(11)

om i
or equivalently

nlags(h)j

oy(h);
Jrny = ;;(Wl/)/ = ﬁh) (mj - nlags(h),— Z mi,k)7 (12)

i=1

where Jr.;,; is row & and column j of Jy. We compute Jr
using a modified version of the gamv program included
within the GSLIB library of geostatistical routines [Deutsch
and Journel, 1998].

2.3. Choosing the Parameters o and (3

[26] Each term of the objective function in equation (1)
is nonunique, and any solution mg that minimizes the
objective function is a single realization that appropriately
fits the data and the semivariogram as given by e and 7.
The path a particular solution takes through the model
space as the inversion algorithm progresses, and ultimately
the final solution, depends both upon the starting model
and upon the way in which [ is chosen at each iteration of
the inversion. For a regularized inversion in which ®, = 0
has a unique solution, § is chosen so that ®; = €. If O,
drops below € (i.e., the data are overfit) the next iteration
will increase (§ which smoothes the updated model and
increases .

[27] In our case, consideration must be taken because
®, = 0 does not have a unique solution. If at some
iteration in the inversion @, drops below ¢, increasing (3
will not necessarily increase ¥, because the inversion
algorithm may find an updated solution that reduces both
&, and ®,. The algorithm may ultimately find a solution
that fits the data ’exactly’ (or overfits the data) and also
fits the semivariogram. Thus it is possible for the inver-
sion routine to encounter the situation where ®,; < €
cannot be corrected by increasing (. If &, < e the
solution honors data noise which causes artifacts in the
solution.

[28] Owur approach to ensuring ®, > € for all iterations is
based on the three conditions that can exist as the inversion
progresses.

2.3.1. Condition 1: Both the Data and
Semivariogram(s) Are Underfit ($,>¢ and ®,> 1)

[20] In this case [ is set so that equal importance (or

weight) is placed on minimizing ¢, and ®,,

(13)

The damping parameter « is chosen on the basis of the total

misfit of the objective function as follows:
o = c[(@’; — o)’ + B(® - 7)2] (14)

Here C is a user-chosen constant that controls the rate of

decrease in « as the objective function is minimized. The
damping parameter « must decrease with the objective
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function value. If not, the damping term will dominate the
inversion as the objective function decreases, and progress
will cease. For now, C is a user-chosen value based on trial
and error. A C value that is too large will result in slow
progress, and a C value that is too small will result in an
oscillating solution. Once a suitable C value is determined,
that C value may be used for each solution in the ensemble.
2.3.2. Condition 2: Data Are Fit and Semivariogram(s)
are Underfit (®, < € and ®,> 1)

[30] In this case Jg is not computed and row 1 of
equation (4) is removed so that the inversion focuses only
on fitting the semivariogram. Thus

ﬁk+l —_ /6/(

o1 = [ (@~ 7). (1)

2.3.3. Condition 3: Data Are Underfit and
Semivariogram(s) Are Fit (&,>¢ and &, < 7)

[31] In this case Ji is not computed and row 2 of
equation (4) is removed so that the inversion focuses only
on fitting the data. Thus the value of 3 is of no consequence,
and « is given by

! :C[(i’g—e)z}. (16)

[32] The fourth possible condition (®,; < € and @, < 7)
represents convergence. Although other choices of o and 3
are possible, the choices given above disallow a significant
overfit to &, and provide a method to optimize convergence
speed by adjusting the C value.

2.4. Obtaining Slowness Semivariograms From
Porosity Semivariograms

[33] Although in this work we present results and dis-
cussion in terms of velocity for the synthetic example, the
actual estimated parameter in velocity tomography is slow-
ness, which is the reciprocal of velocity. Therefore we use
the term slowness and velocity interchangeably to indicate
the estimated parameter. In the field example shown in the
Results section, we obtain slowness semivariograms from
porosity semivariograms using Topp’s equation [7opp et al.,
1980] which is an empirical petrophysical model giving the
electromagnetic wave slowness as a function of saturated
porosity. Ferre et al. [1996] showed that over a wide range
of porosities Topp’s equation may be approximated by the
equation

O(x) +0.1841

SO == Ts1C,

(17)

Here S(x) and O(x) are slowness and porosity at position x,
respectively, and C, is the free-space electromagnetic wave
velocity. The difference between Topp’s equation and
equation (17) is less than 3 percent for ©(x) < 0.35.
Substituting equation (17) into the slowness semivariogram
equation gives

1 L (O(xik) +0.1841  O(xy) +0.1841)
%(h)_ﬁ;( 0.1181C,  0.1181C, )'(18)
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Figure 2. Optimal (or target) horizontal and vertical
velocity semivariograms used in unconditional simulation
and synthetic velocity tomography examples.

Equation (18) can be simplified to

1
27(—)(11)7

(k) = (0.1181C,)

(19)

where yg(#) is the porosity semivariogram given by

o) = 517 3 (0(as) —6(x,))”

i=1

(20)

In our field example we use equation (19) to convert vg(/)
semivariograms to 7y,(/#) semivariograms which are in turn
used to constrain the tomographic inversion.

3. Results
3.1.

[34] In order to accurately estimate solution statistics by
sampling from the solution space, we must ensure that the
solutions are equally probable and unbiased. In this section
we discuss biasing issues related to fitting the spatial
covariance and we present a practical methodology for
eliminating spatial covariance biasing.

[35] To evaluate biasing issues we use the concept that,
for an unconditional solution, unbiased cells display no
tendency to vary or assume a value that is different than any
other unbiased cell. That is, each unbiased cell has the same
probability distribution (e.g., mean and variance) in the
unconditional case, and the ensemble mean and variance
of unbiased cells will approach the expected mean and
variance as the number of solutions in the ensemble
increases. Because the semivariogram gives no information
concerning absolute values, the expected mean is insensitive
to the semivariogram and depends solely on the starting
models in the unconditional case. If starting-cell values are
chosen from distributions with differing means, then cell
ensemble means will also have differing values resulting in
a bias caused by the choice of starting models. We avoid
starting-model bias by populating each starting-model cell
with values sampled from the same normal distribution. The

Examining and Removing Solution Bias
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expected mean in this case is the mean of the starting-model
probability distribution, and the ensemble mean of unbiased
cells will approach this expected mean (for the uncondi-
tional case) as more solutions are added to the ensemble.

[36] In contrast to the expected mean, the expected
variance of unbiased cells is dependent upon the semivario-
gram and independent of the starting-model distribution.
The starting-model variance of each cell has no effect on the
expected variance of that cell, because the expected vari-
ance is specified by the semivariogram sill (in the uncon-
ditional case only). When the spatial covariance is
stationary, directional semivariograms have the same sill
and the expected variance for each cell is the sill value. In
this study however, we show a synthetic example using
semivariograms having different sill values in the horizontal
and vertical directions. In this case the expected variance
lies between the sill values and the ensemble variance of all
unbiased cells will approach this expected variance. We also
consider a field example for a system which is nonstationary
overall. The system includes subregions (layers and lenses)
which have means and variances that are consistent within a
given subregion but different between subregions [Barrash
and Clemo, 2002]. As we will show, ensemble variance
estimates can be biased because of the decreasing number of
cell pairs near model boundaries. If unaccounted for, this
spatial covariance biasing decreases the utility of using ISS
to estimate solution uncertainty measures such as ensemble
variance near boundaries.

[37] Spatial covariance biasing arises because of unequal
sampling of the model grid at different scales (i.c., lag
separations) when computing the semivariogram sensitivi-
ties by equation (12). For example, consider the horizontal
and vertical semivariograms shown in Figure 2. These
semivariograms represent a nonstationary model (layered
system with different means and variances per layer; note
the resulting different horizontal and vertical sill values
[Kupfersberger and Deutsch, 1999; Barrash and Clemo,
2002]) and were chosen to demonstrate the indifference of
the ISS method to stationarity. That is, ISS is equally useful
for any specified semivariogram or system of semivario-
grams regardless of stationarity.

[38] Figures 3a, 3b, and 3c show three unconditional
solutions generated by ISS that conform to the semivario-
grams in Figure 2 up to a lag of 3 m. The division of these
solutions into zones will be explained shortly. To demon-
strate spatial covariance biasing, consider a single cell
located at position (—3 m, 5 m) on the left edge of the
model. From that cell the model extends vertically to the
maximum lag distance of the vertical semivariogram (3 m)
both above and below. Thus this cell is associated with an
equal number of pairs at each lag in the vertical direction
(assuming a uniform grid). In the horizontal direction there
are no values to the left of the cell, and consequently a lesser
number of cell pairs compared to the vertical direction. Thus
the horizontal semivariogram is less sensitive to this cell
than is the vertical semivariogram. Because of this sensi-
tivity difference, the inversion algorithm uses this cell more
strongly to fit the vertical semivariogram than the horizontal
semivariogram, resulting in a bias toward the vertical semi-
variogram. If we move the cell to the right the length of one
horizontal lag to (—2.8 m, 5 m), the horizontal semivario-
gram value at the first lag is no longer biased because there
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ISS unconditional simulation results demonstrating spatial covariance biasing of the velocity

model using semivariograms in Figure 2. (a, b, and ¢) Sample ISS unconditional solutions. (d, e, and f)
Ensemble mean of 10, 50, and 100 solutions, respectively. (g, h, i) Ensemble variance of 10, 50, and
100 solutions, respectively. The ensemble mean is unbiased in all regions I-1V. For ensemble variance,
region [ is unbiased. Region II is biased toward the vertical semivariogram. Region III is biased toward
the horizontal semivariogram. Region IV is biased toward both the horizontal and vertical semivariogram.

are equal numbers of pairs in the horizontal and vertical
directions with respect to the first lag. As we continue to
move the cell to the right, the vertical bias is removed at
increasing scale lengths because the sampling discrepancy
is eliminated. When the cell is the maximum horizontal
semivariogram lag distance away from the left edge (3 m),
the vertical bias at all scale lengths is eliminated and the
solution at that cell is no longer biased. Horizontal bias can
be demonstrated in the same manner by considering, for
example, a cell at (2.5 m, 13 m) and progressively moving
the cell downward until the horizontal bias at all scales is
removed at (2.5 m, 10 m).

[39] To show the effects of spatial covariance biasing on
ensemble statistics, we again consider the models shown in
Figures 3a, 3b, and 3c. Each of these models represents one
unconditional solution taken from an ensemble of many
solutions. To generate each solution, we create a random,
normally distributed starting model with a mean velocity of
80 m/us, a variance of 4 (m/us)?, and no spatial correlation.
Because the final model depends in part on the starting
model, we begin each inversion with a random starting model
so that the final solution is not biased by the starting model.
The value of the starting-model variance is of no conse-
quence in the ensemble variance because the ensemble

8 of 18



W10422

JOHNSON ET AL.: INCORPORATING GEOSTATISTICAL CONSTRAINTS

W10422

¢ 10
8
6 2 g
S E
s ° Es
w 4 >
3 S7
) >
1 6
0
012 345012345012 343F5
Distance (m) Distance (m) Distance (m)
10
i} o
w
8 o 3
€’ E
= S
5 ° =2
g 5 g
c
3 4 g
L [0 -
3 =10
3
2 g
1
0 w
012 345012 3 45
Distance (m) Distance (m)
1 L
10

Elevation (m)
O = MW A OO N ®WOO

0 12 3 4 50 1

Distance (m)

2 34 50 1
Distance (m)

Velocity (m/micro s)
o]

2 3 4 5
Distance (m)

Figure 4. Synthetic velocity tomography results using ISS. (a) Optimal model. (b) ISS ensemble mean
(100 solutions). (c) Regularized solution. (d) Unconditional ensemble variance. (e) Conditional ensemble
variance. (f, g, and h) Sample solutions taken from the ensemble.

variance of each cell depends solely on the semivariogram
sill values. Figures 3d, 3e, and 3f show the ensemble
means of 10, 50 and 100 unconditional solutions respec-
tively. As the number of solutions in the ensemble
increases, the ensemble mean of each cell approaches the
expected mean of 80 m/us demonstrating that the ensemble

mean is not subject to spatial covariance biasing, and is not
biased. The fact that the unconditional ensemble mean is
only dependent upon the starting-model mean becomes
important when analyzing the conditional ensemble mean,
because differences in the conditional ensemble mean arise
to satisfy the conditional data (e.g., traveltime data in this
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Figure 5. Typical histogram of (a) data prediction
residuals and (b) model prediction residuals. Each histo-
gram displays Gaussianity, suggesting an unbiased solution.

case) and thus give valuable insight into the resolving
capability of conditional data.

[40] The effects of spatial covariance biasing on ensem-
ble variance are demonstrated in Figures 3g, 3h, and 3i
which show the ensemble variance of 10, 50, and 100
solutions respectively. The ensemble variance of each cell
in the unbiased region (region I) approaches the expected
value of approximately 27 (m/us)”, the average value of
the horizontal and vertical semivariogram sills. In region II
the ensemble variance increases toward the boundaries
because solutions are vertically biased and the vertical
semivariogram has a greater sill value. The effects of the
vertical bias are also evident at the solution boundaries of
region II (Figures 3a, 3b, and 3c) which display greater
relative variability. In region III, where the horizontal
semivariogram dominates at the upper and lower bound-
aries, the ensemble displays lower variance which is also
evident in each solution. Region IV is both vertically and
horizontally biased. Region I is the only region which
displays the unconditional expected variance due to the
combined constraints imposed by the vertical and horizon-
tal semivariograms.

[41] At this point in the development of ISS we remove
spatial covariance biasing by expanding the model bound-
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aries beyond the region of interest to a distance of the
maximum horizontal and vertical lag distance in the hori-
zontal and vertical directions respectively. Although remov-
ing the bias by expanding the boundaries increases the size
of the model grid, it may not be necessary in many
circumstances. For instance, it is often necessary to expand
the boundaries of numerical models beyond the region of
interest to reduce boundary effects. In such cases, the model
will not be biased if the boundaries are at least the
maximum lag distance away from the region of interest.

[42] We found that, in general, expanding the boundaries
does not cause a large increase in computation time for two
reasons. First, the expanded part of the model only applies
to the semivariogram constraints. The data are not sensitive
to (and data sensitivities are not computed for) the expanded
portion of the model, which essentially becomes uncondi-
tional. Second, the semivariogram sensitivities are efficient
to compute. However, expanding the boundaries will have a
more pronounced effect on memory requirements, particu-
larly for very large 3D models. We recognize that the
necessity of expanding model boundaries is a drawback to
the ISS method, but only if model boundaries are closer than
one semivariogram range to the region of interest. We are
currently investigating more efficient methods of removing
spatial covariance biasing. For this work, we remove spatial
covariance biasing by expanding the boundaries in the
examples that follow, but only the region of interest is
shown.

3.2. Synthetic Data Example

[43] In this section we demonstrate ISS using a synthetic
data example. Figure 4a shows the synthetic radar velocity
model used to construct the semivariograms shown in
Figure 2. We generated traveltime data by solving the
eikonal equation [Aldridge and Oldenburg, 1993] with 41
sources placed at 0.25 m vertical increments in the source
well at the left boundary of the model. Receivers were
placed at the right boundary of the model with the same
configuration as the source well for a total of 1681 source-
receiver pairs (i.e., 1681 traveltime data). The horizontal
distance between the source well and receiver well is 5 m.
The traveltime data were contaminated with normally
distributed noise having a mean of zero and a standard
deviation of 0.5% of the maximum traveltime. Each grid
cell is 0.1 m by 0.1 m for a total of 5000 grid cells. The
semivariograms were generated with the kt3d program of
the GSLIB library [Deutsch and Journel, 1998] using a
search angle of 25 degrees and a maximum search width of
0.8 m. Semivariogram values were estimated at approxi-
mately 0.2 m lags.

[44] We generated an ensemble of conditional solutions
using the synthetic traveltimes and velocity semivario-
grams. Variations in the ensemble mean and variance
typically stabilized to an approximately constant value after
about 60 solutions. We generated 100 solutions for this
example. To determine each starting model, we computed
the mean and standard deviation of the apparent velocity for
each source-receiver pair. The apparent velocity is the
source-receiver separation distance divided by the travel-
time. The starting models were then populated with normally
distributed velocity values having no spatial correlation and a
mean and variance equal to the mean and variance of the
apparent velocity.
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Figure 6. Typical convergence of normalized (a) data
norm ®, and (b) semivariogram norm ®,. As discussed in
section 2.3, the weighting parameter § is chosen so that
equal weight is placed on ®, and P, until iteration 10 when
®, drops below the convergence threshold. At iteration 11,
the inversion focuses only on reducing ®, and ®; drops
below the convergence threshold, causing the solution to
meet the convergence criteria.

[45] The optimal velocity distribution, ensemble mean,
and regularized solution are shown in Figures 4a, 4b, and
4c, respectively. Figure 4c is regularized using Tikhonov
type regularization [7ikhonov, 1963] by constraining the
inversion to minimize the first spatial derivative between
cells with equal weighting in the horizontal and vertical
directions. The regularization weighting is chosen so that
the normalized chi-square value of squared data residuals is
equal to 1 (i.e., the data are appropriately fit given the noise
level).

[46] The unconditional and conditional ensemble varian-
ces are shown in Figures 4d and 4e. The unconditional
variance is also shown in region I of Figure 3i, but with a
different color scale. Figures 4f, 4g, and 4h are example
conditional solutions taken from the ensemble. Each solu-
tion displays the general larger-scale structure of the optimal
model. Each solution also includes smaller-scale features
which are in the null-space of the traveltime data, (i.e., are
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not resolved by the traveltime data), but are included in the
model in order to satisfy the short-lag semivariogram
constraints.

[47] We can investigate the conditional solution bias for
the synthetic example using residuals analysis. Assuming
the data noise are normally distributed (a condition imposed
in this synthetic case), we would expect the traveltime
residual (predicted minus observed data) to be normally
distributed for an unbiased model. Figure 5a shows a typical
data residual histogram and, for comparison, a normal
distribution with zero mean and the same standard deviation
as the residual histogram, for a typical model in the
ensemble. The residuals display a normal distribution with
zero mean, suggesting unbiased velocity estimates. In this
synthetic case, we can also investigate bias in the condi-
tional solution by examining the distribution of the differ-
ence between predicted and optimal model values, which
should also be zero mean and normally distributed for
unbiased velocity estimates. Figure S5b shows the model
residual distribution for a typical solution in the ensemble.
The model residuals also display normality which further
indicates that the velocity estimates are unbiased.

[48] Figure 6 shows the typical convergence sequence for
a solution. Each term of the objective function decreases
toward the convergence threshold at approximately the
same rate because the weighting term [ is chosen such that
equal weight is placed on each term. At iteration number 10,
®, drops below the convergence threshold so that at
iteration 11, the inversion focuses only on fitting ®,,
causing ¥, to drop slightly below the convergence threshold
and the solution to converge. Note that at iteration 11, @,
increases slightly (because the inversion is neglecting the
semivariogram term), but does not increase above the
convergence threshold. If &, did increase above the con-
vergence threshold, then the inversion would extend to
iteration 12 which would focus only on minimizing the
semivariogram norm as discussed in section 2.3.

[49] Figure 7 shows the typical velocity semivariogram
fit for a given solution in the conditional ensemble (see
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Figure 7. Optimal velocity semivariograms and typical
experimental velocity semivariogram values for the syn-
thetic conditional solutions. The optimal (or target)
semivariograms are equivalent to those shown in Figure 2
up to a lag of 3 m.
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Figure 8. (a) Zones 1 through 4 between wells B3 and BS5 as identified by borehole porosity logs
[Barrash and Clemo, 2002]. (b) Zonal slowness semivariograms for each zone. The vertical range and sill
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uncertainty in the horizontal range. In this case, the horizontal range for each zone is assumed to have a
normal probability distribution with a mean of 6 m and a standard deviation of 2 m, giving the shaded
horizontal semivariogram probability distribution with respect to lag distance.

Figures 4f, 4g, and 4h, for example). The semivariogram fit
is specified by Wy, whose diagonal elements are 1% of the
corresponding semivariogram magnitude in this case.

3.3. Field Example

[s0] The Boise Hydrogeophysical Research Site (BHRS)

is a research well field in a shallow unconfined aquifer
consisting of heterogeneous coarse-grained fluvial deposits.
The arrangement of wells at the BHRS is designed to
capture the three-dimensional distributions of geologic,
hydrogeologic and geophysical parameters [Barrash and
Knoll, 1998]. Barrash and Clemo [2002] adopted a hierar-
chical (multiscale) approach to characterize the geostatisti-

cal structure of porosity at the BHRS on the basis of neutron
porosity logs. They examined four stratigraphic layers
within the saturated zone with different geostatistical char-
acteristics, including the region between wells B3 and B5
(Figure 8a) which we consider for a field example here.
Zones 1 through 3 are modeled with exponential semivario-
grams and zone 4 with a periodic semivariogram. Zones 1
and 3 display lower porosity means and variances than
zones 2 and 4. The semivariograms for each zone are well
constrained in the vertical direction. In the horizontal
direction, sill values are relatively well constrained but the
ranges for each zone are uncertain because of limited
horizontal sampling [Barrash and Clemo, 2002].
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Figure 9. (a) B3—B5 ensemble mean. (b) B3—B5 ensemble variance. (c) Regularized solution. The
regularization constraints for this solution minimize the first spatial derivative of the velocity values with
3 to 1 horizontal to vertical weighting. (d, e, and f) Sample solutions taken from the ensemble.

[51] In this field example we generate ensembles under
two different assumptions concerning the horizontal range
in each zone in order to demonstrate the effects of semi-
variogram uncertainty on the ensemble. In the first case, we
assume the range is known and is approximately 6 m for
each zone as shown in Figure 8b. (Note that in this example
the semivariograms are displayed in terms of slowness
which is the reciprocal of velocity). In the second case,
we represent the uncertainty in the horizontal semivario-
gram by assuming each zone has a normally distributed
horizontal range with a mean of 6 m and a standard
deviation of 2 m, giving the horizontal semivariogram
probability distribution for each zone shown in Figure 8c.
Before each solution is constructed, a range value for each
zone is randomly sampled from the horizontal range distri-
bution described above. Once the ranges are sampled, the
corresponding horizontal target semivariograms are con-
structed and used to constrain the spatial covariance in each
zone. Thus, in the second case, the uncertainty in the
horizontal range is incorporated into the ensemble and is
expressed in the ensemble statistics. We expect less resolu-

tion in the ensemble mean and a larger ensemble variance
for the second case where uncertainty in the horizontal
semivariogram is taken into account.

[52] We used equation (19) to convert porosity semivario-
grams to radar slowness semivariograms and we used radar
traveltime data with sources in well B3 and receivers in well
BS5. Data were collected at 20 cm receiver increments and
5 c¢m source increments for a total of 12304 traveltimes. On
the basis of an independent noise analysis, we assume
normally distributed noise in the traveltime data with a
standard deviation of 0.5% of the maximum traveltime. For
each inverse solution the spatial covariance structure is
constrained by the corresponding zonal semivariograms,
with no spatial correlation constraints across zone bound-
aries. Starting models are constructed in the same manner
as discussed in the synthetic example. To invert the data
we use a 6.8 m by 15.5 m grid of 0.01 m by 0.01 m cells
for a total of 10695 cells. For comparison, we also
compute a regularized solution using the same data, same
noise assumption, and same grid configuration. The model
constraints for the regularized solution specify first spatial
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derivative minimization with a ratio of 3 to 1 horizontal to
vertical weighting.

[53] For the first case (e.g., semivariograms in Figure 8b),
we generated an ensemble of 100 solutions which we used
to compute the ensemble mean (Figure 9a) and variance
(Figure 9b). We recognize that the ensemble variance is
biased to some degree because of the boundaries between
zones. However, we expect the bias to be small because the
horizontal and vertical semivariograms have the same sill
value in any given zone. Figure 9b shows the regularized
solution, and Figures 9d, 9e, and 9f show typical ISS
solutions taken from the ensemble. Figure 10 shows the
typical semivariogram fit for each zone.

[s4] We also generated an ensemble of 100 ISS solutions
for the second case where uncertainty is included in the
horizontal semivariogram (see Figure 8c). The ensemble
mean and variance are shown in Figures 1la and 11b,
respectively. Figure 12 shows a typical example of the
sampled semivariograms, semivariogram fit, and corre-
sponding solution in the ensemble where uncertainty is
included in the horizontal semivariogram range.

4. Discussion

[s55] We have shown synthetic and field examples of the
ISS method and we have discussed spatial covariance
biasing and how to account for it. Each solution matches
the semivariograms, explains the data, and represents one
equally probable possibility of capturing the model that best
describes the subsurface given the uncertainty in the data
and in the spatial covariance structure. Although the solu-
tions are used as a means of computing ensemble statistics
in this work, each solution, generally speaking, can also
provide a useful predictive model, particularly in cases
where predictions are sensitive to small-scale variability
such as in contaminant transport problems.

[s6] The ensemble mean captures the large-scale variabil-
ity well and demonstrates the resolving capability of the
data. Consider that the semivariogram constraints give no
information concerning the ensemble mean. In the limiting
case of no data, the ensemble mean of many solutions will
converge to the mean of the starting models, as shown in
Figures 3d, 3e, and 3f. Smaller-scale structures in the null-
space of the data will be averaged out and hence will not be
evident in the ensemble mean. Deviations from the mean of
the starting models that are persistent in the ensemble mean
are required only to fit the data, and thus show the
information content or resolving capability of the traveltime
data.

[57] Resolution is often investigated through examination
of the model resolution matrix [Menke, 1989]. However, in
nonlinear problems the model resolution matrix is dependent
upon the predicted model which is itself an estimate. Thus the
resolution matrix may provide a misleading estimate of the
resolution in nonlinear problems [Oldenborger, 2006].
We believe that assessing model resolution through the
ISS ensemble mean holds promise and warrants further
research.

[s8] The ensemble mean also identifies the larger-scale
structure of the subsurface. This is particularly evident when
comparing the ensemble mean of both the synthetic and
field examples to the corresponding regularized solutions.
In the synthetic example the ensemble mean appears to be a
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ISS ensemble statistics using semivariograms in Figure 8b. (a) Ensemble mean and

(b) ensemble variance for 100 solutions including uncertainty in the horizontal semivariogram range.
Note that the mean displays less resolution, and the overall variance is greater than in the case where
uncertainty is not included in the semivariograms (see Figures 9a and 9b).

spatially averaged version of the optimal solution. The
regularized solution resembles the optimal model but exhib-
its smearing artifacts typical of regularized solutions. For
example, the bottom boundary of the regularized model
exhibits a large velocity artifact that is smeared downward
from higher in the model. The regularized solution in the
field example exhibits these same features and we presume
that the ensemble mean more accurately characterizes the
primary structures of this region of the BHRS.

[s9] The ensemble variance provides a useful measure of
the worth of data in reducing solution uncertainty. For the
unconditional synthetic case, the ensemble variance of each
cell approaches the expected unconditional variance as the
number of solutions in the ensemble increases. In ISS the
unconditional variance, which is determined by the semi-
variogram sill values, is the greatest possible variance that
any cell can assume. When data are added to the solution,
those cells that are sensitive to the data are constrained and
the ensemble variances of those cells are reduced. Cells that
are less sensitive to the data are free to vary over a wider
range and will exhibit greater ensemble variance values up
to the limit of the expected unconditional ensemble variance
(Figures 3d and 3e). The unconditional ensemble variance
describes the model uncertainty given only the spatial
covariance information. The conditional ensemble variance
describes the model uncertainty given both spatial covari-
ance and traveltime data. In this case, the traveltime data
display great worth in reducing solution uncertainty with
respect to what is known given spatial covariance informa-
tion only.

[60] Although the ensemble mean and variance are useful
for characterizing the subsurface, one of the more useful
products of the ISS method is the ensemble of solutions
itself. The ensemble provides a mechanism whereby a range
of possible predicted conditions can be investigated, subject

to our knowledge about the subsurface as given by the data
and spatial covariance structure and associated uncertainty.
Just as the solution ensemble describes the probability
distribution of subsurface states given the data and spatial
covariance information, predictions based on the ensemble
describe the probability distribution of predicted conditions
given the same information.

[61] In order for the ensemble statistics to accurately
represent the posterior probability distribution, solutions in
the ensemble must be unbiased, must be properly repre-
sented probabilistically, and there must be enough solutions
in the ensemble to accurately describe the solution space.
We have shown that the ISS method provides unbiased
solutions in the unconditional case, (so long as model
boundaries are expanded to remove spatial covariance
biasing), demonstrating that the solutions are not biased
by the spatial covariance constraints. We have also shown
that solutions are unbiased in the conditional case (i.e.,
model and data residuals have zero mean and are normally
distributed as in Figure 5) demonstrating that the solutions
are not biased by the inversion procedure (i.e., the choice of
« and ).

[62] We have shown how uncertainty in the spatial
covariance structure can be included in the ensemble.
Models with a more likely structure will occur more often
in the ensemble such that the solution probability is cor-
rectly represented, given the prior uncertainty in the semi-
variogram. We believe that including semivariogram
uncertainty is important because, in practice, the spatial
structure is rarely well known. For example, in geostatistical
inversion techniques a few semivariogram parameters are
often fitted to many data in order to estimate the spatial
structure of the subsurface. However, it is known (and is
shown in this paper) that the same data set can be fit equally
well by many different semivariograms. Then, even though
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Figure 12. Example target semivariograms and corresponding solution for the case when uncertainty is
included in the horizontal range. Lines represent the target semivariograms, and circled pluses represent
the predicted experimental semivariogram values. Note the horizontal range and corresponding horizontal
spatial covariance structure for each zone. For instance, zone 2 has a short range resulting in a more
patchy structure, while zone 3 has a longer range resulting in a more layered structure.

many data are fit to a few semivariogram parameters in the
geostatistical inversion approach, the estimation problem is
still nonunique. If one particular estimated semivariogram is
used as prior information, the resulting uncertainty esti-
mates will likely be overly optimistic because many other
semivariograms will work equally well. This point is
illustrated by comparing Figures 9a and 9b to Figures 11a
and 11b. When the semivariograms are assumed to be
known, the ensemble mean exhibits greater resolution (9a)
and smaller overall variance (9b) than when uncertainty is
expressed in the horizontal range (11a and b).

[63] The primary computational expense of implementing
ISS is generating an ensemble of solutions. Computing the
semivariogram sensitivities is a relatively efficient process.
For instance, our BHRS model consists of 10695 cells and
computing the semivariogram sensitivities at each nonlinear

iteration requires approximately 15 seconds s. Generating
100 solutions in this case required approximately 6 hours on
a computer running a 2.4 GHz processor. Note that the
convergence scheme we have presented is robust but is not
optimized. While the processing demands of ISS are not
prohibitive, we believe they could be reduced significantly
by implementing inversion optimization techniques. In ad-
dition, the memory required to implement ISS is relatively
small. One row is added to Jr for each lag in each
semivariogram. For instance, in the synthetic example Jr
has 30 rows compared to the 5000 rows in Jg. For the field
example, Jp has 200 rows and Jg has 10695 rows.

[64] With respect to flexibility, the ISS method will find
solutions honoring any semivariogram or number of semi-
variograms without regard to stationarity or anisotropy, so
long as there is an overlapping space of solutions that also
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honor the data. In addition, implementing ISS into existing
deterministic codes can be accomplished in a relatively
straightforward fashion by augmenting the existing Jacobian
matrix with Jr and adding the o and [ parameters to the
inversion. For instance, in our field example an existing ray-
based tomography code [A4ldridge and Oldenburg, 1993]
was modified to include Jr, o and 3 in order to implement
ISS. As we have shown, ISS can also be used as a method of
unconditional simulation by disregarding the data term of the
objective function. In that case, the ensemble mean will be a
function of the mean of the starting models, and the
ensemble variance will be controlled by the semivario-
gram(s) sill value.

5. Summary

[6s] We have presented a method of sampling equally
probable models from a space containing nonunique models
that explain a particular data set and follow specified spatial
covariance properties as expressed by one or more semi-
variograms. Because the models generated are geostatisti-
cally accurate they are useful as predictive models where
small-scale variability is important. Because the models are
equally probable, the ensemble statistics provide an accurate
method of estimating (1) what features the data are able to
resolve and (2) the worth of data for decreasing uncertainty
pertaining to the existence of those features. We have also
shown a realistic example of how uncertainty in spatial
covariance of the subsurface may be represented in the
ensemble. Assuming the uncertainty in the spatial covari-
ance structure is adequately expressed in the inverse for-
mulation, the ensemble of models and resulting statistics
describe what is known about the subsurface given a
particular data set and covariance structure.
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