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[1] We have investigated the potential of combining cross-hole georadar velocity and
attenuation tomography as a method for characterizing heterogeneous alluvial aquifers. A
multivariate statistical technique, known as k-means cluster analysis, is used to correlate
and integrate information contained in velocity and attenuation tomograms. Cluster
analysis allows us to identify objectively the major common trends in the tomographic
data and thus to ‘‘reduce’’ the information to a limited number of characteristic parameter
combinations. The application of this procedure to two synthetic data sets indicates that it
is a powerful tool for converting the complex relationships between the tomographically
derived velocity and attenuation structures into a lithologically and hydrologically
meaningful zonation of the probed region. In addition, these synthetic examples allow us
to evaluate the reliability of further petrophysical parameter estimates. We find that
although absolute values of the tomographically inferred petrophysical parameters often
differ significantly from the actual parameters, the clustering approach enables us to
reliably identify the major trends in the petrophysical properties. Finally, we have applied
the approach to a cross-hole georadar data set collected in a well-studied alluvial aquifer.
A comparison of the clustered tomographic section with well-log data demonstrates that
our approach delineates the hydrostratigraphic zonation. INDEX TERMS: 0915 Exploration

Geophysics: Downhole methods; 1829 Hydrology: Groundwater hydrology; 5109 Physical Properties of

Rocks: Magnetic and electrical properties; KEYWORDS: aquifer zone, cross-hole tomography, ground-

penetrating radar, multivariate statistics, unconfined aquifers

Citation: Tronicke, J., K. Holliger, W. Barrash, and M. D. Knoll (2004), Multivariate analysis of cross-hole georadar velocity and

attenuation tomograms for aquifer zonation, Water Resour. Res., 40, W01519, doi:10.1029/2003WR002031.

1. Introduction

[2] Knowledge of the distribution of hydrological param-
eters is a prerequisite for reliable predictions of groundwater
flow and contaminant transport. Traditionally, the hydrolog-
ical properties of aquifers are constrained by drilling (e.g.,
core analysis, geophysical logging) and/or tracer and pump-
ing experiments. Borehole studies provide locally detailed
information, but are inherently 1-D in nature, whereas
commonly applied tracer and pumping tests tend to
capture averaged properties of the probed region. Without
complementary information, these traditional techniques are
generally inadequate for reliably characterizing laterally
heterogeneous alluvial aquifers [e.g., Sudicky, 1986]. There
is, however, widespread evidence that spatial variations of
hydrological parameters tend to be closely correlated with
lithological changes [Anderson, 1989; Jussel et al., 1994;
Klingbeil et al., 1999]. This offers the prospect of mapping
pertinent lithological and hydrological zonations of alluvial
aquifers with modern geophysical techniques [e.g., Rubin et
al., 1992; Hyndman and Gorelick, 1996; Hyndman et al.,
2000].

[3] In electrically resistive materials, ground-penetrating
radar (georadar) can provide the highest resolution of any
geophysical technique. A number of surface and cross-hole
georadar surveys have shown the potential of this geophys-
ical tool for characterizing shallow aquifers [Beres and
Haeni, 1991; Young and Sun, 1996; Tronicke et al., 1999;
Hubbard et al., 2001], the vadose zone [Hubbard et al.,
1997; Binley et al., 2001], and exposed aquifer analogs
[Asprion and Aigner, 1999; Corbeanu et al., 2001; Tronicke
et al., 2002a]. Cross-hole georadar tomography in particular
seems to have great potential for complementing and
enhancing hydrological data obtained with more traditional
techniques. For example, Hubbard et al. [2001] found
cross-hole tomographic georadar data highly useful to assist
the development of a hydrogeological model for the sandy
aquifer at the South Oyster Bacterial Transport Site near
Oyster, Virginia. In other recent studies, Binley et al. [2001]
successfully applied the technique to map temporal changes
of the moisture content in the vadose zone, and Goldstein et
al. [2003] mapped changes in a conductive tracer plume
during its passage through cross-hole planes in the shallow
alluvial aquifer at the Boise Hydrogeophysical Research
Site near Boise, Idaho. In such monitoring studies, a
tomographic image of the site before or at the beginning
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of the experiment is used as a reference and relative changes
with respect to this reference image are mapped. In the
georadar regime of electromagnetism, wave velocity is
mostly governed by the dielectric permittivity, which in
turn depends strongly on water content and thus, for
saturated materials, on the porosity of the probed soils
and rocks [Davis and Annan, 1989; Greaves et al., 1996].
Attenuation of georadar waves is largely controlled by the
electrical conductivity of the subsurface, which may, for
example, be indicative of the clay content or of the
conductivity of the pore water [Davis and Annan, 1989].
We suggest that a combined interpretation of cross-hole
georadar velocity and attenuation tomograms may be a
useful means of characterizing alluvial aquifers. Although
interest in this approach is increasing [e.g., Hubbard et al.,
2001; Chen et al., 2001; Tronicke et al., 2002b], its potential
remains largely untapped. A major reason for this lies in the
inherent difficulty of translating the generally complex and
seemingly chaotic relationship between velocity and atten-
uation tomograms into hydrologically meaningful, zoned
subsurface models. In this study, we explore the potential of
a multivariate statistical technique known as cluster analysis
as a means of addressing this problem in a systematic and
objective fashion. We first test the validity of this approach
on two synthetic data sets and then apply it to a cross-hole
georadar data set acquired at a well-constrained hydrolog-
ical test site in North America.

2. Methodology

[4] In the following, we outline the methodological
background of our approach. First, we introduce the forward
modeling procedure that is used to simulate two synthetic
cross-hole georadar data sets. These synthetic studies allow
us to analyze the potential and limitations of the proposed
approach. We then provide details on the processing and the
subsequent tomographic inversion of the cross-hole geora-
dar data. Finally, we discuss the cluster analysis approach
for generating zoned aquifer models and discuss the models
used in this study to estimate petrophysical properties of the
resulting aquifer models.

2.1. Forward Modeling

[5] Our synthetic cross-hole georadar data are computed
using a finite difference solution of Maxwell’s equations in
cylindrical coordinates that is fourth-order accurate in both
time and space [Bergmann et al., 1999; Holliger and
Bergmann, 2002]. This efficient and accurate computational
method predicts all direct, refracted and scattered electro-
magnetic waves and accounts for the inherent 3-D radiation
and geometric spreading characteristics of dipole-type trans-
mitters and receivers. The assumption of rotational symme-
try with respect to the vertical axis implies a dominantly
layered subsurface structure, which is generally justified for
the near-surface alluvial environments considered here.
[6] The borehole georadar antennas are approximated by

infinitesimal vertical electric dipoles. The emitted source
pulse is a ‘‘Ricker’’ wavelet with a bandwidth of 2–3
octaves. The grid spacing was chosen to yield at least ten
grid points per minimum wavelength. At this level of
discretization, numerical inaccuracies due to grid dispersion
are virtually negligible for our algorithm [Bergmann et al.,
1999]. Cylindrical symmetry conditions are applied along

the left model edge and standard parabolic absorbing
boundary conditions are employed along the top, bottom
and right model edges. The efficiency of the absorbing
boundaries is enhanced by a highly diffusive buffer zone of
gradually decreasing resistivity with a thickness of several
dominant wavelengths.

2.2. Data Processing and Inversion

[7] The synthetic and the observed cross-hole georadar
data presented in this study are all processed and inverted
following the guidelines provided by Holliger et al. [2001].
The travel times of the direct transmitted wave field are
determined using a commercial semi-automated ‘‘picking’’
procedure. On the basis of these travel time picks, the
maximum first-cycle amplitudes are then determined.
Traces in which the direct transmitted wave clearly inter-
fered with other wave types, such as waves refracted at the
vadose zone boundary or at the Earth’s surface, are not
considered. The reason for this is that the corresponding
amplitude behavior associated with different ray paths
cannot be reliably reproduced with the ray-based method
used for the inversion procedure. Prior to tomographic
inversion, the picked amplitudes are corrected for the far-
field directive properties of the transmitters and receivers,
which we assume correspond to those of infinitesimal
electrical dipoles in a homogeneous medium.
[8] The picked travel times are tomographically inverted

for the velocity structure using a nonlinear inversion scheme
based on a finite difference solution of the Eikonal equation
[Lanz et al., 1998]. Our approach fully accounts for the
curvature of ray paths in heterogeneous media. The com-
puted ray paths are then used to estimate geometric spread-
ing factors and to tomographically reconstruct the
attenuation structure [Holliger et al., 2001].
[9] Ray-based amplitude tomography relies on a number

of assumptions, many of which are probably rarely fully
valid. The most important limitation of this method is
clearly rooted in its inherent assumption of weak heteroge-
neity, which in turn implies negligible ray bending, no
scattering, reflection or refraction effects, and largely un-
distorted full-space antenna radiation patterns. Holliger et
al. [2001] and Holliger and Maurer [2002] have explored
the implications of violations of these fundamental assump-
tions. They found that, although the absolute values of the
inferred electrical conductivity may differ substantially from
the actual values, the method is nevertheless useful and
reliable for outlining the larger-scale conductivity structure
as well as for constraining relative changes in conductivity.
These results are consistent with those of a number of
practical studies demonstrating the robustness of amplitude
tomography and its potential to image subsurface features
not detectable by travel time tomography alone [e.g., Olsson
et al., 1992; Wright et al., 1996; Valle et al., 1999; Peterson,
2001; Zhou and Fullagar, 2001].

2.3. Cluster Analysis

[10] Multivariate statistical methods, including cluster
analysis techniques, are powerful tools for exploring and
characterizing the relationships between various petrophys-
ical parameters [e.g., Gill et al., 1993; Barrash and Morin,
1997; Bosch et al., 2002]. Because of their suitability for
correlating and integrating information from a broad range
of observations and for classifying data into homogeneous
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groups in the absence of a priori information on the groups,
cluster techniques are widely used throughout the earth
sciences [e.g., Dumay and Fournier, 1988; Gill et al.,
1993; Fechner and Dietrich, 1997; Dietrich et al., 1998;
Hammah and Curran, 1998; Bosch et al., 2002; Güler et al.,
2002]. The fundamental principle of cluster analysis is to
group data points in a multidimensional space on the basis
of their distances (i.e., statistical measure of similarity) from
each other. Unlike many other multivariate techniques,
clustering methods do not assume a specific distribution
(e.g., multivariate normal distribution) for the used varia-
bles. It should also be noted that correlated variables do not
violate any fundamental assumptions in the cluster analysis.
[11] A distinction can be made between hierarchical and

partitioning clustering approaches. Hierarchical techniques
produce nested clusters (i.e., some clusters may be embed-
ded in others), whereas partitioning techniques produce
unitary partitioning into a predetermined number of homo-
geneous groups. Partitioning techniques are known to be
less susceptible to outliers and to be computationally more
efficient than hierarchical methods.
[12] A major objective of this study is to organize the

often seeming erratic interrelationships between the tomo-
graphically determined velocity and attenuation structures
in the shallow subsurface into a limited number of homo-
geneous groups as outlined above. This is most effectively
achieved through a partitioning approach. In this study we
use a partitioning technique known as k-means cluster
analysis [MacQueen, 1967]. Because of its conceptual
simplicity and algorithmic robustness, the k-means ap-
proach is one of the most popular and most widely used
clustering techniques.
[13] On the basis of a qualitative assessment of cross

plots of velocities and attenuations, suitably constrained by
information on the subsurface structures, we first establish

the number of clusters k that is required. Cluster formation
then involves iterative regrouping of data points to mini-
mize the variability in each cluster, that is to minimize the
distances of the objects to the respective group center
[MacQueen, 1967]. The final cluster distribution can be
sensitive to the randomly selected initial partitioning and
converge to a local minimum of the objective function. For
this reason, the algorithm is run multiple times in order to
ensure the stability of the final solution. The resulting
velocity-attenuation clusters are characterized by the means
and standard deviations of the two analyzed parameters. If
the number of clusters cannot be specified reliably by a
priori information or data analysis, statistical criteria, such
as the widely used variance ratio criterion (VRC), can help
to constrain the optimal number of clusters. The VRC
method, originally introduced by Calinski and Harabasz
[1974], uses the quotient between the intracluster average
squared distance and inter-cluster average squared distance.
The number of clusters that maximizes the value of the
VRC is recommended as the optimal solution on the basis
of this criterion. Further information on cluster analyses is
given by Kaufman and Rousseeuw [1990] and Everitt
[1993].

2.4. Parameter Estimation

[14] For each velocity-attenuation cluster in this study, we
calculate the corresponding relative permittivity er = e/e0
and the electrical resistivity r using the high-frequency
asymptotic equations for the velocity v and attenuation a
of electromagnetic waves:

v �

ffiffiffiffiffi
1

em

s
; ð1Þ

a � 1

2r

ffiffiffi
m
e

r
; ð2Þ

where e and e0 are the permittivities of the probed material
and free space, respectively, and m is the magnetic
permeability. Surficial soils and rocks are generally
nonmagnetic such that we can assume m = m0, where m0 is
the magnetic permeability of a vacuum [Davis and Annan,
1989]. From the relative permittivity er, we obtain first-
order estimates of the porosity � for the clustered units
using a two-component mixture model [Wharton et al.,
1980] for water-saturated media:

� ¼
ffiffiffiffi
er

p � ffiffiffiffiffi
emr

pffiffiffiffiffi
ewr

p � ffiffiffiffiffi
emr

p ; ð3Þ

where er
m and er

w (= 80) are the relative permittivities of the
dry matrix and water, respectively. On the basis of the
results of a closely related case study of an alluvial aquifer
[Knoll and Clement, 1999], we use er

m = 4.6. Alternatively,
the porosity � of saturated media can be estimated on the
basis of a widely used empirical relation derived by Topp et
al. [1980] relating the volumetric water content to er. For
fully saturated media, the volumetric water content is equal
to � and Topp’s equation can be written as:

� ¼� 5:3 � 10�2 þ 2:92 � 10�2er � 5:5 � 10�4e2r
þ 4:3 � 10�6e3r : ð4Þ

Figure 1. Model containing two anomalous bodies that
differ from the matrix in terms of relative permittivity (er)
and electrical resistivity (r), respectively.
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[15] Each cluster, then, is characterized by the means and
standard deviations of the velocity, attenuation, relative
permittivity, resistivity, and porosity that have been calcu-
lated using the respective parameter field. Mapping this
information into the tomographically imaged subsurface
yields a zoned subsurface image, which together with all
available complementary information, forms the basis for a
lithological and hydrological interpretation of the probed
region.

3. Synthetic Examples

[16] In this section, we test the applicability, robustness
and accuracy of our proposed method on two synthetic
cross-hole georadar data sets of increasing complexity and
realism. The purpose of these model studies is to explore the
potential of this approach for identifying lithologically
distinct and hydrologically relevant geological features

and for estimating reliable averages of pertinent petrophys-
ical parameters within these zones.

3.1. Block Model

[17] The first model is 9.0 � 8.0 m with a uniform grid
spacing of 2.5 cm. It contains two block-shaped anomalies,
one with an anomalous permittivity and one with an
anomalous resistivity (Figure 1). The material properties
in this example can be regarded as being typical of water-

Figure 2. Results of ray-based tomographic inversion and subsequent cluster analysis for the model
shown in Figure 1: (a) velocity distribution, (b) attenuation distribution, (c) cross plot of velocity versus
attenuation, and (d) clustered section. In Figures 2c and 2d, numbers and color coding refer to specific
clustered groups. In Figure 2c the crosses delineate cluster centers (mean values), with their dimensions
equal to the respective standard deviations.

Table 1. Cluster Statistics for the Block Model: Estimated Means

± Standard Deviationa

Cluster 1 Cluster 2 Cluster 3

er 15.95 ± 0.25 (16) 16.03 ± 0.08 (16) 14.65 ± 0.37 (14)
r 250.4 ± 12.9 (200) 195.5 ± 14.2 (100) 215.9 ± 10.6 (200)

aRespective input model values are shown in parentheses.
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saturated alluvial sediments with the two block-shaped
bodies representing, for example, zones of lower porosity
and higher clay content, respectively [Davis and Annan,
1989]. The source wavelet has a center frequency of
200 MHz, which corresponds to dominant wavelengths
for the model of about 0.4 m. There are 17 transmitters
and 17 receivers spaced at 0.5-m-intervals along the left and
right sides of the model. This results in a total of 289 traces.
[18] The results of the tomographic inversion and subse-

quent grouping of velocity and attenuation values via cluster
analysis are shown in Figures 2a–2d. The velocity tomo-
gram (Figure 2a) clearly outlines the high-velocity zone
corresponding to the anomalous body characterized by
lower permittivities, but shows no indications of the resis-
tivity anomaly. In the attenuation tomogram (Figure 2b),
however, both anomalous bodies are seen as regions of
elevated attenuation. The cross plot of velocities and attenu-
ations shown in Figure 2c is the basis for the k-means
cluster analysis. Even without a priori knowledge about the
subsurface structure, a three-cluster-solution is an obvious
choice for this example. In the resulting clustered section
(Figure 2d), the matrix material (cluster 1) can be clearly
discerned from the two anomalous bodies (clusters 2 and 3),
the shapes and sizes of which are well resolved (Figure 2d).
Finally, we used equations 1 and 2 to convert the mean
values of each cluster (cluster centers in Figure 2c) into
permittivity and resistivity and compared them to the
original model values (Table 1). The discrepancies between
the original and estimated permittivity and resistivity values
are of the order of 0.0–4.6% and 8.0–95.5%, respectively.
The high errors of some of the resistivity estimates most
likely reflect the inherent limitations of ray-based attenua-
tion estimates for energy traveling through heterogeneous
media [Holliger and Maurer, 2002], as previously discussed
in section 2.2. Thus the inferred resistivity structure should
be regarded as largely qualitative in nature. Nevertheless,
this example illustrates an important benefit of cross-hole
georadar amplitude tomography, as the pure resistivity
anomaly could not have been detected through travel time
tomography alone.

3.2. Outcrop-Based Model

[19] The second model is based on outcrop evidence from
a braided stream deposit observed in a gravel pit in the
upper Rhine Valley of southwestern Germany. This outcrop
is analyzed in detail by Tronicke et al. [2002a] who
characterize various mapped lithological facies in terms of
their porosities and hydraulic conductivities based on lab-
oratory measurements. We use this outcrop section to
develop a realistic model of a fully saturated heterogeneous
alluvial aquifer.
[20] Following the work of Kowalsky et al. [2001], we

use the measured porosities of the various sedimentary units
(Figure 3a) to infer realistic model distributions of permit-
tivity and resistivity (Figures 3b and 3c). Equation 3 is used
to convert porosities into permittivities. To estimate resis-
tivities, we employ the petrophysical model originally
published by Archie [1942] for water-saturated sediments:

r ¼ a

�m
rw: ð5Þ

The resistivity of the formation water rw is assumed to be
20 �m, which is a realistic value for fresh groundwater. The

Figure 3. Outcrop-based model: (a) estimated porosity
distribution, (b) relative permittivity distribution inferred
from Figure 3a, and (c) electrical resistivity distribution
inferred from Figure 3a.
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values for a and m are chosen to be 0.88 and 1.37,
respectively, which are considered to be typical values for
the type of alluvial deposits considered here [Schön, 1998].
[21] The resulting model is 7.0 � 7.475 m with a uniform

grid spacing of 2.5 cm. The source wavelet has a dominant
frequency of 200 MHz, which corresponds to dominant
wavelengths of 0.3 to 0.5 m for different regions of the
model. Finite difference modeling is performed for 29
equally spaced transmitter and receiver stations located
along the left and right sides of model (Figures 3b and 3c).
This results in 841 synthetic georadar traces from which
travel times and amplitudes are extracted. Figure 4 shows a
snapshot of the propagating georadar wave field generated
by a source at 3.75 m depth and illustrates the complexity of
high-frequency electromagnetic wave propagation in such
realistic heterogeneous settings. The snapshot is taken after
a travel time of 62 ns. The vertical component of the electric
field is plotted because it is this quantity that is recorded by
a vertical dipole-type receiver. Following the direct wave
we can see a number of scattered and reflected components
of the wave field which interfere with the direct transmitted
wave. It is important to note that the resulting ‘‘distortions’’

of the first-cycle amplitudes used for attenuation tomogra-
phy cannot be accounted for by standard ray-based
approaches [Holliger and Maurer, 2002].
[22] The results of the tomographic inversions and cluster

analysis are shown in Figures 5a–5d. Although the veloc-
ities and attenuations both have an overall layered character
(Figures 5a and 5b), as expected from the input model of
Figure 3, correlation between most of the structures is not
obvious. On the basis of the corresponding cross plot
(Figure 5c), a four-cluster solution was chosen to represent
the principal features common to the two tomographic
images (Figure 5d). As illustrated by Figure 5e, this choice
for optimal number of clusters, based on a qualitative a
priori assessment of the tomographic images, is fully
supported by the results of the VRC analysis. A comparison
between Figures 3 and 5d indicates that the spatial distri-
bution of the clustered units adequately mirrors the major
lithological units of the input model. For example, the
overall geometry of the slightly dipping high-porosity zone
at 0.5 to 2 m depth is nicely outlined by cluster 1.
[23] To explore further the effectiveness of our approach,

we estimated the permittivities, resistivities, and porosities
using equations (1)– (4) and compared them with the
parameters of the input model. Figures 6a, 6b, and 6c
show these comparisons for the clustered units, whereas
Figures 6d, 6e, and 6f show cross plots of the original model
parameters and the parameters inferred using the geophys-
ical attributes from the unclustered tomograms. For this
purpose, the cell size of the model was resampled to 0.25 m
using linear interpolation.
[24] As for the previousmodel (Figures 1 and 2), the overall

parameter trends for the clustered units are correctly repre-
sented, but the means and standard deviations do not accu-
rately represent the true model parameters (Figures 6a, 6b,
and 6c). In particular, the contrasts in the electrical material
parameters are underestimated by the tomographic inver-
sions. This results from well-known limitations of the
generally ill-conditioned and nonunique cross-hole tomo-
graphic problem [e.g., Rector and Washbourne, 1994; Vasco
et al., 1996], which has to be to stabilized by smoothing and
damping constraints [Menke, 1984a; Constable et al., 1987].
Increasing these regularization constraints reduces the model
variance and thus acts as a spatial low-pass filter. Conversely,
insufficient regularization fails to maintain sufficient
a priori information to achieve a stable solution [e.g.,
Clippard et al., 1995]. In Figure 6c the resistivity discrep-
ancies for clusters 3 and 4 can be explained by the
previously discussed inherent assumptions of ray-based
methods for tomographic amplitude inversion. In the cross
plots of the tomographically estimated parameters versus
the original model parameters (Figures 6d, 6e, and 6f ), it is
again obvious that the tomographic parameter estimates do
not account for the actual model variability. In these cross
plots (particularly in Figure 6f), only weak linear relation-
ships are apparent. This further serves to illustrate the

Figure 4. Snapshot of the vertical component of the
electric field after propagating for 62 ns (about 14 dominant
wavelengths) through the model shown in Figure 3. The
plot illustrates the complexity of georadar wave propagation
in a realistic, laterally heterogeneous alluvial aquifer. The
source (denoted by a cross symbol) is located at a depth of
3.75 m. The receiver locations are denoted by circles.

Figure 5. Results of ray-based tomographic inversion and subsequent cluster analysis for the outcrop analog model
shown in Figure 3: (a) velocity distribution, (b) attenuation distribution, (c) cross plot of velocity versus attenuation,
(d) clustered section, and (e) VRC value as function of the number of clusters. In Figures 5a and 5b, poorly resolved regions
(i.e., those with poor ray coverage) are blanked out. In Figures 5c and 5d, numbers and colors refer to specific clusters. In
Figure 5c the crosses delineate cluster centers (mean values), with their dimensions equal to the respective standard
deviations. In Figure 5d, black lines outline the major zones of the input model (Figure 3).
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potential benefits of ‘‘reducing’’ the rather complex tomo-
graphic images to a limited number of clusters. Although
the absolute values of the inverted parameters can only be
regarded as approximations, the multivariate grouping pro-
cess enables us to identify major trends in the petrophysical
properties.

4. Field Data Example

[25] We now apply our new procedure to a cross-hole
georadar data set collected at the Boise Hydrogeophysical
Research Site (BHRS) near Boise, Idaho. This research site
was established to develop and calibrate hydrogeological
and geophysical methods for determining the 3-D distribu-
tion of hydraulic parameters in unconsolidated heteroge-
neous alluvial deposits [Barrash and Knoll, 1998; Clement
et al., 1999]. The subsurface at this site is characterized by
an approximately 20-m-thick alluvial layer consisting pre-
dominantly of gravel and sand with minimal fractions of silt
and clay. Underneath is a >3 m thick layer of red clay. At
the time of the measurements (October 1998), the water
table was at depth of 2.96 m.
[26] The cross-hole georadar data set was acquired using

two near-vertical boreholes C5 and C6, which have a
diameter of 10.2 cm and are approximately 8.5 m apart

(Figure 7). Although the borehole georadar antennas were
reported to have a nominal frequency of 250 MHz, we
found that the observed data had a dominant frequency
below 100 MHz. The primary reason for this is that the
nominal antenna frequency refers to its performance in free-
space, whereas the low velocities of the water in the
borehole and the surrounding water-saturated sediments
make the antenna ‘‘electrically longer’’ and thus reduce its
resonance frequency. Several surface walk-away measure-
ments were used to determine a correction for time-zero and
observe possible time drifts during the survey. Care was
taken that the antennas were moved quite slowly through
the borehole with respect to the recording time of an
individual data trace in order to avoid data smearing. The
fact that the diameter of the antennas (	5 cm) is not much
smaller than that of the boreholes causes the antennas to be
naturally centralized, which should ensure stable coupling
conditions for the antennas to the borehole and surrounding
medium. The experimental setup consisted of 77 transmitter
stations and 40 receiver stations spaced at 0.2 and 0.4 m
intervals, respectively. From the resultant 3080 traces, 2064
could be employed for the combined tomographic imaging
process. Preprocessing of the data included removal of the
DC component and application of a 0–250 MHz zero-phase
low-pass filter.

Figure 6. Comparison of the actual input parameters of the outcrop-based model (Figure 3) with the corresponding
estimates obtained from the tomographic inversion of the synthetic crosshole georadar survey (Figures 4 and 5). The
diagrams in the left column show comparisons of mean values (centers of vertical bars) and standard deviations (lengths of
vertical bars) of (a) porosity, (b) relative permittivity, and (c) electric resistivity for the clustered section (Figure 5d). The
right column shows cross plots of (d) porosity, (e) relative permittivity, and (f) electric resistivity based on the original input
model (Figure 3) and the unclustered tomographic sections (Figures 5a and 5b).

Figure 7. Results of ray-based tomographic inversion of a cross-hole georadar data set recorded at the
Boise Hydrogeophysical Research Site (BHRS): (a) velocity distribution and (b) attenuation distribution.
Poorly resolved regions (i.e., those with poor ray coverage) are blanked out. The groundwater table is at a
depth of 2.96 m.
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[27] The resulting tomographic images are shown in
Figure 7. Both the velocity and attenuation tomograms are
distinguished by predominantly subhorizontal structures,
which is consistent with stratigraphic layering in the gravel
and sand deposits at the BHRS [Barrash and Clemo, 2002].
Except for the strong bimodal distribution of values cen-
tered about a horizontal line at 11.8 m depth, there does not
seem to be a clear and/or systematic relationship between
the velocity and attenuation tomograms.
[28] Figure 8a shows a contoured histographic plot of the

estimated velocities and attenuations. Given that this plot
is characterized by three distinct and clearly separated
maxima, we choose a three-cluster solution for further
analysis (Figure 8b). Cluster 1 is characterized by higher
velocities and lower attenuations than clusters 2 and 3.
Clusters 2 and 3 are distinguished from each other only by
their velocities. The resulting spatial distribution of clusters

in the tomographic plane is shown in Figure 8c. Although
the characterization of the subsurface has been reduced to
only three petrophysical parameter groupings, the clustered
section retains the major structural features of the original
tomograms (Figure 7).
[29] As for the synthetic examples, we proceed by deriv-

ing estimates of the relative permittivities, resistivities and
porosities of the clustered units using equations (1), (2) and
(4), respectively. We use Topp’s equation (4) to estimate the
porosity distribution. The reason for this choice is that the
relative dielectric permittivity of the dry matrix, which is a
key parameter of the mixing model (3), is not explicitly
known. We then compare the clustered porosities and
resistivities along the boreholes to corresponding logging
data and to the corresponding tomographically inferred
material properties representing the tomographic values
(Figure 9 and Table 2) close to the boreholes. In so doing,

Figure 8. (a) Contoured histographic plot (19 � 19 bins considered) illustrating trends in the velocity-
attenuation relationship. (b) Cross plot of velocity versus attenuation. Crosses delineate cluster centers
(mean values), with their dimensions equal to the respective standard deviations. (c) Results of cluster
analysis of the BHRS cross-hole georadar tomograms visualized as spatial distributions of cluster
membership between boreholes C5 and C6. In Figures 8c and 8d, numbers and colors refer to specific
clusters.
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it is necessary to emphasize that the clustered parameter
estimates are based on spatially averaged information that is
representative of the entire probed region, whereas the
logging data reflect the in situ variations of these parameters
in the immediate vicinity of the boreholes. Moreover, we
have to consider limited resolution in the plotted tomo-
graphically inferred material properties in Figure 9 because
the resolution of cross-hole tomographic images is inher-
ently limited in the vertical direction and poorly constrained
near the boreholes [Menke, 1984b].
[30] Figures 9a and 9b compare the porosities estimated

for the clustered units with the tomographically inferred
porosity estimates and the neutron log porosities along
boreholes C5 and C6 [Barrash and Clemo, 2002], respec-
tively. The continuous porosity profiles estimated from the
velocity tomogram as well as the corresponding clustered
version faithfully reproduce the overall pattern and the
larger-scale trend delineated by the neutron porosity logs.
In particular, most high-porosity zones present in the
porosity logs are also present as high-porosity zones in

the clustered porosity section (see also Table 2). The
clustered tomographic image thus confirms and extends
the hydrological zonation proposed by Barrash and Clemo
[2002], which was largely based on 1-D evidence from log
data.
[31] In addition to the neutron porosity logs, capacitive

resistivity logging data [Mwenifumbo and Bristow, 1999]
are available for borehole C6. To date, accurate calibration
of this logging tool is not available for unconsolidated
coarse alluvial sediments, such as those at the BHRS, but
there is high confidence with regard to the relative changes
in the logging data from C6 (C. J. Mwenifumbo, personal
communication). In Figure 9c we compare these data to
the resistivity estimates along borehole C6 extracted from
the attenuation tomogram and from our clustered model
(Figure 8c). As with the porosity estimates, the tomographic
resistivity profile reliably captures the major trends in the
logging data. The clustered resistivities are characterized by
a relatively high-resistivity unit down to a depth of about
11 m, and a lower-resistivity unit below. Although the

Figure 9. Comparison of logging data (blue lines, lower horizontal axis) with corresponding clustered
tomographic (red lines, upper horizontal axis) and unclustered tomographic (gray lines, upper
horizontal axis) parameter estimates along the boreholes: (a) neutron porosity log versus clustered and
unclustered tomographic porosities for borehole C5, (b) neutron porosity log versus clustered and
unclustered tomographic porosities for borehole C6, and (c) capacitive resistivity log versus clustered
and unclustered tomographic resistivity for borehole C6. In Figure 9c, note the different scaling of the
lower and upper horizontal axes for the log data and the clustered parameter estimates, respectively. In
Figure 9c the dashed blue line represents mean logging resistivity values for the two major resistivity
zones visible in the clustered model.
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resistivity log exhibits much more small-scale structural
complexity, its large-scale pattern (plotted means for the
major units in Figure 9c) is consistent with the results of the
cluster analysis (see also Table 2). For all these compar-
isons, it should be again noted that the resolution of cross-
hole tomographic images is inherently limited along the
boreholes, that porosity logs may be affected by distortions
in the vicinity of the boreholes due to the drilling process,
and that the spatial resolution of the two methods (i.e.,
logging and cross-hole tomography) differs roughly by one
order-of-magnitude.
[32] As a final check on the validity of our approach, we

compare an observed radar section with corresponding
synthetic radar sections based on the original tomograms and
based on the corresponding clustered section (Figures 10a–
10c). On the basis of averaged spectral analyses of the

observed cross-hole georadar data, the dominant frequency
of the source wavelet is set to 70 MHz, which yields a
dominant wavelength of about 1 m. The grid spacing is
8 cm. A 9-m-wide diffusive buffer zone is added to the
top, bottom and right model edges in order to avoid
artificial reflections from the boundaries of the computa-
tional domain. The resulting synthetic georadar sections
reproduce the detailed character of the direct transmitted
wave in the observed data. Moreover, the synthetic section
determined from the model defined by the original tomo-
grams also reproduces the overall character of reflected
and scattered secondary arrivals present in the observed
data (Figures 10a and 10b). We conclude that the tomo-
graphic images are realistic representations of the subsur-
face structure and that the dominant features of this
structure are adequately captured by the corresponding
clustered sections.

5. Conclusions

[33] We have explored the potential of applying cluster
analysis to cross-hole georadar velocity and attenuation
tomograms as a means to define hydrological zones
within unconsolidated alluvial aquifers. Synthetic studies
illustrate that, even for complex models, the major
lithological and petrophysical trends can be resolved by
ray-based tomographic inversion of cross-hole georadar
travel times and amplitudes. There can, however, be
significant discrepancies between absolute values of the
inverted petrophysical parameters and the model parame-
ters. These discrepancies are particularly pronounced for
petrophysical parameters based on the attenuation esti-
mates. This shortcoming largely reflects the inherent
limitations of ray-based tomographic methods and could
be alleviated through the development and application of
full-waveform inversion algorithms.

Table 2. Statistics for the Clustered Model for the BHRS Field

Data Set, for the Corresponding Unclustered Tomographic Data

Close to the Boreholes Within the Clustered Units and for the

Logging Data Within the Clustered Unitsa

Cluster 1 Cluster 2 Cluster 3

Clustered Tomographic Data
� 0.220 ± 0.008 0.256 ± 0.007 0.234 ± 0.007
r 301.4 ± 43.3 192.09 ± 19.9 189.99 ± 22.6

Unclustered Tomographic Data Along Boreholes
� 0.217 ± 0.010 0.253 ± 0.008 0.233 ± 0.007
r 285.8 ± 48.9 185.5 ± 32.1 199.2 ± 17.8

Logging Data
� 0.211 ± 0.042 0.257 ± 0.049 0.226 ± 0.073
r 1419.26 ± 151.1 1349.8 ± 184.8 1397.9 ± 129.6

aSee Figure 9. The values denote estimated means ± standard deviations.
Please note that the resistivity values from the logging data are subject to an
unknown bias and hence can only be assessed in terms of the relative
variations.

Figure 10. Comparison of observed and simulated cross-hole georadar data gathers at the BHRS.
(a) Observed data gather after minor processing, (b) synthetic data gather based on the inverted velocity
and attenuation tomograms (Figure 7), and (c) synthetic data gather based on the clustered model
(Figure 9). Each gather is scaled with a separate time-dependent scaling function to preserve relative
amplitude changes. For all gathers the fixed antenna is located at a depth of 14.66 m.
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[34] Cluster analysis proved to be a powerful postpro-
cessing tool for correlating and integrating the generally
complex relationships between the tomographically deter-
mined velocity and attenuation structures. The technique is
suitable for detecting and quantifying common trends in
velocity and attenuation tomograms by grouping the tomo-
graphic information into a limited number of characteristic
parameter combinations. On the basis of our synthetic
studies, we found that the clustered sections adequately
outline the pertinent features of the input models and allow
for more meaningful petrophysical parameter estimates
compared to estimates based on the un-clustered tomo-
graphic parameter fields. We conclude that cluster analysis
helps to determine the pertinent trends and groupings in a
multivariate geophysical data set based on objective criteria.
[35] Our approach was successfully applied to a cross-hole

georadar data set collected in a well-studied alluvial aquifer.
Porosities and resistivities inferred from the clustered tomo-
grams were compared to corresponding borehole log data.
We found that the clustered porosity section predicted the
overall zonation delineated by the neutron porosity log. In
particular, it located most high-porosity zones present in the
log data. Furthermore, we found reasonable agreement
between the clustered resistivities along one borehole and
the large-scale trend of capacitive resistivity logging.
[36] On the basis of the results of this study, we suggest

that a combination of clustered georadar tomographic sec-
tions and corresponding logging data may be used to
develop site-specific hydrological models. This could, for
example, be achieved by assigning pertinent parameters
obtained from porosity logs (e.g., mean values, standard
deviations and correlation lengths) to the corresponding
units in the clustered tomographic section. This approach
could be extended to establish relationships between the
clustered tomographic sections and estimates of hydraulic
conductivity obtained, for example, from flowmeter logs or
grain size analyses.
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variations and water content estimated from multi-offset, ground-pene-
trating radar, Geophysics, 61(3), 683–695.
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