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Abstract

Geophysical down-hole surveys can be used to measure the small  strain dynamic
properties of soils by the effects these properties have on wave propagation.  The
relevant effects include amplitude decay (corrected for beam divergence) and velocity
dispersion. In this paper, down-hole data collected during the GeoInstitute's Denver
2000 field day are presented and analyzed as a Kelvin-Voigt solid.  Findings for these
unsaturated soils include viscous damping and stiffness which differ significantly for
shear  and  compressional  waves.   A  strong  viscous  damping  is  observed  in
compression, but weak damping is presented in shear. Lumped parameter constitutive
models are discussed which mathematically represent the soil dynamics.

It  appears that,  in the case of unsaturated soils,  the relatively low level of
viscous damping in shear may be explained by the low mass of the air in the pores.
That is, it is difficult for inertial decoupling to occur between the soil frame and the
pore fluid when the pore fluid (air) is of such low density.  Thus, a pore fluid in
coupled motion with the frame can not produce significant viscous drag.  On the other
hand,  large  viscous  damping  is  observed  for  compressional  waves.   This  larger
damping may be due to the larger relative motions between air and frame which can
be forced by compression of the frame matrix.  These observations may be relevant in
areas such as  the design of driven piles and the estimation of potential for damages
from vibrations due to construction.

Introduction

As one of the participants in the GeoInstitute's Denver 2000 field day, the author
collected down-hole data in an unsaturated granular soil.  It was a unique opportunity
since other participants measured related soil properties by different methods in the
same general vicinity. These included ConeTec direct push surveys as well as surface
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wave  demonstrations  by  Olson  Engineering.   The  field  site  was  at  the  Asphalt
Recycling and Stabilization Inc. (ARS) quarry. The author demonstrated a method by
which the soil  stiffness and damping properties (Kelvin-Voigt constitutive model)
could be determined.  These soil properties are derived from measurements of seismic
wave velocity and amplitude decay as a function of frequency (Michaels, 1998).

The  ConeTec  demonstration  was  conducted  about  100  meters  from  the
author's down hole survey, and produced soil behavior types (SBT) which indicated a
silty sand layer about 4.6 meters thick over a gravely sand which extended to depth of
about 9 or 10 meters. Differences in ground elevation were not surveyed, and the
distance between the two sites was large enough to prevent more than a qualitative
comparison between the two locations.  

The  Olson  Engineering  surface  wave  demonstration  was  closer,  perhaps
within 50 meters to the down-hole work.  Handouts of Olson's analysis indicated a
shear-wave velocity profile that varied between 140 m/s and 230 m/s (0 to 3 meters
depth) ending with a constant value of 230 m/s (3 to 6 meters depth).  Olson and the
author  employed different  sources.   Since  our  sources were different,  the source
spectra  were  also  different.   Spectral  plots  handed  out  by  Olson  indicated  that
frequencies used in the SASW inversion extended from about 20 to 280 Hz.  The
author's down-hole source produced a spectral content from about 10 to 100 Hz, with
the most reliable data between 20-80 Hz.  The author's hammer delivered blows at
135 degrees from the vertical and is shown in Figure 1.

                              Figure 1. Hammer source used in down-hole survey 

Also shown in the Figure 1 is the stick-up of casing (2.5 inch PVC, schedule 40) and
the GeoStuff BHG-2 down-hole 3-component geophone, clamped by a worm driven
bowspring. The source is nailed to the soil (0.35 m south of the hole) and the hammer
can be pivoted to strike blows from opposing directions. Typically, 3 to 5 blows are
stacked  from  each  direction  at  any  depth  station  and  stored  as  two  separate
recordings.  Subtraction of  recordings enhances shear waves, addition of recordings
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enhances compressional waves.  Principal component analysis is used to determine
the down-hole tool orientation and is described in Michaels (2001).  The geophone
elements were 14 Hz velocity phones, and a 3 component stationary reference phone
was planted 0.6 meters south of the source.  The purpose of the reference phone is to
provide data to correct for minor variations in the source waveform and triggering.
Triggering of the Bison engineering seismograph was by contact closure (between the
wired hammer head and the aluminum covered strike plate.

Waveform Data

Figure 2 shows horizontal and vertical component waveform data collected down-
hole on the 8th of August, 2000.  The horizontal component data were rotated to align
with  the  source  polarization  (parallel  to  the  1m  source  beam)  and  the  vertical
component data are taken simply from the single vertical component.

Data were collected every 0.25 meters, from the bottom of the hole upward.  The
sample  interval  was  .0001 seconds.   Only  the  first  .05  seconds  of  a  0.5  second
recording is  shown to display the direct  arrival  waves with the best  clarity.   The
amplitudes have been rescaled at each depth station by the L2 norm of the signal for
that depth.  Since true amplitudes decay rapidly with depth and distance propagated,
this is the best way to present the waveforms in a single display.  The bore hole did
not appear to be well coupled to the soil in the first 1.5 meters from the surface.  This
view was formed by observing poor coherence and a high noise level, especially in
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Figure 2.  Horizontal and vertical component waveform data.
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the horizontal motion (observe the persistent ringing in the horizontal data above 1.5
meters depth).  An additional consideration is that surface waves dominate both the
horizontal and vertical components at the surface, close to the source. For that reason,
only the data from 1.5 to 6.0 meters depth is presented in the analysis which follows.
This  deeper  data  presented consistent  and coherent  wave fields  which one would
expected for body waves propagating in the soil.

Viscoelastic Analysis

Under the Kelvin-Voigt (KV) constitutive model, both phase velocity and amplitude
decay are functions of frequency.  The author's analysis method is to jointly invert
phase velocity dispersion and inelastic decay observed over a range of frequencies.
Velocity dispersion is computed in the time domain.  Narrow band (2 Hz) filtered
versions of the data are aligned in a depth window using trial velocities.  For each
alignment velocity, a semblance is computed (objective function to be maximized). A
golden  section  search  determines  the  best  velocity  for  that  frequency  band.
Amplitude  decay  is  observed  from  the  amplitude  (after  correction  for  beam
divergence) of each filtered version of the data for each depth in the depth window.
A least squares linear fit to the logarithmic amplitude decay with depth is performed
at each frequency. The slope of that linear solution is the determined decay value for
that frequency.   A least squares inversion jointly solves for the two coefficients of the
1-D inelastic wave equation (Michaels, 1998).  The governing wave equation is

                           (1)

where u is particle displacement, x is the direction of wave propagation, and t is time.
The stiffness coefficient is C1 (m2/s2) and the damping coefficient is C2 (m2/s).  The
method is robust when done over a large enough depth window. Effects associated
with scattering,  mixed or  multiple wave fields  within the  aperture,  and near-field
waves tend to average out over  intervals greater than a few meters.  The reader is
cautioned not to interpret individual measurements of velocity or decay at any one
frequency, as this may be misleading.   Rather, the reader should focus on the joint
inversion  results  (C1 and  C2)  which  are  determined  statistically  by  the  data's
presentation of Kelvin-Voigt specific behavior.

Figure 3 plots the measured velocity dispersion and amplitude decay for both
the  P-wave  and  SH-wave  data  collected  on  8  August,  2000.   The  depth  range
analyzed extended from 1.5 to 6 meters depth.  Error bars are for 95% confidence
limits.  The results for the vertical component signals, labeled P-wave, are shown in
Figure 3 (a) and (b).  The results for the horizontal component signals, labeled SH-
wave are shown in c) and d) of the same figure.  The reader is urged to observe the
solid curves which are computed from the solutions for C1 and C2.   Note that, for
example, the solid velocity curve for P-waves is always faster than the solid curve for
S-waves.
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We note that the velocity variation with frequency is significantly greater in
the  case  for  the  P-wave  data.   Consistent  with  that  observation,  the  variation  of
amplitude decay with frequency is also very much larger in the case for P-waves than
for SH-waves.  Further, the response is nearly elastic for SH-waves, the propagating
wavelet  largely  retains  its  shape  as  the  wave  propagates.   For  P-waves,  the
propagating wavelet stretches its shape with distance propagated, consistent with KV
damping.  In other words, the damping of P-waves is greater than for SH-waves.

The least squares solution for the wave equation coefficients, C1  and C2 are
given for the two cases (compression and shear) in Table 1.  Note that the damping,
C2, for compression is about 40 times greater than for shear.  Confidence limits are
for 95%.  

The shear-wave velocity solution shown in Figure 3(c) varies from a low of
about 245.45 m/s to a high of 245.48 m/s.  This extremely low level of dispersion is
due to the minimal damping in shear.  The average shear velocity magnitude is in
general  agreement  with  the  analysis  from the   Olson  Engineering  SASW survey
conducted about 50 meters distant from the borehole.  The GeoDenver attenuation is 
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Figure 3. Velocity dispersion and attenuation measurements 
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very modest compared to determinations made at GeoLogan 1997 (saturated sand,
C2=14 m2/s)  and  in  Idaho  (saturated  gravel  and  sands,  C2 as  large  as  255  m2/s)
Michaels  (1998).    While  no  water  content  measurements  were  made  at  the
GeoDenver bore hole, the soil was clearly unsaturated, no water table was observed in
the bore hole or neighboring quarry pit.

The  compressional  P-wave  velocity  solution  shown  in  Figure  3(a)  varies
significantly over frequency (from a low of about 300 m/s to a high of 400 m/s).
Consistent with a viscoelastic model, the attenuation also varies greatly (from 0 to
almost 0.5 nepers per meter).  The author has no comparable results for saturated
soils,  since  the  Biot  type  2  wave generally  appears  to  be  present  and  limits  the
aperture available for this type of analysis.  However, it has long been recognized in
the exploration seismic industry that the best signal is returned from reflections when
the source is located below the water table (Sheriff and Geldart, 1995, p202).  This
suggests the possibility that P-waves may differ from S-waves significantly in terms
of damping at saturated conditions;  greater damping for S-waves, less damping for
P-waves.

Comparing Oscillations to Waves, Damping Ratio and Loss Tangent

The equation (1) coefficients C1 and C2 are ratios of stiffness and viscosity to
density. That is, 

 (2)

where G is the shear modulus,  η is the viscosity, and  ρ  is the density of the soil
(combined matrix and pore fluids).  All of the above are specific properties of the
soil, they are constants, and they are invariant with frequency.  They become lumped
parameters when a specific volume of soil is considered (ie. density becomes mass).

Some authors, Kramer (1996), Schnabel et al.  (1972), and Stoll  (1985), to
name just a few, have expressed shear modulus as a complex quantity,

(3)

where  i2=-1 .  The real part,  GR , is frequency invariant, but the  imaginary part,  GI,

depends on frequency.  Specifically,

6

Table 1. Inversion results for P- and SH-waves  1.5< depth <6 meters

Wave Type C1  (m2/s2) C2  (m2/s)

P-wave 76,672 (+/-) 2,211 202  (+/-) 9

S-wave 58,059 (+/-) 2,851 005  (+/-) 3
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(4)

Loss tangent is given by (Stoll, 1985),

(5)

and this is frequency dependent as well. Kramer (1996, p.176-177) and others give
damping ratio as

(6)

from  which  it  can  be  seen  that  damping  ratio  is  also  frequency  dependent.
Unfortunately, the vast majority of resonant column reports are for dry samples, and
results  for  shear  have  revealed  damping  ratios  which  appeared  to  be  frequency
independent. In an attempt to explain that, Hardin (1965) suggested that viscosity
varied with  frequency  in  such a way as to  remove the frequency dependence in
damping ratio. This new viscosity has been termed "equivalent viscosity" by Kramer.
Damping ratios computed from "equivalent  viscosity"  are not  consistent  with the
Kelvin-Voigt representation, and should not be compared with this work. One should
only consider frequency variant determinations of loss tangent or damping ratio when
working within a true KV representation.

Shear testing by Stoll (1985) reported loss tangents for frequencies from 2 to
1000 Hz in 20-30 Ottawa sand. The loss tangent for dry sand was largely independent
of  frequency  (.006),  but  rose  significantly  with  frequency  for  saturated  sand
(from .006 to .04). If we substitute Table 1 results for shear into equation (5), we
obtain  loss  tangents  for  GeoDenver  soil  which  vary  from  .005  to  .054  for  the
frequency range 10 to 100 Hz. These results suggest that some water was present in
the GeoDenver soil,  but  more detailed conclusions are not  possible since neither
grains size distributions nor water content were determined.

Beyond the Kelvin-Voigt (KV) Representation for Shear Waves

Figure 4 (a) shows the traditional KV constitutive model as lumped elements in an
oscillator.  Also shown is how an assemblage of single degree of freedom (SDF)
oscillators can be used to represent shear-wave propagation.  The KV representation
has  traditionally  been  used  to  mathematically  describe  the  dynamics  of  soils  in
engineering  practice.  Examples  include  consolidation  (ASTM-D2435,  1996)  and
resonant column (ASTM-D4015, 1996) tests, as well as the response of soils under
impact (Roesset et al., 1994).  A significant limitation is the single mass element in
the model.  Soils do not consist of a single component, but are in general a medium
consisting of 2 to 3 physical components.  These include a solid component and 1 or
more pore fluids.

Since  the  solid  and  pore  fluid  elements  may move independently  of  each
other, a better model would allow for those possibly separate motions.  Pioneering
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work on this topic was done by Biot (1956 a, 1956 b).  The essential problem with the
KV model is in accounting for the dashpot.  Stoll (1985) demonstrated that saturating
pores with water produced significantly more viscous damping than was the case for
pores filled with air.  This observation suggests that damping depends on the pore
fluid, and may be due to relative motion between fluid and frame.  If the dashpot is to
be due to the viscous friction between pore fluids and frame, these materials can not
be bound together as a single mass element.  Further, even small amounts of water
can  significantly  increase  damping  values,  as  reported  in  studies  of  lunar  soils
(Tittmann et al., 1974). 

Recent  theoretical  work  by  the  author  has  posed  an alternative  model  for
saturated media (Michaels, in press).  This representation has been named the Kelvin-
Voigt-Maxwell-Biot  (KVMB)  representation,  being  inspired  by  those  existing
models.  The lumped element KVMB oscillator is shown in Figure 4 (b).  Also shown
is how an assemblage of these 2DF oscillators can be constructed to represent shear-
wave propagation.   In that work, a mathematical mapping between the traditional KV
and the KVMB representations is formulated using the decoupling principal (Sadun,
2001). 

Air vs. Water as Pore Fluids (Shear)

As can be seen from Figure 4(b), the production of viscous friction through the action
of  the  dashpot  depends on the  relative  motion  between pore fluids  and the  solid
frame.  This relative motion depends in large part upon the resistance of the pore fluid
to motion by virtue of its inertia and the available permeability.  The more massive
the fluid component,  the greater its  ability  to resist  being dragged along with the
moving solid frame for a given permeability.  The fluid mass increases with both
porosity and the density of the fluid.  For a given porosity, we should expect a dense
fluid to produce greater damping than a less dense fluid, like air.  This is what the
KVMB model predicts as can be seen in Figure 5.  The small level of shear wave
damping in the Denver 2000 data may be explained by the lack of inertia for a pore

8

Figure 4.  Kelvin-Voigt and KVMB representations of a soil. 
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fluid composed largely of air.
The  theoretical  computation  shown  in  Figure  5  is  based  on  the  KVMB

representation, and includes an assumption of cylindrical pores, as was the case in
Biot (1956a).  The vertical axis is an equivalent KV damping ratio mapped from the
KVMB representation.  The details of this theory for saturated conditions is given in
Michaels (in press).  The published theory is appropriate for saturated conditions,
with  either  water  or  air  being  the  fluid  completely  filling  the  pore  space.   The
extension to unsaturated conditions is discussed below.

The  solid  curves  in  Figure  5  are  shown  for  some  selected  degree  water
saturations  and  the  corresponding  water  contents.   The  case  of  completely  dry
(S=0%) is not shown as it would fall below the chosen axes.

Starting at the left edge of Figure 5 (low frequencies), the pore fluid and frame
are largely coupled, moving together.  With little relative motion, KV damping is
computed to be at a low value.  The level of damping increases with frequency as the
fluid and frame begin to separate and experience more relative motion due to reduced
inertial coupling.  The soil is represented by a capillary tube model where all tubes
have the same, uniform cylindrical  shape and diameter (0.3 mm in this example).
This capillary model is the same used by Biot (1956a).  Resistance to flow is a result
of the fluid viscosity, and this resistance is gradually overcome by inertial forces with
increasing oscillation frequency.  Maximum KV damping is produced at a peak of the
solid curve.  Here, the relative motion between frame and fluid is at a maximum, with
the frame moving one way and the fluid lagging in phase, moving in an opposite
direction  producing  a  large  relative  velocity between  the  two.   As  frequency
increases,  inertial forces dominate.   The relative velocity between frame and fluid
actually decreases with decreasing absolute velocity of the fluid.  That is, in the very

9

Figure 5. Equivalent KV damping ratio as a function of frequency.
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high frequency limit,  the fluid tends to  slow down and remain at  rest,  no longer
moving out of phase with the frame.  At that point the frame is moving through what
is essentially a stationary fluid.

The  borehole  determined  values  of  C1 and  C2 (see  Table  1)  have  been
converted to damping ratio  using equation (6).   The borehole computed damping
ratios are plotted in Figure 5 between the two circles.

Estimating Damping Ratio for Intermediate Saturations 

The computations shown in Figure 5 include estimates of what might be expected at
intermediate saturations.  The assumptions which lead to the intermediate saturations
shown are as follows:

1. Pore fluid mass is a weighted blend of air and water, set by degree saturation.
2. Pore fluid viscosity is a weighted blend of air and water, set by degree saturation.

The equations which implement these assumptions are as follows:
(7)

(8)

(9)

Here,  S is  the  degree of  water  saturation,  µ is  viscosity,  and  the  masses,  m,  are
computed from porosity and saturations for a relevant volume of interest by the usual
method found in any soil mechanics text.  In equations (7) and (8), the assumption is
that at low water saturations, the moisture clings to the frame and only the air moves
relative to the pore throats.  At high saturations, the pore fluid flows through the pores
by inertia.  The extra mass due to water density is essential in creating a significant
amount of damping because air, being so light, lacks the needed inertia.

Conclusions

Shear waves appear to have less damping than P-waves in unsaturated soils.  This
may be due to the relative reduction in pore fluid density that occurs when water is
replaced with air, and this results in less inertia to drive fluid flow through pores.

Shear  waves  are  significantly  easier  to  represent  than  P-waves.  The
representations shown in Figure 4 are for shear only.  The pore fluid (be it  air or
water)  possesses  no shear  strength,  thus  requires  no  spring  to  represent  the  fluid
component.  The situation is quite different in compression, since fluids possess a
compressibility (air is highly compressible, water less so). 

P-wave damping has been represented by combining volumetric compression
of the soil with the diffusion equation (Bardet, 1995).  Bardet derives the theoretical
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response of a "Biot Column" and predicts the dynamic behavior in terms of several
parameters, including soil stiffness, degree of saturation, porosity, specific gravity,
and permeability. Since volumetric strain is key to this representation of a soil, Bardet
expresses the view that water will not damp a poroelastic shear beam (because no
water  diffusion  is  expected in  the  absence  of  shear-volume coupling).  This  view
neglects the alternative possibility of inertial coupling in shear.

A summary observation may be this.  It appears that, for the case of shear,
inertial coupling is the key mechanism by which pore fluids may be driven through
the frame.  On the other hand, diffusion is the key mechanism by which pore fluids
may be driven through the frame in compression.  Thus, a low density pore fluid like
air can result in high levels of damping for P-waves, but not for SH-waves.  A dense
pore fluid is required to increase the damping in shear.  This is  evident when the
author compares SH-wave damping in saturated soils with those in unsaturated soils.  

Finally,  the author's theory predicts that  low levels of damping may result
even in saturated conditions when the permeability of the soil is either very low or
very large. This is because very small pores prevent fluid-frame motion, and very
large pores produce less friction when fluid-frame motion occurs.  The theory also
predicts less damping at very low or very high frequencies as described above.  Thus,
field  observations  of  shear  wave damping may lead to  a method for  determining
permeability of saturated soils, and possibly a method for the estimation of degree
water saturation in unsaturated soils. 
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