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Abstract

Quantum-dot cellular automata are one of sev-
eral new device architectures whose operation
is based on local interactions, much like cel-
lular automata. We have implemented several
rule sets for a cellular automaton that could be
used to model the behavior of quantum-dot cel-
lular automata and used them to test most of
the wire and gate configurations proposed for
these devices. Arrangements of cells for which
any particular cell has neighbors which are not
adjacent to each other generally behave as ex-
pected. Unfavorable arrangements of cells such
as those with bends and crosses tend to either
have incorrect outputs or be unstable for some of
the possible inputs. These results suggest that
quantum-dot cellular automata need more than
strictly local interactions in order to operate cor-
rectly.

1. Introduction

Much of the improvement in performance of
large-scale integrated circuits over the years has
been achieved by reducing the size and thus in-
creasing the density of the component devices
but this process is limited by a number of ef-
fects. As devices get more closely packed, the
amount of heat generated gets so large that op-
erating temperatures of the devices rise, degrad-
ing the performance of the devices. Also para-
sitic capacitance from the the necessary electri-
cal connections between devices limits the speed
of the devices. Finally, as devices sizes shrink,
quantum mechanical effects are likely to domi-
nate device behavior. New device designs will
need to mitigate, or better yet, take advantage
of these quantum effects.

Cellular automata (CA) are discrete dynamical
systems whose evolution is based on local inter-
actions. Bate [1] proposed the possibility of de-
vices that operate like cellular automata in the
sense that they interact via local forces instead
of current-carrying wires. One particular device
of this type which has been investigated in great

detail is quantum-dot cellular automaton (QCA)
proposed by Lent et al. [2].

A QCA device typically consists of four quan-
tum dots located on the corners of a square.
These dots are populated by four electrons with
a matching positive background charge to keep
the device electrically neutral. The dots are lo-
cated close enough together that electrons can
tunnel between the dots. Coulomb interactions
between the electrons are expected to constrain
the system to two possible states. By combining
a number of these devices, the functionality of
conventional logic gates can be produced.

The possibility of creating the CA analogue of
QCA has been suggested [2] but no published
work on the subject has appeared. In this pa-
per, we report our attempts to design a CA to
model QCA. One reason for doing this is to de-
termine whether such a CA is possible at all. If
it is possible, the CA could be used for modeling
QCA circuits.

2. Implementing the Cellular Automa-
ton

A CA consists of a uniform cellular space which
is defined by the allowed states for the cells, the
neighborhood of the cells and a set of transition
rules. Each cell can exist in any of a finite num-
ber of states. The neighborhood of a cell consists
of the cells with which it interacts. The final
component of a CA is the transition rules which
determine how the states of the cells change with
time. The following paragraphs describe our im-
plementation of each of these components.

There are two electrons and four dots in a QCA
cell. Classically, each electron could go into any
of the dots but under most circumstances, the
Coulomb repulsion between the electrons should
insure that the two electrons will occupy diag-
onally opposite positions. For the purposes of
this work, it will be assumed that only these two
states will occur. Thus, a CA that models the
idealized QCA system being explored here needs
to provide for cells of two polarities. These will
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Table 1: States needed for a CA to represent QCA.

State | Cell Type Polarization | Status
0 | quiescent cell 0 fixed
1 | input cell 1 fixed
control cell 1 fixed
2 | input cell -1 fixed
control cell -1 fixed

3 | output cell 1 variable

active cell 1 variable

4 | output cell 0 variable

active cell 0 variable

5 | output cell -1 variable

active cell -1 variable

be designated +1 which corresponds to logical 1
and —1 for logical 0. An unpolarized cell with
the electrons uniformly distributed is also possi-
ble; this will be designated state 0. The circuits
that are built with QCA do not have devices lo-
cated at every possible location, so the CA also
needs to have a null state to represent cells which
do not contain devices. For input cells and for
the control cell of a majority gate, cells which
are fixed in a particular state are needed.

The states used in the work described here are
summarized in Table 1. State 4 represents un-
polarized cells which either haven’t yet been as-
signed a state or have a symmetric neighbor-
hood. State 0 is used for lattice positions which
don’t contain a QCA device. A QCA circuit has
devices at fixed positions; they cannot appear
and disappear as a function of time. Because
the QCA are intended to be used in circuits or
computations, it is convenient to have cells that
are designated input and output cells but these
are not functionally distinct states.

Because the behavior of some of the gates de-
scribed for QCA depend on diagonal interac-
tions, a neighborhood of at least 8 cells is needed
for the CA. Since the Coulomb interaction is
long-range, larger neighborhoods may be needed
to accurately reflect the physical processes that
occur in QCA systems. Tougaw and Lent (3]
suggest that interactions are likely to occur over
three intercellular distances. For this work, the
neighborhoods explored include a maximum of
24 cells which corresponds to two intercellular
distances. Adding more cells to the neighbor-
hood would be straightforward but unlikely to
significantly change the conclusions of this study.

Authorized licensed use limited to: Boise State University. Downloaded on April 28, 2009 at

Some care has to be taken in laying out cir-
cuits for testing so that circuit elements that are
meant to be independent are far enough away
from each other that cells in one aren’t within
the neighborhood of the cells in the other. Pre-
sumably, some such design rules would also be
needed in real QCA circuits.

Three sets of transition rules were investigated.
The first sets of rules are based on majority vot-
ing; each neighbor casts a vote to determine the
next state of a cell. The simplest way to do this
is to give all neighbors an equal vote. The state
of a cell in the next cycle is determined by the
sign of the sum of the votes of all its neighbors.
Horizontal and vertical neighbors have a vote of
1 since such cells tend to have the same polariza-
tion. Neighbors located on the diagonal have a
vote of —1 to reflect the fact that QCA cells lo-
cated diagonally tend to alternate polarity. For
the larger neighborhood, there are four cells in
the outer ring which are situated symmetrically
enough relative to the center cell that they are
given no vote in the outcome.

Because the Coulomb effect is inversely propor-
tional to distance, it is physically unreasonable
to expect the magnitude of the effect of all neigh-
bors to be the same. To empirically correct for
this effect, a set of weighted voting rules was de-
veloped. The center-to-center distance between
two diagonal cells is V2 times that of lateral
neighbors. To approximate this, diagonal neigh-
bors were given a vote with magnitude % that
of the lateral ones in the same ring. Neighbors
in the second ring were given a weight that is
half that of those in the first ring since they are
twice as far away on average. These weights are
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Figure 2: A symmetric configuration of cells that results in an unpolarized cell.

shown in Figure 1.

It is possible to have symmetric configurations
of neighbors which result in a net vote of zero.
An example of such a situation is shown in Fig-
ure 2. Under these circumstances, some kind
of tie-breaking is needed if cells are required to
be in one polarization or the other as might be
expected physically. Three different approaches
were implemented. In the first approach, cells
were allowed to be in a neutral state. The sec-
ond approach was to leave the cell in the same
state it was in to begin with. This has the effect
of giving the cell a vote in its future. The third
approach was random tie-breaking. In a sense,
this method reflects the fact that not everything
in a real device can be completely controlled;
there are always some random effects present.

The final technique for determining how a cell
should change in response to its neighbors is to
determine which polarity results in the lowest
energy. The total Coulomb energy of each

m m
WCoulomb = Z E

J=1k=j+1

9192
4mer i

(1)

possible configuration is calculated for both po-
larities of the central cell. A cell will take the
polarity which results in the lowest energy. If
both polarities have equal energy, the cell will
be given a polarity of 0. Tie-breaking is used to
resolve this as it was for the voting rules.

3. Results

Most of the wire and gate configurations pro-
posed for QCA have been tested using the rules
discussed above. The results for wires will be
discussed in detail and the results for the gates
will be summarized. More detailed results can
be found in Cole [4].

Figure 3a shows the progression of changes for a
wire consisting of a line of cells of which only the
input cell is initially polarized. The polarization
of the input cell propagates down the wire as
the CA runs. The final state of the wire is the
correct one independent of both the rules used
for the CA and the size of the neighborhood.
The propagation of an input polarization down
an initially quiescent diagonal wire works as ex-
pected for neighborhoods consisting of 8 cells.
For a 24-cell neighborhood, however, the signal
doesn’t propagate properly as can be seen in Fig-
ure 3b. Initially, the input cell switches the next
two cells down the line, into the same polarity
creating a kink. Once this kink forms, it tends to
persist. Ultimately, the wire oscillates between
two states with outputs of opposite polarity. Ef-
fectively, the update scheme for the CA prevents
the system from correcting itself.

Initial configurations in which all the cells are
initially polarized do not work as well. Figure 4a,
shows a starting configuration in which all cells
but the input cell take the final polarizations of
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Figure 3: Stages in the CA operation of initially quiescent wires. a) Regular wire. b) Diagonal wire.

a wire that has a particular input and the polar-
ization of the input cell is switched. If the CA
is allowed to run from this initial state, it does
not switch properly. If there is no tie-breaking,
the cell next to the input becomes unpolarized
and does not change further as shown in Fig-
ure 4b. If the current state is used to break the
tie, the wire remains in the initial configuration
indefinitely. This is also true if the neighborhood
is made larger. The only case in which the CA
gives the proper results for this initial state is the
case of an 8-cell neighborhood with random tie-
breaking. Here the output will eventually settle
to the desired state but not very efficiently. The
7-cell wire of figure 4a was run 1000 times with
an 8-cell neighborhood and random tie-breaking.
The average number of cycles needed to reach
the final configuration was 52 compared to the 6
cycles needed in the ideal case. Similar behavior
is observed for a diagonal wire which has been
initialized in the same way. With 24 neighbors,
even random tie-breaking is not enough to allow
the wires to reach the desired final state.

A wire with a bend also leads to problems. A
progression similar to that in the previous figure
is shown in Figure 5. The problem can be seen
by looking at the second and third parts of the
figure. The cell before the corner will cause both
the corner cell and the first cell around the cor-
ner to switch. However, these two cells switch to
opposite polarities. The corner cell is now in a
symmetric neighborhood; with no tie-breaking,

0-7803-7215-8/01/$10.00©2001 IEEE.

it will become unpolarized in the next cycle. The
circuit as a whole oscillates between two final
states. Using the current state to break the tie
also results in a cyclic final state. The last two
cells remain perpetually out of phase with each
other. Using a larger neighborhood results in
a stable but incorrect final state. A bent diag-
onal wire has basically the same behavior as a
straight one.

4. Summary

Several possible sets of CA rules that could be
used to represent the operation of QCA have
been investigated. Both empirical rules that
implement the qualitative arguments that are
useful for describing QCA operation and rules
determined from a classical calculation of the
Coulomb energy for each possible configuration
have been investigated. Interaction over one
and two intercellular distances have been investi-
gated. Most of the wire and gate configurations
that have been suggested for QCA were tested
using these rules. The overall behavior of the
CA did not vary significantly between the dif-
ferent combinations of options studied. Some
general observations about the CA behavior are
discussed below.

In general, the CA worked well only for configu-
rations which satisfy some fairly restrictive lay-
out guidelines. Arrangements of cells which are
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Figure 4: Stages in the CA operation for a regular wire whose input has been switched from one polarization

to the opposite. a) Wire after input has been switched. b) After one cycle with no tie-breaking.
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Figure 5: Stages in the CA operation for an initially quiescent wire with a bend in it.

relatively sparse generally behave as desired for
most of the rule sets that were tested. Sparse-
ness is not an absolute measure but depends
on the relative positions of cells. Arrangements
of cells for which any particular cell has neigh-
bors which are not adjacent to each other are
considered to be sparse. Unfavorable arrange-
ments such as those with bends and crosses tend
to either have incorrect outputs or be unsta-
ble (oscillatory) for some of the possible inputs.
Any configuration which has one or more cells
with neighbors that are adjacent to each other
is likely to result in “conflicted” configurations,
that is situations where the active cell and one
of its neighbors are trying to force their common
neighbors into opposite polarities. This com-
monly results in cyclic behavior but can also
result in incorrect logic. The fact that several
neighbors get switched at the same time suggests
that trying to implement some kind of time-
based tie-breaking would not be trivial. These
results suggest that QCA based on Coulomb ef-
fects will need something other than strictly lo-
cal interactions if they are to operate correctly.

For all of the circuit elements tested, the de-
sired final state of the circuit was stable. The
problem is that this stable state isn’t necessar-
ily reached from the initial configurations that
are likely to be encountered. Switching an in-
put from one polarity to the other generally re-
sults in a logically incorrect state for the CA. In
some measure, this is related to the problem of
tie-breaking discussed below. Another factor, is

that there can be a number of stable final con-
figurations for a particular choice of inputs in
a given circuit. For many circuit elements and
probably for most circuits combining these el-
ements, there can be a number of stable and
cyclic configurations which have the same con-
figuration of input cells. This is clearly not a
desirable situation for computation.

QCA are supposed to compute the result of a
calculation by finding the ground state (mini-
mum energy state) of an arrangement of cells
that represents the problem to be solved. The
CA designed here, particularly the one in which
the rules are based on calculations of the
Coulomb energy of the cells in a neighborhood,
minimizes the energy within each neighborhood
separately. This is not necessarily the same as
minimizing the total energy since the total en-
ergy of the system includes terms that aren’t
included in any of the local energy calculations.

Symmetric neighborhoods appear rather fre-
quently in the CA even though the circuit as
a whole is not at all symmetric. This suggests
that adiabatic switching [5] is likely to be nec-
essary to the successful implementation of QCA.
An effective tie-breaking mode is difficult to im-
plement. Any deterministic method of selecting
the polarization of the affected cell is likely to be
wrong some of the time. Using a random assign-
ment provides the most opportunity for the CA
to evolve away from an incorrect logical state
but there is no guarantee that this will happen
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in a timely manner. In the worst case, it could
take an arbitrarily long time.

There are a number of ways that the current
work could be extended in addition to the triv-
ial extension to larger neighborhoods. Other ap-
proaches to tie-breaking, such as one that gives a
larger vote to cells which have changed most re-
cently could be implemented. Asymmetric rules
that distinguish between input and output in
some way could be explored. A CA that has
states and rules corresponding to the rotated
cells that allow for wire crossing would make it
possible to test more interesting circuits. A 3-
dimensional CA could be devised to investigate
whether layering improves the CA operation.
Another improvement that could be added to
the enumerated rules is to allow for non-logical
states of the QCA cell.

The results of this study suggest that designing
a CA that accurately models ideal QCA behav-
ior is difficult. The following argument suggests
that the existence of a CA that accurately mod-
els QCA is improbable. If QCA truly behave as
advertised, then it ought to be possible to solve
boolean satisfiability by building the circuit of
interest and running it backwards. If the QCA
settles to a logically correct ground state, which
can easily be checked, then the circuit is known
to be satisfiable. If this happens in a polyno-
mial amount of time, then according to Lusth
and Dixon [6], P = NP. If P # NP, as many
people believe, it would be impossible to create
a CA that models QCA in polynomial time.

QCA cells have some interesting properties that
make them worth studying as a computational
paradigm. Up until now, work in this area has

0-7803-7215-8/01/$10.00©2001 IEEE.

focused on using these devices by replacing con-
ventional elements in a circuit by their QCA
analogs. This is straightforward but may not
ultimately be the best approach. With a new
computing paradigm, there might be new ways
to implement the logic of computing as well.
What is needed is a way to harness the power
of computing via energy minimization. A CA
is essentially a parallel device; a device architec-
ture based on this paradigm should be able to do
much more than perform serial computations.
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