Boise State University

ScholarWorks

College of Engineering Poster Presentations

2012 Undergraduate Research and Scholarship Conference

4-16-2012

Optical Audio Transmitter

Jerome Emanzi Department of Electrical & Computer Engineering, Boise State University

Lumuli Wanyonyi Department of Electrical & Computer Engineering, Boise State University

Asif Ahmed Department of Electrical & Computer Engineering, Boise State University

Optical Audio Transmitter

Abstract

A visible light emitting diode (LED) is used to transmit audio signals from an audio source (radio) through a transmitter circuit to a receiver circuit. The constructed system demonstrates optical audio transmission. The purpose for this demonstration is to show how audio signals can be transmitted through a free space optical link using an illuminating LED. All signals being transmitted are analog. The transmitter circuit is excited with an audio signal that is level shifted and output using a visible light LED. In the receiver circuit located at some distance from the transmitter, a photo-diode sensor detects the light from the illuminating LED, whose signal is then reconstructed and amplified using an LM386 audio amplifier. The reconstructed signal is then output through a speaker to near or exactly as the original input audio signal. The system is designed to operate within 4 KHz-20 KHz frequencies that are high for the human eye to observe the flickering of the LED. The flickering of the LED is the mechanism through which the photo-diode is detecting the LED light transmitting the signal. Both circuit designs contain resistors and capacitors that contribute to the protection components and filtering of the analog signals.

BOIST OPTICAL AUDIO TRANSMITTER Asif Ahmed, Jerome Emanzi, Lumuli Wanyonyi Customer: Mr. Bill Molina, Discovery Center of Idaho College of Engineering

Problem Statement:

Design a Transmitter circuit that transmits an audio signal through free space using a visible light emitting diode (LED). The optical signal is sensed and output via a speaker by the receiver circuit.

Project Goal:

- Design an optical transmitter and receiver circuit
- Implement both circuits individually on Printed Circuit Boards (PCBs)
- Test for successful transmission and reception across at least 1 foot

Transmitter Circuit Schematic

Receiver Circuit Schematic

Project funded by Electrical & Computer Engineering Department, Boise State University, Boise ID

Faculty Advisor: Dr. Hao Chen

Key Features:

- LTW-2S3D7 Visible white light LED THORFDS 100 phototransistor sensitive to wavelengths 350nm -1100nm
- Lm386 Audio Amplifier, used with a gain of 200

System Flow Diagram

Approach:

- Input audio signal
- Amplify signal
- Transmit signal via an LED
- Transmission across 1 foot of air
- Sense signal via photo transistor
- Filter, amplify received signal
- Output signal via speaker

- Adjustable speaker volume
- gap

Printed Circuit Boards

 Graph shows volume/amplitude/sensed voltage decreases with distance • User Interaction with blocking light from the LED to observe transmitting effect 12V DC supply voltage for each circuit • Can sense up to approximately 1 foot

> Transmitter Circuit

Receiver Circuit