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Title: Implications of Simultaneity in a Physical Damage Function 

 

Abstract: 

A modeler must often rely on highly simplified representations of complex physical systems when 

analyzing associated economic issues. Herein, we consider a management problem in which a 

bioeconomic system exhibits simultaneity in processes governing productivity and damage. In this 

case, it may benefit the producer to sacrifice productivity to reduce the costs associated with 

increased damage. We specify empirically a structural damage relationship that explains the 

biological process by which an invasive species damages a host and estimate the structural model and 

its reduced form with an exceptional dataset on infestation of olives by the olive fruit fly. We 

contrast the results of these models with the approach typically taken in the economic literature, 

which expresses damage as a function of pest density. The population-based approach introduces 

significantly greater bias into the individual grower‘s choice of damage control inputs than estimates 

based on the structural model.  

 

Keywords: bioeconomic modeling; simultaneous equations; pest management; damage; olive fruit 

fly 
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Because of the potential for feedback between physical and economic systems, integrated 

interdisciplinary models increasingly have been used in economic analyses. Even in these integrated 

models, the complexity of physical systems often compels the modeler to rely on highly simplified 

representations. Although the economic literature recognizes the potential for bias to arise from the 

misspecification of physical relationships, few studies examine the extent to which that bias affects 

conclusions about economic behavior.  

 We consider a case in which a biological system exhibits simultaneity in processes that 

contribute to the potential value of and damage to an economic output. We examine this issue 

specifically within the context of a pest management problem. The fundamental issue of concern is 

that increasing the potential value of the crop also makes it a more attractive host for a pest, 

increasing the costs associated with infestation. Under these circumstances, it may be optimal for a 

producer to sacrifice potential gains in crop value in order to reduce losses from pest damage.  

 Although our empirical analysis focuses on a specific pest–host relationship, it represents a 

broad class of environmental and resource problems. Another such example involves estimating the 

effect of climate change on plant growth. Climate change influences foliar growth directly via its 

influence on temperatures and precipitation, variables that are usually included in bioeconomic 

models. Climatic variables also influence ambient ozone levels, which reduce plant yields [1,13]. An 

analysis that fails to control for this indirect effect will produce estimates of the impact of 

temperature changes on yields that suffer from omitted-variable bias.  

 In our application, favorable weather conditions increase the size of the host, which increases 

both yield and output quality—for which producers receive a price premium. However, those same 

conditions contribute to an increase in the pest population, which damages the host, reducing yield. 

As in the example of the effect of climate change on plant growth, underlying biological variables 
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affect the level of damage both directly and indirectly. However, our case has an additional feedback 

loop that further complicates estimation: Larger (higher quality) hosts provide a more attractive and 

effective reproductive medium for the pest, contributing to an increase in the pest population and an 

increase in the incidence of host damage. As a result, those underlying conditions that favor growth 

in the host and in the pest population have a second-round impact on growth in the pest population 

and damage to the host. 

In the economic literature on pest management, the prevalent approach is to specify damage 

as a proportional function of the pest population density. Because this simplified representation does 

not allow for simultaneity in processes governing the development of the host and the pest damage 

process, we argue that this approach may sometimes be misspecified. We outline a simple theoretical 

framework that illustrates how failure to account for such simultaneity influences economic behavior. 

Then we define and estimate a structural damage function that describes the pest–host damage 

process. We compare the fit, predictive ability, and economic conclusions yielded by the structural 

model with those of a population-based damage function similar to that used most often in the 

economic literature. We demonstrate that the latter biases the choice of pest control inputs and the 

estimated losses from pest damage relative to the structural approach.   

The Damage Control Literature 

 

A pest damage function defining yield loss as a function of a pest population, however well it fits the 

data, may misrepresent causality in the damage relationship. One problem that arises concerns how 

the pest population is defined. The population of interest in the damage function is that portion of the 

pest population that actually inflicts harm upon the host. Without studying the basic drivers of the 

damage process, it is difficult to distinguish between the portion of the pest population that is easily 

measured, as with traps, and that which damages the host. 
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  For example, the modeler may link the adult pest population to yield losses, even though in 

many cases adult pest populations per se do not inflict damage. Adult males in the current population 

cannot cause the damage by larvae born from eggs deposited before the males became adults. Their 

contribution to damage inflicted by the next generation is indirect because the female adult chooses 

where to lay eggs. Rather, factors such as climate and weather drive reproductive activity, overall 

numbers of the pest, and damage.  

  Expressing damage as a function of underlying factors is akin to specifying a structural 

equation. Depending on the specifics of the structural specification, a population-based approach 

may be a reduced form. However, this need not be the case. Identifying the underlying factors that 

affect the pest–host relationship clarifies ways in which a population-based damage model departs 

from the structural and reduced-form damage functions, and illustrates pitfalls associated with a 

population-based specification. An additional advantage to formulating the structural damage model 

is that it can explicitly define the role of the host in the infestation process, a facet of the problem that 

a population-based model may obscure. A structural model can therefore incorporate management 

practices that reduce the susceptibility of the host to infestation.   

  Although several studies in the pest management literature discuss the potential for 

factors other than the pest population to affect the observed rate of damage to a host, the majority 

conceptualize losses from infestation as a function of the pest population alone [10,11,23,26]. 

The model used by Feder [10] exemplifies the population-based approach to formulating a 

damage function: The model assumes damage (D) is a linear function of the pest population (N): 

  .NND    Feder treats δ as a constant although he mentions that, in general, δ may depend 

on ―temperature, humidity, differences in plant susceptibility at different periods, arrival of new 

pest biotypes, and other factors‖ (p. 97).  
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  Another vein of literature examines the productivity of pest control inputs assuming that 

those inputs abate damage by reducing the pest population relative to some baseline [3,19,29]. 

Each starts with a theoretical production function of the form   XZ Gfy , , where y is total 

output. Output is a function of a vector of inputs Z, which affect production directly, and a 

damage abatement function G(), which depends on a vector of damage-control inputs X.  

  Lichtenberg and Zilberman [19] mention the potential for bias in estimates of pesticide 

productivity when factors simultaneously affect the pest population and host productivity. 

However, they do not address this bias in their analysis, which is theoretical. Babcock, 

Lichtenberg, and Zilberman [3] specify a damage function that depends on the damage-control 

inputs X and other inputs Z, including weather, host characteristics, and management practices. 

Similarly, Saha, Shumway, and Havenner [29] allow X and a subset of the vector Z to interact in 

the damage abatement function G(). In both of these analyses, the inclusion of Z in the damage 

or abatement function alters the optimal use of a damage-control input by an individual producer. 

These studies each share a potential weakness in that they define a constant baseline damage rate 

that changes only with the use of damage-control inputs.
1
  

  Studies focused on estimating the productivity of non-pesticide damage-control inputs, 

particularly genetically modified (GM) crops, contribute another perspective to the damage 

control literature. For example, Qaim and Zilberman [24] express damage as a function of an 

initial pest population, insecticide use, and the adoption of GM crops. Their study emphasizes 

the role of GM crops in increasing productivity and in reducing the use of chemical insecticides. 

Smale, Zambrano, and Cartel [31] summarize the contributions of another 46 studies in the 

economic literature that focus on the impacts of Bt cotton adoption. These studies recognize the 

efficacy of control methods that reduce damage by targeting host susceptibility. However, none 
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explicitly breaks down the damage process into its structural components to identify underlying 

factors that simultaneously drive changes in the yield and quality of the output and pest damage.  

In contrast, Regev, Gutierrez, and Feder [25] track dynamic and simultaneous changes in 

alfalfa weevil development and alfalfa growth to determine optimal treatment timing for an 

individual grower. The biological component of their model specifies inter- and intra-seasonal 

dynamics for the plant, the adult weevil, and weevil larvae (which damage the plant by feeding), 

all of which are related via temperature. However, their analysis does not allow for feedback 

between host characteristics and the pest population, and so they cannot comment on the bias 

introduced by failing to consider host characteristics when determining pesticide use.  

Christiaans, Eichner, and Pethig [9] present a theoretical analysis that aligns most closely 

with this paper‘s analysis. They derive a crop production function based on micro-level 

constrained optimizing behavior by a pest and a host. Their formulation is structural, in that it 

allows underlying factors to affect both the pest population and host susceptibility. By explicitly 

considering host susceptibility, they show that pest control may be accomplished by enhancing 

crop resilience to infestation, by reducing the pest population, or by altering the use of some 

input that accomplishes both ends. Although most closely related to our analysis, theirs is 

theoretical and cannot comment on the relative importance of accounting for feedback between 

the host and the pest population when determining optimal pest control practices. Our 

contribution to the literature, and our primary objective, is to address this issue. 

Theoretical Framework 

 

We are concerned with a vector, Z, of which a single element z  Zz  impacts output directly 

and indirectly, with the indirect effect operating via a damage function. We specify a production 

function as 
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(1)   ,,, xzDfy Z  

where output may be defined generally as a function of yield and/or output quality. 

In equation (1), x is a damage-abating input such as a pesticide and D(.) represents the 

damage function. By specifying a damage function, as opposed to an abatement function, as in 

[19], we allow the damage rate to vary even if no damage-abating inputs are applied. In our case, 

z is a host characteristic that is influenced by exogenous biological factors and management 

practices. Denoting derivatives with subscripts, we assume 0zf , 0Df , 0zD , and 0xD . 

We consider the case in which z affects both yield and output quality. Specifically, price 

per unit output, p, depends on z   0' zp , and a producer is paid based on quantity delivered, 

y, which is a function of z, x, and other variables. We begin with a static profit-maximization 

problem in which a grower chooses z and x.  We fix all other variables in the production function 

and assume that f is differentiable and concave in z and D. The grower‘s objective is 

(2)    xzcyzp
xz

,max
,


 
subject to 

(3)   ,,, xzDzfy    

where c(·) is the cost of production, which depends on the use of the damage-abating input x and 

the input z.  

 Assuming an interior maximum, the first-order necessary conditions require 

(4)        ,,,' zDzz DfzpcxzDzfpfzp   and 

(5)   .xxD cDfzp   

In (4) and (5) the left-hand side of the expression is the marginal benefit—and the right-hand 

side is the marginal cost—of an additional unit of z or x, respectively. We assume that the 

sufficient conditions for a maximum hold. 
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 If we were to ignore the role that z plays in the damage process, (3)–(5) become 

(3')   ,, xDzfy    

(4')      ,,' zz cxDzfpfzp   and 

(5')   .' xD cDfzp   

In (4), the profit-maximizing producer balances the benefit of an additional unit of z, 

which includes the value of an increase in production and the value of an increased per-unit price 

for higher quality output, with the marginal costs, which include the direct costs of an 

incremental increase in z and the indirect costs of yield losses from increased damage from pests. 

In (4'), the profit maximizer balances the same marginal benefit of z with only its direct marginal 

cost. Given the sign assumptions, optimal z per (4) is necessarily less than the optimal z obtained 

using the misspecified production function, as defined by (4'). Similarly, because  zp  is 

increasing in z, if ,0xzD the optimal use of x per (5') is necessarily greater than that per (5). If 

,0xzD  the effect of the misspecification on the use of x depends on the relative magnitude of 

the opposing effects. 

The theoretical framework above applies even in the case when the input z is exogenous 

to the grower. In this restricted problem, the relevant first-order conditions with and without z 

included are (5) and (5'), which implicitly define differing conditions for the optimal use of x. 

Whether or not z is a choice variable, the aspect of this problem fundamental to our results is that 

z affects the baseline damage function—defined as the level of damage observed when no 

damage control input (x) is used. In this case, excluding z when estimating the damage function 

biases the parameters of the empirical damage function. The extent and direction of bias in x is 

an empirical question that we examine within the context of our application to the olive fruit fly. 

For the sake of simplicity, we discuss the implications of excluding z from the damage function 
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when it is exogenous to the grower in order to demonstrate the potential value of estimating a 

structural model rather than a population-based model.  

This section provides the foundation for understanding how misspecification of the 

damage function may affect conclusions about a grower‘s incentives regarding the use of inputs 

x and/or z, and any pest management recommendations that may result. However, even if a 

grower can do nothing to mitigate damage by a pest, incorrectly specifying the empirical damage 

function may still affect estimates of the losses due to the pest infestation. The remainder of this 

analysis focuses on specifying an empirical damage function when simultaneity between 

processes that drive changes in the host and pest damage exists. In order to address the potential 

misspecification bias discussed in this section, the modeler may have to investigate the physical 

or biological damage process at a greater level of detail than is typical in the economics literature 

and express damage as a function of its structural drivers instead of relying on a simplified 

population-based representation. 

Empirical Damage Function 

 

We investigate the structure of a damage function specifically within the case of the recent olive fruit 

fly infestation in California. The olive fruit fly, native to the Mediterranean, was first detected in Los 

Angeles County in 1998. By 2004, the fly had spread throughout all of California‘s olive-producing 

counties, ranging from the southern border of the state to Shasta County in the north, and from the 

coast to the western edge of the Sierra Nevada mountain range. 

  This case exhibits several characteristics that simplify the analysis. Because the olive fruit fly 

is a single-host pest, all damage by the fly is manifest in the olive crop. Also, the olive fly is the only 

pest at present that cannot be controlled with pruning, so olive trees are effectively a single-pest host. 

Because the fly damages only the olive fruit—it does not harm a tree‘s future productivity—we can 
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focus on damage to fruit during a single growing season. Finally, because California‘s olive-growing 

regions account for all commercial production in the U.S. (and for the vast majority of ornamental 

olive trees), the fly‘s further spread is not a complication [33]. 

  An additional advantage of this specific case is that the fly has a long history in the 

Mediterranean region. As a result, the entomological literature is established and has extensively 

investigated the relationship between fruit size and the susceptibility of fruit to infestation by the fly. 

That literature shows a consensus that fruit size and infestation rates exhibit a strong positive 

correlation. There is as yet no agreement about whether flies are actually attracted to larger fruit 

because they are larger or whether there is some other characteristic driving infestation that is simply 

correlated with fruit size [5]. Factors suggested as important include shape, color, hardness of the 

epicarp, and the composition of olive surface waxes [16,17,28].  

  The entomological literature for the Mediterranean region, as well as emerging literature 

specific to California, indicates that weather variables and management practices influence fly 

populations and reproductive activity. Studies of olive phenology find that these same weather 

conditions and management practices contribute to fruit growth. Thus, the scientific literature 

identifies the factors that simultaneously affect fly populations and fruit vulnerability, and provides 

the foundation for our structural damage function. 

  The relationship between fruit size and productivity is defined by the specific structure of the 

olive industry in California. As previously discussed, fruit size affects both yield and output quality.   

The impact of fruit size on yield is straightforward. Larger fruit are heavier and processors pay for 

raw fruit on the basis of weight at delivery. The link between size and quality is simple in this 

application: Olive size is equivalent to quality, as defined and rewarded by the canning industry.
2
 

Even though for many fruits, the link between size and quality is complex—Parker and Zilberman 
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[22] notice that because larger peaches are sweeter, a premium on peach size is actually a premium 

for sweetness—olives, left to soak in acid baths for as long as a year, artificially ripened with lye, and 

blackened with iron sulfate, are effectively uniform in terms of every characteristic except size.  

  Our structural damage function specifies host damage (D) as a function of a host 

characteristic (z) and the pest population (P):  

(6)   ., PzfD d   

The pest may be present, but if the host is not susceptible to damage, we expect a zero damage rate.  

The converse is also true: The host may be susceptible to infestation, but if there is no pest 

population, we expect zero damage.
3
 Any host characteristic that directly influences yield plays the 

role of the z in the theoretical model. 

  Because the fly relies on its host as a reproductive medium, the host‘s characteristics may 

affect the level of the pest population. We specify the pest population as a function of z and a 

vector of other exogenous explanatory variables V:  

(7)   .,VzfP p   

The level of damage may also affect the host‘s characteristics, as would be the case if infestation 

reduced the size of the host or distorted its color. The host characteristic z depends on damage 

and a vector of other explanatory variables W:  

(8)   .,WDfz z   

There may be overlap in V and W. The full structural damage system consists of the three 

simultaneous equations described by (6)–(8). 

  For estimation, we condense (6)–(8) into a system of two simultaneous equations: 

(9)   ,,VzfD d  and 

(10)   .,WDfz z
4
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In general, estimation of (9) and (10) requires an instrumental variables approach. In the case of 

olives, we can simplify (10) based on the fact that entomologists have found no evidence that 

damage by the olive fly affects the size of fruit.
5
 Thus, (10) becomes 

(10')   ,Wzfz   

and the damage system reduces to two simultaneous equations that are triangular in structure. 

The assumption required to drop D from (10) is our critical identifying assumption. 

 The reduced form of the damage system may be obtained by substituting (10') into (9) to 

obtain 

(11)  .,VWgD    

The reduced form may be of greater practical use as a management tool for producers than the 

structural damage function in cases where z is difficult to observe or measure and/or when W and V 

contain variables for which data are easily accessible (such as temperature and precipitation). If the 

variables in W predict z with perfect accuracy, the true reduced form (11) contains no additional 

information about the damage process than does the structural model. In practice, however, 

differences may arise between the two if unobservable factors affect z, in which case the structural 

model has an advantage in that it captures the full variation in z. 

The reduced form in (11) is not the same as the population-based damage function approach 

typically used in the economic literature: 

(12)  .PgD   

The population-based specification (12) expresses damage as a function of a supposedly exogenous 

pest population. In using (12), the modeler omits z, which affects damage directly. As shown in the 

theoretical example, the modeler who relies on (12) risks misspecifying (1) and introducing bias into 

economic decisions.  



 14 

The system given by (9) and (10') explicitly incorporates the host characteristic z when 

estimating the parameters associated with the damage process. In our particular application, fruit size 

(z) is an object of direct interest to growers. Because fruit size is observable and measurable and 

determines yield and fruit quality, growers must consider the simultaneous effects of management 

decisions on fruit size and pest damage. When z is not an object of interest or a choice for the grower, 

the reduced-form (11) may be a simpler approach to estimating an empirical damage function. In this 

case, constructing the structural model identifies (11) as the correct reduced form. Our objective in 

this paper is to demonstrate that a population-based approach, which is not a reduced-form version of 

the structural damage model and in some cases may constitute an ad hoc specification of the damage 

process, potentially introduces greater bias into both individual behavior and policy 

recommendations than does the structural model.     

Data 

 

To estimate the structural damage function, we follow the preponderance of the scientific 

evidence and define Sz  , where S denotes fruit size. Literature from the fields of entomology 

and pomology identifies the relevant variables for inclusion in V and W. In particular, 

temperatures influence the level of reproductive activity exhibited by the olive fly and overall 

population levels [12,18]. Orchard management practices, such as irrigation and post-harvest 

sanitization, also affect fly activity [38]. The same temperature and management practices affect 

fruit size. Thus, V and W overlap in that both contain information about temperatures and 

management practices. However, the scientific literature highlights the role that humidity and 

precipitation play in W and supports their exclusion from V [30]. 

   To estimate the structural damage function, we use a data set developed by H.J. Burrack 

and F.G. Zalom in the Department of Entomology at the University of California, Davis.
6
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Burrack and Zalom chose orchards for their study to represent a variety of California 

microclimates in northern and southern olive-growing regions, and at inland and coastal 

locations.
7
 Collaborating researchers collected field infestation data weekly from May to 

December of 2005. Trees at each site were untreated with pesticides and had sufficient fruit to 

provide a random sample of up to 100 olives each week.  

The entomologists and collaborators recorded information on fruit measurements, infestation 

damage, and the number of adult flies trapped in the vicinity of each tree. Also recorded were 

categorical data about management practices at each site, including the use of irrigation and 

ground cover. Data for other variables that might impact the fly‘s preference for certain cultivars 

(such as surface wax composition) were not collected as part of the experiment because, as 

previously discussed, entomologists believe that fruit size may aptly capture the difference in 

observed infestation rates between cultivars. To measure infestation damage, each olive in the 

weekly sample from each tree was dissected and examined under a microscope. Infestation indicators 

include the number of stings on the outside of each olive, eggs inside each olive, live and dead 

larvae, and larval exit holes. In total, the dataset contains information on 81,267 olives. 

The condensed dataset that we use in this analysis is a panel, where each sampled tree 

constitutes an ―individual‖ and we average data across sampled olives on one tree.
8
 The dataset 

contains 1,140 observations for 48 trees over 29 weeks.
9
 There are two primary reasons that we 

choose to examine intra-seasonal damage rates. The first is that changes in damage correspond to 

gains in fruit size over the course of the growing season. Thus, growers may alter their use of 

inputs that cause fruit to grow (i.e. reduce yield and fruit quality) in order to avert fly damage. 

The second is that temporal fluctuations in damage rates drive the optimal timing and intensity of 
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pesticide applications within a growing season. Table I describes the variables used in estimation 

and their sources. 

 The dataset contains several measures of infestation that we could use to define damage. 

We use one that coincides with practice in the processing industry. Processors of canning olives 

in California define damage as at least one visible sting on the surface of a raw olive. Therefore, 

we use the proportion of fruit with at least one sting to measure damage. To estimate the 

population-based damage specification, we use the number of adult female flies trapped in the 

vicinity of each tree (denoted TR) as a proxy for the pest population (P). Because we define damage 

as stings to the surface of fruit, and female flies inflict those stings, this is the best available 

measure of the damaging pest population. As noted in Table I, the number of female flies trapped 

per week at each site is included in Burrack and Zalom‘s dataset. The use of trapping numbers as a 

proxy for the pest population also aligns with current pest management practices in the industry. 

Specifically, integrated pest management (IPM) guidelines recommend beginning treatment for 

the olive fly when trapping numbers increase in early summer [34].  

We consider variations on (12) that include either contemporaneous trapping numbers 

only or both contemporaneous and lagged trapping numbers (with a lag of up to four weeks).  

We refer to the specification with contemporaneous trapping numbers only as (12a) and that with 

both contemporaneous and lagged trapping numbers as (12b). We include specification (12b) to 

test the entomological hypothesis that population peaks are often followed by a lagged increase 

in infestation rates.  

A final population-based specification, which we call an ―augmented population-based‖ 

specification, includes the variables in W in addition to a measure of the pest population. The 

augmented population-based specification 
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(13)  W,PgD   

constitutes an intermediate case between (12) and the detailed structural model. Specification 

(13) includes a direct measure of the pest population and the exogenous factors that affect the 

damage rate via host susceptibility, but excludes a direct measure of host susceptibility.
10

 Based 

on the previous discussion, by excluding a direct measure of fruit size, (13) potentially omits 

unobserved variables that may simultaneously affect fruit size and the pest population. The 

consequence is that (13) may produce inconsistent estimates of the damage function parameters. 

However, specification (13) is not intended to be the best available model of the system. Rather, 

the purpose of estimating (13) is to examine whether easily-obtainable data on weather and 

management practices can be combined with trapping data—which growers already rely upon—

for use as a practical management tool.
11

 

Estimation Methods   

Several unusual aspects of the empirical specification and the dataset influence the choice of 

estimation methodology. First, the empirical damage system is triangular in its coefficient 

structure. Because of possible omitted factors that simultaneously affect the dependent variables 

in (9) and (10'), the equations‘ error terms could be correlated. Second, for the variable 

describing damage, a large probability mass exists at zero, which creates an estimation problem 

technically identical to that of censoring. Finally, the dataset includes observations from different 

trees across space and time, among which there could be unobserved but systematic differences 

in damage and fruit size. 

  An appropriate estimation methodology is one that allows for all of these characteristics. 

We follow Smith and Blundell [32] and combine Heckman‘s method for efficient estimation of a 

triangular system with the Tobit estimation methodology.
12

 Conceptually, combining the Tobit 
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and Heckman methodologies involves adding a third equation to the empirical damage system. 

This combination produces a two-stage conditional maximum likelihood estimator (CMLE). 

Blundell and Smith [4] show that this CMLE performs well compared to a number of alternative 

estimators.
13

 We assume homoskedastic and normally-distributed errors, a necessity for the 

consistency of the Tobit estimator [20]. We test the validity of this assumption using a Hausman 

test based on the Tobit and Censored Least Absolute Deviation (CLAD) estimators [36].  

Finally, we control for unobserved time-invariant heterogeneity among individual trees 

using fixed effects. We anticipate potential correlation between the unobserved individual-

specific effects and the explanatory variables. For example, unobserved heterogeneity in damage 

due to sun exposure and growing degree-days may be correlated. In this case, using a fixed-

effects specification ensures consistent parameter estimates.
14

 To capitalize on this advantage, 

we sacrifice inclusion of any time-invariant variables, such as dummies for the use of irrigation, 

ground cover, site location, and cultivar. The fixed-effects estimates capture the effect of these 

variables on damage levels in a single intercept shifter.   

To facilitate the comparison of the population-based specifications with the structural 

damage function, we use the same estimation methodology: To estimate (12) and (13), we use 

the Tobit methodology and fixed effects but presume that the pest population is exogenous.
15

 We 

test these specifications against the structural damage function of (9) and (10') based on both 

goodness-of-fit and predictive ability. For fit, we employ a variety of test statistics to compare 

the nested population-based specifications against one another. To test the population-based 

against the structural damage specification, we use Vuong‘s test for non-nested specifications 

[35]. To evaluate the models‘ predictive ability, we use data from four trees that we exclude from 

the econometric analysis. We withhold observations on an oil olive tree in Amador County and a 
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table olive tree in each of Butte, Solano, and Ventura Counties. We select these trees and 

locations to represent oil and table olive cultivars at inland and coastal locations.  

Results 

 

Table II reports the estimation results for the structural damage system of (9) and (10'). The figures 

reported are the marginal effects for the censored dependent variable. The signs of the coefficient 

estimates for the fruit size equation (10') correspond with our expectations based on the scientific 

literature. This consistency lends credibility to the empirical analysis.  

  The coefficient estimates for the damage equation (9) in Table II indicate that olive size 

is indeed positively correlated with damage. However, the size effect diminishes late in the 

growing season. This diminution is likely due to the fact that each time a female fly stings an 

olive, she leaves behind a pheromone that deters another fly from ovipositing in the same olive 

[12]. Despite increased size, an olive is less attractive for oviposition when it is more saturated 

with stings late in the season.  

  As expected, an increase in the number of days that flies are inactive leads to a decrease 

in the observed rate of damage. As the number of inactive days increases or the growing season 

progresses, this effect diminishes. In contrast, the presence of irrigation intensifies the negative 

relationship between inactivity and damage: All else constant, an increase in pest activity 

translates into a greater increase in damage in the presence of irrigation.  

  As indicated by the coefficient for the inactivity-oil interaction term, an increase in 

activity leads to less of an increase in damage for an oil olive cultivar than for a canning cultivar, 

holding size constant. This result suggests that, even accounting for differences in size, oil 

cultivars experience less of an increase in damage from increased pest activity than do canning 
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cultivars. Therefore, there may be important host characteristics that differ between the two types 

of cultivars that are not captured by size. 

  The Hausman test rejects the null hypothesis that the error terms on equations (9) and 

(10') are uncorrelated, as indicated by the significance of the marginal effect for the fruit size 

residual in Table II. This evidence suggests that common unobserved factors drive simultaneous 

changes in fruit size and damage.
16

  

  We also test whether the time-invariant fixed factors that affect damage differ uniformly 

across trees within a site, or by trees of a single cultivar within a site. For the three sites from 

which more than one cultivar are sampled, we reject the null hypothesis that the fixed effects do 

not vary within the site. For a single cultivar within each site, we cannot reject the null 

hypothesis of identical fixed effects in 11 of 15 cases. This evidence suggests that time-invariant 

unobserved factors operate at the cultivar, rather than the site, level. 

  Table III presents results for the population-based specifications (12a), (12b), and (13). 

Estimates from all specifications indicate that contemporaneous trap numbers are significant and 

positively correlated with observed the level of damage. Estimates for (12b) indicate that the 

strength of the correlation between the number of trapped females and damage decreases over 

time. However, there is a small increase in the magnitude of the coefficient for trapped females 

three weeks prior to the current period. This result lends some support to the hypothesis that 

lagged pest numbers influence current damage rates.  

  For specification (13), the majority of the signs of the coefficient estimates for W 

coincide with those of the structural model. The use of trapping as a proxy for the pest 

population may circumvent the simultaneity described in (6)–(8). If trapping numbers are not a 

good measure of the population, use of the proxy may render (7) irrelevant, in which case 
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reducing the system to a single equation by combining (6) and (8) could yield consistent 

estimates of the damage function parameters. 

  Tables II and III provide quantitative descriptions of model fit. The quantitative measures 

include the maximized value of the log likelihood function, McFadden‘s pseudo-R
2
, Akaike‘s 

information criterion (AIC), and the correlation coefficient for in-sample predicted and observed 

damage rates. These quantitative measures suggest that the augmented population-based model 

outperforms the population-based specifications (12a) and (12b). Vuong‘s test rejects (12a) and 

(12b) in favor of the structural model, but cannot reject the null hypothesis that the structural 

model is no better than the augmented population-based model (13). Out-of-sample predictions 

show that the performance of the reduced-form (11) closely parallels that of (13).
17

 This suggests 

that the reduced-form may be useful as a practical management tool for olive producers. The 

advantage of (11) comes from its use of easily-accessible data on weather and management 

practices instead of trapping data, which are time-consuming to collect.  

  In Figure 1, we include predictions using specifications (12a), (13), and the structural 

damage specification. Across the four predictions, the structural model approximates infestation 

rates and their intra-seasonal fluctuations better than the population-based specifications. In 

particular, the structural model predicts variable damage over the course of a season, while the 

population-based specification (12a) projects a relatively constant level of damage. The 

augmented population-based specification of (13) does not exhibit variations in damage to the 

same degree as the structural model, although it does reflect increasing damage over the course 

of the growing season.  

  In all but one case among the four, the structural model mutes the degree of damage 

variability slightly. For Sevillano olives in Solano County, the structural model over-predicts 
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variation in infestation substantially. This difference illustrates that even the structural model 

does not characterize the damage process perfectly. For example, although Sevillano olives are 

the largest cultivar, they also have a high pit-to-pulp ratio that may hinder larval development. 

This is only one example of a host characteristic that likely varies over time and affects the 

female fly‘s preference across cultivars. Future data collection that considers host characteristics 

other than size may increase the accuracy of the structural model relative to observed infestation 

rates. Even so, refinements to the structural model would only exaggerate the contrast in both fit 

and predictive ability between the structural and population-based specifications. 

  Our earlier theoretical framework illustrates the way in which using the misspecified 

population-based damage function introduces bias into estimates of the optimal use of the 

damage-abating input x. To estimate the size of this bias for our application, we assume a simple 

functional form for the grower‘s production function, and solve analytically for x* as a function 

of the baseline damage rate in each time period.
18

 We compare the predictions of each model 

with the level of x* implied by observed damage rates over the course of the 2005 growing 

season. In all cases, the structural and reduced-form models, which produce statistically identical 

values for mean squared prediction error (MSPE), substantially outperform the population-based 

specification. For canning olive cultivars, the structural and reduced forms produce an MSPE of 

13.18 and 12.21, respectively; the population-based model has an MSPE of 31.43. The same 

holds for oil olives, with a structural MSPE of 3.4, a reduced-form MSPE of 2.1, and a 

population-based MSPE of 11.5. The direction of bias differs between cultivars, growing 

regions, and weeks during the growing season.  

  Based on this simple illustration, even when no insecticide is used, the population-based 

specification overstates the losses associated with the infestation by 2.6 percent while the 
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structural and reduced-form estimates are on par with observed losses. Though rough and 

sensitive to the limitations of the simple model including the choice of functional forms, this 

estimate supports our hypothesis that the models yield differing results in the case when a grower 

can do nothing to abate pest damage. This estimate constitutes a lower bound on the amount of 

bias introduced into the problem by the misspecified damage function. When the grower can 

adjust x, the bias increases. Logically, when the grower can adjust inputs on more than one 

margin (x and z), the bias in estimated losses from the infestation increases further.
19

          

Conclusion 

Overall, the estimation results highlight the importance of host size, weather, and management 

factors in explaining variable damage from olive fruit fly infestation over a growing season. The 

results across the structural and population-based models indicate that presuming a damage 

process to be driven solely by the presence of a pest population may miss the contribution that a 

host plays in determining its own susceptibility to infestation. A mischaracterization of the 

damage process may bias actions undertaken by economic agents to control pests.  

  By exploring the underlying factors that influence the pest population and the host, we 

uncover key variables that introduce simultaneity into the damage function, thereby identifying 

the structural damage model and the appropriate reduced form. We demonstrate empirically that 

these models outperform a population-based approach in terms of fit and intra-seasonal 

predictive ability. Furthermore, the structural and reduced-form models reduce bias in the use of 

productive inputs and the estimated losses from infestation. Whenever a population-based model 

is used to set pest management guidelines or policy, the associated bias may prove problematic. 

For example, insecticide use guidelines dependent only on pest population thresholds obtained 

through sampling will not consider the role of fruit size and the time of season in the optimal pest 
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management strategy, thereby encouraging inefficient treatment patterns. An example of a 

potentially problematic policy is a pesticide use regulation that restricts insecticide applications 

to a uniform amount per week, based on predictions of a relatively constant damage rate. The 

consequence of this type of policy would be to reduce the flexibility that growers have to address 

variable infestation rates. 

  Economists have long recognized that simultaneity complicates the estimation of causal 

relationships using non-experimental data [15,37]. This application draws on econometric 

methodologies to address simultaneity in processes governing the productivity of the host and 

damage by a pest. Entomologists and pomologists report the essential variables for inclusion in 

the structural damage function. They also provide the backing for several key assumptions, 

foremost of which is the identifying assumption of a lack of feedback from damage to host size. 

The benefits to addressing simultaneity in a damage function are not without cost in terms of 

added methodological complexity and data requirements, however. The value of the population-

based specification lies in its use of trapping numbers, with which producers and researchers are 

familiar. Each case is probably different; the modeler of an integrated system needs to know 

enough about the physical processes involved to determine whether a likely misspecification 

alters conclusions about economic behavior. Whenever underlying factors create simultaneity in 

the damage function, the concerns raised in this analysis are relevant. Indeed, without careful 

scientific backing, the concerns should be conceded to be relevant. 
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Figure 1. Observed Damage and Out-of-Sample Predictions for Four Trees 
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Table I. Description of Variables 

Variable (Abbr.) Variable Description (Units) Range  Data Source 

Damage (D) 
Proportion of olives with at 

least one sting 
[0,1] 

H.J. Burrack and 

F.G. Zalom,  

2005 Fruit 

Development & 

Infestation Data 

Olive Size (S) Mean olive volume (mm
3
) [1.5,9006.9] 

Irrigation (IR) Not irrigated/Irrigated {0,1} 

Ground Cover (GC) None/Grass {0,1} 

Cutivar (OIL) Table/Oil {0,1} 

Pests Trapped (TR) 
Female flies trapped per 

week 
[0,129.6] 

Degree-Days (CD) 
Accumulated growing 

degree-days for olive fruit 
[940.9,5220.7] 

California 

Irrigation 

Management 

Information 

System (CIMIS) 

[7], UC IPM 

Online Weather 

Database [34] 

Adult Fly Inactivity 

Days (AD) 

Accumulated days with 

temperatures outside 19-38 

degrees Celsius 

[79,276] 

Late Season (LT) Before/After August 1 {0,1} 

Humidity (HD) Relative humidity (percent) [23.2,90.4] California 

Climate Data 

Archive [6] Precipitation (PR) Total precipitation (inches) [0,1.8] 
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Table II. Marginal Effect Estimates for the Structural Damage Model 

 Equation 

Variable Damage (9) Fruit Size (10') 

Growing Degree-Days (CD) –      0.61 *** 

Growing Degree-Days Squared (CD
2
) –   – 1.47 x 10

-4
 *** 

Adult Inactivity Days (AD)
 

– 2.17 x 10
-2

 ***    – 

Adult Inactivity Days Squared (AD
2
)
 

   4.15 x 10
-5

 *** – 

Adult Inactivity Days (AD) x Late Season (LT)    2.03 x 10
-3

 *** – 

Humidity (HD) –        – 22.47 *** 

Precipitation (PR) –        48.13 

Growing Degree-Days (CD) x Humidity (HD) –  8.19 x 10
-3

 *** 

CD/AD x Irrigation (IR)
 

 – 3.27 x 10
-3

 ***        0.58 *** 

CD/AD x Ground Cover (GC)
 

      
 
– 1.07 x 10

-3 
           0.34 *** 

CD/AD x Oil (OIL)         8.99 x 10
-3

 ***   – 0.65 *** 

Fruit Size (S)
 

   1.06 x 10
-3

 *** – 

Fruit Size (S) x Late Season Indicator (LT)
 

– 2.45 x 10
-4

 *** – 

Fruit Size Residuals
 

– 5.51 x 10
-4

 *** – 

Constant –        877.21 *** 

Log Likelihood Value –1038.11          – 

Adjusted or Pseudo-R
2
 0.39 0.86 

AIC       2174.21 – 

Correlation(ŷ,y) 0.81 – 

N (Tree-Week) 1033 1132 

Censoring Rate (percent)          40.65 – 

*** denotes significance at the one percent level. All other coefficients are not significant at the ten 

percent level. 
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Table III. Marginal Effect Estimates for the Population-Based Models 

 Specification 

Variable Current (12a) Lagged (12b) Augmented (13) 

Trapped Femalest 8.53 x 10
-3

 *** 6.86 x 10
-3

 ***       6.87 x 10
-3

 *** 

Trapped Femalest-1 – 6.46 x 10
-4

 ***       6.73 x 10
-5

 

Trapped Femalest-2 – 6.23 x 10
-4

 ***       2.24 x 10
-4

 

Trapped Femalest-3 – 6.57 x 10
-4

 ***       1.94 x 10
-4

 

Trapped Femalest-4 – 5.64 x 10
-4

 ***       4.06 x 10
-5

 

Growing Degree-Days (CD) – –    – 1.85 x 10
 -4

 

Growing Degree-Days Squared 

(CD
2
) 

– –    – 4.13 x 10
-8

 * 

Humidity (HD) – – – 0.03 *** 

Precipitation (PR) – –                  0.12 ** 

Growing Degree-Days (CD) x 

Humidity (HD) 
– –   8.11 x 10

-6
 *** 

Growing Degree-Days (CD) x 

Irrigation (IR)
 – –   3.56 x 10

-4
 *** 

Growing Degree-Days (CD) x 

Ground Cover (GC)
 – –        5.78 x 10

-5
 

Growing Degree-Days (CD) x  

Oil (OIL) 
– –   2.07 x 10

-4
 *** 

Log Likelihood Value –1254.28          – 1229.46 – 1039.28 

Pseudo-R
2
 0.26 0.27 0.38 

AIC 2596.56 2554.91 2190.55 

Correlation(ŷ,y) 0.58 0.60 0.79 

N (Tree-Week) 1018 1014 1014 

Censoring Rate (percent)          40.47 40.24 40.24 

***, **, * denote significance at the one, five, and ten percent levels.  

 

 

 



33 

 

                                                 
1
 One potential issue identified by Norwood and Marra [21] is that excluding a measure of pest 

pressure from estimation of the damage abatement function may result in biased estimates of 

pesticide productivity. 

2
 The California olive industry consists of a canning and an oil sector. The canning sector 

accounts for the vast majority of the olives processed (96 percent). Quality categories are defined 

by U.S. Department of Agriculture regulation and depend on the mean and distribution of fruit 

sizes in a delivery. In 2008, Manzanillo and Mission olives received the following prices per ton 

by size category from canning processors: $350 for Sub-petite, $400 for Petite, $650 for Small, 

and $1210 for Medium/Large/Extra Large; Sevillano olives received $300 per ton for Extra 

Large ‗L‘, $350 for Extra Large ‗C‘, and $1050 for Jumbo/Colossal/Super Colossal olives. At 

present, California olive oil processors do not pay a premium based on fruit quality. In 2008, oil 

olives earned a flat price of $450 per ton [8]. 

3
 We consider only pest-related damages, not yield damage from adverse growing conditions. 

4
 This specification excludes a direct measure of the pest population. This is an additional benefit 

whenever measuring pest populations is problematic, as is typical with mobile pests.  

5
 H.J. Burrack, ―The Olive Fruit Fly (Bactrocera oleae (Gmelin)) in California: Phenology, 

Cultivar Preference, and Reproductive Biology,‖ unpublished Ph.D. Dissertation, University of 

California, Davis (2007).  

6
 The data are unpublished, but are available upon request from the contact author. 

7
 The data were collected from seven orchards located in Amador, Butte, Solano, Sonoma, 

Tulare, Ventura, and Yolo counties. Across the seven sites, researchers collected oil and table 

olive cultivars, though effort centered on Manzanillo, Mission, and Sevillano fruit, which 

accounted for 95 percent of the olives produced in California in 2005 [33]. Sites from Glenn and 
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Tehama Counties (the second and third top olive producing counties) could not be included. 

During 2005, these two counties operated pest management districts which enforced treatment 

for the fly. Thus there were no untreated trees from which to sample.  

8
 We average by tree instead of using data on individual olives because the tree constitutes the 

smallest unit for which it is possible to construct a time series.  

9
 The panel dataset is unbalanced. Even so, we do not anticipate a sample selection problem. For 

each tree, the weekly sampling began prior to infestation and ran until the growing season ended. 

10
 Specification (13) excludes the vector V because of likely correlation between the elements of 

V and error arising from using trapping numbers (TR) as a proxy for the pest population (P). V 

includes variables based on a count of days during which temperatures fell outside of adult fly 

activity thresholds (AD), which is a measure of the incidence of extreme temperatures. There is 

evidence that extremely hot temperatures lead to a decline in the response of the fly to available 

trapping lures, which differs systematically from the decline in fly activity in response to the 

same stimulus [27]. We therefore expect including V in (13) to result in inconsistent estimates of 

the damage function parameters. 

11
 The reduced form in (11) may be more useful in practice as it depends only on observable and 

exogenous weather and management factors. Even so, growers may be reluctant to give up 

trapping data as an indicator of damage, in which case (13) may be a more palatable alternative. 

12
 The inclusion of humidity and precipitation in W but not in V prevents perfect collinearity 

when using the Heckman methodology. 

13
 We obtain estimates of standard errors with bootstrapping, as in [2]. 
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14

 We do not anticipate complications due to incorporating fixed effects into the CMLE. The 

dataset‘s time series dimension is T = 29 and the number of nuisance parameters to be estimated 

is relatively small, so we anticipate negligible incidental-parameters bias [14]. 

15
 Our population-based specifications are far more detailed than most in the literature. We keep 

the specifications as closely aligned as possible to facilitate their comparison. 

16
 Hypothesis testing of a Tobit against a CLAD specification for the damage equation supports 

the null hypotheses of homoskedastic, normally-distributed errors in the damage system. 

17
 Because they so closely parallel the results of the augmented population-based model in terms 

of both fit and predictive power, we refrain from reporting the results of the reduced form. 

18
 The production function is given by  Dyy  1max  where   .10 xGDD   D0 is the baseline 

level of damage as predicted by the empirical damage model under consideration and 

  .1   xKxG  The abatement function G expresses the proportional reduction in damage due 

to an application of the insecticide x, and is assumed to be distributed Pareto, a functional form 

used in the literature [see 19], with parameter .5.3  To simplify the profit function, we 

assume a constant price, p, of $350 per ton, a constant marginal cost of insecticide applications, 

cx, of $6 per acre, and a maximum potential yield, ymax, of 5 tons per acre (parameters are 

consistent with raw olive prices, cost of production studies, and the estimated efficacy rate for 

GF-120 Naturalyte Bait, the predominant insecticide used against the olive fruit fly).    

19
 This is found to be the case by K.M. Cobourn in ―Incentives for Individual and Cooperative 

Management of a Mobile Pest: An Application to the Olive Fruit Fly in California,‖ unpublished 

Ph.D. Dissertation, University of California, Davis (2009).  
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