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Issues During the Inversion of Crosshole Radar Data: Can We Have Confidence in the Outcome?

William P. Clement
Center for the Geophysical Investigation of the Shallow Subsurface, Boise State University, Boise, ID 83725

, Fax: (208) 426-3888, Email: billc@cgiss.boisestate.edu

ABSTRACT

One method of assessing the confidence in modeled features is to compare the results from

different inversion schemes. I use synthetic traveltimes calculated from a model of an

unconfined aquifer to determine the reliability of crosshole tomography. I compare the inverted
models from straight and curved ray approximations to wave propagation. I investigate the

effects of added random noise, regularization, the starting model, and the reference model on

the curved ray inversion method. I also investigate the effects of different grid sizes for the

forward model and of limited ray coverage through the earth model. Understanding the effects

of these different methods and parameterizations will help place confidence limits on modeled

features to more accurately reflect our knowledge of the subsurface. Straight or curved ray

approximations to wave propagation resulted in similar models. However, the resolution

estimates are substantially different and would lead to different assessments of the model
reliability. Comparisons of the different choices for the model parameterization show that the

resulting models are similar, indicating that tomography is a robust method. The most

important factor to obtain reliable parameter estimates from crosshole radar tomography is to

acquire wide aperture, densely sampled data with little noise.

Introduction

Crosshole radar tomography is increasingly used

to characterize the shallow subsurface and to monitor

hydrologic processes such as infiltration through the

vadose zone and solute transport through the saturated

zone (Binley et al., 2001; Galagedara et al., 2003;

Hubbard et al., 2001). Typically, the surveys are

conducted in wells a few meters apart and to depths of

about 10 to 20 m (e.g., Alumbaugh et al., 2002; Binley et

al., 2001; Galagedara et al., 2003; Tronicke et al., 2002,

2004). Most of these studies report the estimated

velocity models without discussing the reliability of

those models. Many tomographic studies use a straight

ray approximation of the ray path to linearize the

problem (e.g., Binley et al., 2001; Galagedara et al.,

2003). Recently, GPR crosshole tomography studies

have modeled the ray paths using curved rays (e.g.,

Alumbaugh et al., 2002; Tronicke et al., 2002, 2004).

Many of these studies indicate a large-scale layering in

the subsurface, especially in studies imaging the

saturated zone (e.g., Hubbard et al., 2001; Tronicke et

al., 2002, 2004).

Some authors have investigated the model resolu-

tion and model covariance of the tomograms for the

nonlinear curved ray problem (e.g., Alumbaugh and

Newman, 2000; Alumbaugh et al., 2002; Nolet et al.,

1999). However, these results are approximations to the

true model resolution and model covariance matrices.

The model resolution and model covariance matrices are

defined for linear problems; similar model resolution or

model covariance matrices are not defined for the non-

linear problem. These studies also assume that the

inversion finds the global minimum and that this

minimum is well-behaved so that model resolution and

model covariance matrices are good approximations to

the true model resolution and model covariance.

Day-Lewis and Lane (2004) investigate the effects

of regularization on tomograms from a geostatistical

distribution of velocities in their model. Their analysis

uses the straight ray approximation to linearize the

problem. They conclude that the statistical distribution

of the velocities is strongly dependent on the regulariza-

tion, as well as the data error, acquisition geometry, and

the size of the heterogeneity (Day-Lewis and Lane,

2004).

In this paper, I address the effects of parameter

choice on the inverted velocity model. Through plots

showing the results of different parameter choices, one

can better understand the effects of these choices and

thus more easily recognize artifacts from the inversion.

Day-Lewis and Lane (2004) state that ‘‘two tomograms

inverted from a given data set can differ markedly in

structure depending on the chosen regularization

criteria.’’ Other choices, such as the starting model and

the reference model may effect the model structure too.
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Many studies, for example Chang et al. (2004), are

evaluating the attenuation of EM energy to better

understand the physical property distribution in the

subsurface. Although I am using traveltime tomography

as my example, the results of this study should be

applicable to attenuation tomography studies too.

As a first step towards addressing these questions,

I investigate some basic sources of uncertainty in the

tomographic inversion step. I start with a known test

model, simulate a tomography experiment, and invert

the synthetic traveltimes. Comparing the inversion

results with the known input model can improve our

understanding of the capabilities and limitations of

different tomographic methods. I also have many

different models from the same traveltimes. These

different models provide a range of acceptable models

from which to infer the robust model features.

I do not address error associated with borehole

deviation or the mis-location of the antennas in the well.

Although these errors effect the tomogram, they will not

effect the choice of model parameterization. I include

noise in the traveltime picks to more realistically

simulate field data. This noise effects the choice of

parameterization in two ways. First, the stopping

criteria for the iterative solution is based on the data

noise. Secondly, regularization is used to prevent over-

fitting the data. The inversion algorithm introduces

structure in the model to fit the traveltime picks. Since

the data contain noise, the inversion adds structures to

fit the noise in the data. By regularizing the inversion,

for example through flatness or smoothness constraints,

the inversion method will try to find models with less

structure, yet fit the data to within the error tolerance.

I look at the forward model operator, the effects of

noise, the regularization, the reference and starting

model, the discretization, and the angular coverage of

the data. I used two different inversion algorithms to

show the influence of the forward operator: one straight

ray and one curved ray. I look at the effects of

increasing the noise in the traveltime picks, as well as

different types of noise distributions. I next look at the

effects of model regularization. I use two simple

regularization schemes with different amounts of

weighting. Another important parameterization decision

is the reference and starting model. How do the choices

effect the inverted model? The resolution of the inverted

model is tied to the grid size used in the inversion. Is it

preferable to use a small grid size to be sure to model

small features? Or does a small grid size introduce

artifacts? Does using a large grid size miss important

features in the subsurface? Finally, an important aspect

of the data is the angular coverage of the interwell area.

High-angle rays are necessary to correctly locate lateral

velocity variations in the subsurface. However, these

high-angle rays may also introduce artifacts into the

model. What features are artifacts caused by the high-

angle rays? By presenting many models from the same

traveltimes but with different parameterizations, I hope

to demystify some of the ‘‘art’’ in tomography for new

users of the technique.

Background Theory

Matrix algebra provides a convenient way to

express forward and inverse problems such as traveltime

tomography. The forward problem is

d ~ Gm, ð1Þ

where d is the data (vector), G is the kernel function

(matrix), and m is the model (vector). The kernel

function projects the model onto the data space. The

kernel function represents the physics of the problem,

including boundary conditions and differential equa-

tions, and is generally not square.

A solution to the inverse problem is

m ~ G{1d: ð2Þ

Conceptually, the inversion process involves com-

puting the inverse of matrix G and then multiplying this

matrix by the data to compute the model. Typically,

G21 is impossible to compute, because the matrix is ill-

posed, ill-conditioned, or large. A weighted, damped,

least squares approach is often used to find a solution

(Menke, 1989). In the weighted, damped, least squares

approach to inversion, I use an L2 norm to determine

the optimal solution from the objective function

min d { Gmð ÞTWT
d Wd d { Gmð Þ

n

z l m { SmTð ÞTWT
mWm m { SmTð Þ

o
,

ð3Þ

where <m> is the starting and reference model, Wm is

the regularization matrix, Wd is the data weighting

matrix, and l is the weighting factor between data misfit

and solution length. The parameter l determines how

much the data influences the model versus how much

the regularization constrains the model. For l 5 0, the

solution depends only on the data. For very large l
values, the solution depends on the regularization.

Taking the derivative with respect to the model

parameters, m, and setting the result to zero, yields the

weighted, damped, least squares solution (Menke, 1989):

mest ~ SmT z GTWT
d WdG

�
z lWT

mWm

�{1

|GTWT
d Wd d { GSmT½ �

ð4Þ

where mest is the best fitting model. In the tomography
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problem, the data are first arrival times and the

algorithm tries to minimize the difference between the

data misfit and the solution length.

A variety of computational methods have been

developed to implement matrix inversions, including an

algebraic reconstruction technique (ART) (Peterson et

al, 1985), a simultaneous iterative reconstruction tech-

nique (SIRT) (Tweeton, 1988), or an iterative conjugate

gradient-like solver (LSQR) (Paige and Saunders, 1982).

These methods find the solution through iteration. I use

a straight ray tomographic inversion using SIRT

(Tweeton, 1988) and a curved ray inversion using LSQR

(Aldridge and Oldenburg, 1993). The curved ray in-

version is nonlinear. Linearizing the problem results in

an iterative method to solve the tomography problem.

Synthetic Model

To test the different crosshole traveltime tomog-

raphy parameterizations, I used a finite-difference

approximation to Maxwell’s equations (Lampe et al.,

2003) to simulate a crosshole radar tomography

experiment. The finite-difference method calculates the

wavefield propagating through a gridded velocity field.

Figure 1 shows the test velocity model and traveltimes

from two source locations. The model simulates air, the

vadose zone, and lateral changes in the saturated zone to

test the inversion algorithms’ ability to image features

common in near surface investigations. The test model

includes vertical and horizontal velocity changes. I have

developed the test model based on gravel outcrops and

a research well site near Boise, ID (Barrash and Clemo,

2002; Tronicke et al., 2004; Clement et al., 2006). The

simple layering is chosen to be more representative of

sediment outcrops than the stochastic physical property

distributions used in transport problems. The velocities

were selected to represent the velocity distribution

derived from GPR studies at the research well site

(Clement et al., 2006; Tronicke et al., 2004). From these

studies, the vadose zone has a velocity of about 0.14 m/

ns. The velocities in the saturated zone vary from a low

of about 0.06 m/ns to a high of about 0.1 m/ns. The

water table is at about 2 m.

The model is 5 m by 10 m with a horizontal and

vertical grid spacing of 0.05 m. I included several layers,

some with lateral velocity changes, to simulate the types

of features often observed in the subsurface. The test

velocity model consists of high and low velocity zones

and thick and thin layers to test the inversion schemes.

Above the top layer of the model, the velocity is 0.3 m/

ns to simulate air. The air layer is included to model

refractions at the air-surface interface. The upper, 2 m

thick layer, represents the vadose zone with a velocity of

0.140 m/ns. Velocities in the simulated saturated zone

(2–10 m depth) range from 0.070 to 0.095 m/ns. Layers

are horizontal and range in thickness from 0.5 to 2.0 m.

The layer at 4.0 to 5.5 m depth contains a low-velocity

inclusion near the center of the model, between 2.0 and

3.5 m on the horizontal scale; at the edges of the layer

the velocity is 0.090 m/ns whereas the velocity is

0.070 m/ns in the inclusion. A high-velocity zone is

included in the layer between 7.0 and 8.0 m depth. Close

to the wells, the velocity is 0.080 m/ns whereas near the

center, again between 2.0 and 3.5 m on the horizontal

scale, the velocity is 0.090 m/ns. These horizontal

velocity changes are included to determine the ability

of the inversion methods to image heterogeneity in the

subsurface. The synthetic modeling results in this paper

provide insight into the capabilities and limitations of

different tomography methods and the level of detail

that can be reliably interpreted from tomographic

images.

I simulated a traveltime tomography experiment in

two wells spaced 3.5 m apart (Fig. 1). First arrival travel

times were picked from the synthetic wavefield comput-

Figure 1. Test model used to generate the synthetic
travel times. The wells are located at 1.0 m and 4.5 m.

The small stars indicate the sources used to generate the

synthetic travel times. The dots are the receiver locations.

The contoured lines are the travel times for a source

located a) at 0.25 m and b) at 7.25 m depth.

271

Clement: Inversion of Crosshole Radar Data



ed between 40 shot locations spaced 0.25 m down the

well and 41 receiver locations also spaced at 0.25 m

intervals. To get accurate picks, I computed the first

arrival travel times using a finite-difference eikonal

equation forward model (Hole and Zelt, 1995), similar

to the forward model used in the inversion algorithm. I

then superimposed these travel times onto the simulated

crosshole tomography waveforms to be sure the travel

times were accurate. The picks aligned with the first

arriving energy in the waveforms. The simulated

tomographic traveltimes consists of 1640 travel time

observations.

Results of Inversion

I used two different inversion routines to invert the

synthetic crosshole traveltimes. The curved ray inversion

method uses a finite-difference approximation to the

eikonal equation (Aldridge and Oldenburg, 1993; Vi-

dale, 1990). This algorithm can incorporate ray bending

at velocity contrasts, such as the air/ground interface or

the vadose/saturated zone interface. The routine line-

arizes the system and finds a solution using LSQR

(Paige and Saunders, 1982). I also used a straight ray

inversion method that uses straight ray paths between

the sources and the receivers (Tweeton, 1988). This

routine solves the linear system of equations using

a SIRT algorithm.

Except for the comparison of straight ray to

curved ray inversion, the analysis uses the curved ray

inversion method. To make a comparison between

different parameterizations, I tried to keep the inversion

parameters consistent when possible. I used a 0.1 m grid

size for the inversion. I stopped iterating to the solution

when the RMS residual was less than or equal to 0.5 ns

or the number of iterations exceeded 25, except for the

noise and grid size analysis. The 0.5 ns stopping

criterion is based on the noise distribution in the

simulated traveltimes, which is discussed in more detail

later. All the inversions stopped before the 25 iteration

limit.

The LSQR algorithm iterated until the relative

error increment was less than 1 3 1026 or the number of

iterations was greater than 150. The small relative error

increment ensures that the LSQR algorithm is near the

solution. The 150 iteration limit gives the LSQR

algorithm sufficient iterations to find the solution. After

that number of iterations, the algorithm will probably

not find the solution.

The initial starting model and the reference model

were the same in each inversion. For all the inversions,

except for the regularization analysis, I used a model

weight of 0.01 and a flatness constraint weighted by 15

in the horizontal direction and 5 in the vertical direction.

The model weight damps the instability in the inversion

due to small eigenvalues. Adding a small value to the

eigenvalues stabilizes the inverse procedure. I chose the

horizontal and vertical weights based on my expecta-

tions of the model. In outcrops, the layering is more

continuous in the horizontal direction than in the

vertical direction. I used a small scalar value to minimize

the reference model influence. Large scalar weight

values force the solution to minimize the solution length

at the expense of the data misfit.

Except for the starting and reference model

analysis, the curved ray inversion used a two-layer

starting model with a velocity of 0.140 m/ns in the upper

1.8 m, a 0.08 m/ns velocity below 2.2 m, and a linear

velocity gradient between 1.8 to 2.2 m. This model is

based on a simple, two-layer velocity structure; a vadose

zone and a saturated zone. In the vadose zone, air fills

the pore spaces, resulting in a faster velocity than the

water-filled pores of the saturated zone. The velocity

gradient represents the capillary fringe, but is also

included to allow the finite-difference algorithm to more

accurately compute the travel times.

Straight Ray versus Curved Ray

The straight ray inversion uses a different method

to regularize the solution. The inversion finds a weighted

average of the model parameters based on the cell value

and its neighbor parameter values. The curved ray

method uses Tikhonov regularization that imposes

a flatness constraint as previously mentioned. Also,

the straight ray inversion is linear so the inversion does

not iterate to find the solution, but iterates the SIRT

algorithm to solve the system of equations until the

stopping criterion is met.

Figure 2 shows the test model and a comparison of

the straight ray and curved ray inversions using noise-

free traveltimes. In general, models from either method

are similar and image the velocity changes in the test

model (Fig. 2). The curved ray inversion (Fig. 2c) is

better able to define the test model boundaries than the

straight ray inversion (Fig. 2b). Figures 2d–e show the

differences between the two models and between the test

model and each inverted model.

Both methods poorly image the upper 2 m. The

simulated energy is strongly refracted at the air-surface

boundary at 0 m and at the 2 m depth boundary. For

the straight ray case, straight rays are a poor approx-

imation to the true ray path across these boundaries

resulting in the highly variable velocities in this zone.

Not surprisingly, the curved ray inversion better images

the 2 m depth boundary. However, the velocity in this

zone is different from the test model. The curved ray

inversion has a two layer model for the upper 2 m.

Between 0 to 1 m, the velocities are very fast, much
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faster than the 0.16 m/ns maximum velocity displayed in

the Figure 2. Between 1 to 2 m, the velocity is similar to

the 0.14 m/ns velocity of the test model, although the

modeled velocity is faster than 0.14 m/ns. The poor

image in this region is probably due to the large velocity

contrasts in the model: from 0.3 m/ns to 0.14 m/ns at

0 m depth and from 0.14 m/ns to 0.08 m/ns at 2 m

depth. These large velocity changes are difficult for the

finite-difference solver to properly model (Hole and

Zelt, 1995; Podvin and Lecomte, 1991). Figure 3 shows

the ray density plots for both inversions. The ray density

is the number of rays through a cell divided by the

length of the cell. High ray densities indicate well-

sampled cells and low ray densities indicate poorly-

sampled cells. The zone above 2 m, especially between

0 to 1 m, is poorly sampled by the rays. Structures near

regions of large velocity changes may be artifacts of the

forward operator, not model features required by the

data.

Throughout this analysis, the inversions poorly

image the upper 2 m and the discussion will focus

primarily on the inverted models below 2 m.

In the straight ray model, the low-velocity

anomaly between 4 to 5.5 m depth is not as well imaged

as in the curved ray model. An X-pattern is apparent in

the velocity model between 3 and 6 m depth. This X-

pattern is common in straight ray inversions. The

forward model, G, maps the errors in the model onto

the data (Oldenborger et al., 2005). The straight ray

forward model smears the errors along the diagonal

straight-ray paths resulting in the X-pattern.

The curved ray inversion resolves the thicknesses

of the layers better than the straight ray algorithm. The

X-pattern is less apparent; the velocity boundaries are

sharper at 4, 5.5, and 6 m. The curved ray model also

more clearly shows the lateral velocity changes in the

center of the domain, although the boundaries of the

inclusions are blurry.

Figure 2. A comparison of the straight ray and the curved ray algorithms using noise-free traveltimes. a) True model

used to generate the synthetic travel times. b) Inverted model using the straight ray inversion algorithm. c) Inverted model

using the curved ray algorithm. d) The difference between the curved ray model minus the straight ray model. e) The

difference between the test model and the straight ray model. f) The difference between the test model and the curved

ray model.
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The two inversions fit the traveltimes about the

same. The straight ray inversion converges to an RMS

misfit of 0.494 in 16 iterations. The model has a velocity

range of 0.057 to 0.177 m/ns, greater than the true

range. The mean residual is 0.059 ns with a range of

22.46 to 1.83 ns. The curved ray inversion converges in

4 iterations to an RMS misfit of 0.491 ns. The inversion

fits 1637 of the 1640 travel times. The model has

a velocity range of 0.069 to 0.300 m/ns, wider than the

straight ray velocity range. The residuals for the curved

ray model have a mean of 20.002 ns with a range of

22.195 to 2.122 ns. Both methods have an average error

near zero, but the curved ray method has a smaller RMS

error indicating a smaller width in the misfit error

distribution despite having a wider range.

Subtracting the inverted models from each other

and from the test model shows the degree to which the

models differ (Fig. 2d–f ). In the difference plots, the

region above 3 m depth has the largest discrepancy from

the test model, especially for the straight ray tomogra-

phy. Between 3 and 9 m, the straight ray and curved ray

models are similar to the test model and are nearly the

same to each other.

The difference of the curved ray model and the

straight ray model has an RMS value of 9.64 m/ms, with

a range of 287.01 to 45.38 m/ms. The small RMS value

indicates that the models are very similar. The difference

of the straight ray model from the test model has an

RMS value of 9.64 m/ms with a range from 299.51 to

45.00 m/ms. The difference of the curved ray model from

the test model has a lower RMS value, 5.09 m/ms and

a narrower range, 289.64 to 14.79 m/ms, than the test

model minus the straight ray model and the curved ray

model minus the straight ray model. If I restrict the

analysis to depths between 3.0 and 9.0 m, where fewer

artifacts exist, the RMS values of the differences

between the test model and the inverted models are

smaller and the ranges are much narrower. For the test

model minus the curved ray model, the RMS value is

2.80 m/ms and the range is 211.27 to 9.93 m/ms. For the

test model minus the straight ray model, the RMS value

is 4.53 m/ms and the range is 215.62 to 45.00 m/ms. For

the curved -straight ray case, the RMS value is 2.34 m/

ms and the range is 28.09 to 45.38 m/ms. The small RMS

value still indicates that the models are closely matched.

Both the straight ray and the curved ray tomography

provide velocity models that distinctly image the main

features in the test model.

To gain insight into how the two inversion

methods partition error along ray paths, I generated

plots of ray density for both methods (Fig. 3). For the

straight ray inversion, more rays pass through the center

of the model than at the edges. The ray density decreases

systematically away from the model’s center, with few

rays sampling the top and bottom of the model. This

coverage difference will cause the inversion algorithm to

assign errors to the less densely sampled cells because

they affect fewer of the travel times. (Some of the error

in the less densely sampled cells also comes from the

regularization). Thus, the edges of the model are less

constrained than the middle and, consequently, the

uncertainty is greater for the edges. From the ray

density, I have more confidence in the modeled features

in region between 3 to 7 m depth and 2.0 to 3.5 m

distance.

The curved ray inversion has a much different ray

density character. Thin zones of higher ray density exist

in the model. High ray density zones extend horizon-

tally, most notably at 1.5 to 2.0 m, but also at 8.0 to

8.5 m depth. Diagonal zones of high ray density also

exist in the plot. These high ray density zones roughly

correspond to the high velocity zones in the test model.

Zones of low ray density roughly correspond to low

velocity regions. These low velocity regions are poorly

sampled by the rays and consequently, the inversion has

difficulty resolving these features. As in the straight ray

case, few rays sample the top and bottom of the model.

I also computed estimates of the resolution and

covariance matrices of the curved ray inversion.

Resolution is a measure of the averaging from

neighboring cells used to calculate the cell value. A well

Figure 3. Ray density diagram. a) Ray densities from

the straight ray inversion. b) Ray densities from the curved

ray inversion.
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resolved cell will have a value near 1 with small side

lobes away from the diagonal. Covariance is a measure

of the uncertainty in a particular value. The diagonal

elements of the covariance matrix are the variances.

Although the resolution and covariance matrices are

formally defined only for linear inversions, Nolet et al.

(1999) developed a method for determining the diagonal

elements of the resolution and covariance matrices from

nonlinear inversions. Figure 4 compares the ray density

to the diagonal elements of the resolution and co-

variance matrices from the curved ray inversion. The

diagonal value for the resolution matrix and the

variance for a cell is plotted in Fig. 4c and 4d at the

cell’s location. The mean value of the diagonal

resolution elements is 0.72 with a standard deviation

of 0.04. The mean value of the variance is 0.0011 ms2/m2

with a standard deviation of 0.0001 ms2/m2. The

resolution and ray density plots are similar in structure;

more well resolved regions tend to correspond to higher

ray densities. The high velocity regions have larger

resolution values than the low velocity regions. The top

and bottom of the model also has low resolution. These

are areas of low ray density.

The variance plot is also similar to the resolution

plot; for the most part, higher variances correspond to

higher resolution values. This correlation indicates that

the model values for well resolved features are less well

known. An exception is the X-pattern in the plots

between 2 to 9 m depth. The ray density and resolution

plots have high values, whereas the variance plot has

small values. The X-pattern region has a much higher

ray density, well over 50, than the rest of the model. This

inverse relationship between the ray density and the

variance indicates that the highly sampled regions of the

model have small uncertainty in their estimated values.

From the information in Fig. 4, the most reliable

estimates of the model values are the areas where the

model is highly sampled.

The resolution and variance analysis shows an

important difference between straight ray and curved

ray inversions. Both methods image the main features of

the test model. However, if model appraisal is impor-

tant, then a different reliability assessment will result

from the two methods. The ray density from the straight

ray inversion implies that the more certain features are

at the center of the model and the reliability decreases

from the center. The curved ray inversion ray density

implies that layer boundaries and high velocity zones are

more reliable than the rest of the model, especially the

low velocity zone.

The different ray tracing routines in the inversions

account for the different inverted velocity models. The

curved rays more accurately model the true ray paths.

The wave fronts in Fig. 1 refract and bend at the

velocity contrasts. The ray paths are clearly not straight.

Boundaries are sharper and velocity changes are more

distinct in the curved ray model. The ray coverage in the

curved ray method shows that more rays are concen-

trated along the high velocity zones in the model,

especially along large velocity contrasts.

The rest of the analysis will use the curved ray

inversion method.

Figure 4. Resolution and variance estimates compared to the ray density. The resolution values are the diagonal elements

of the full resolution matrix. The variance values are the diagonal elements of the covariance matrix.
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Effect of Noise

A crucial parameter in iterative tomographic

inversion is the noise tolerance or stopping criterion.

When the value of the objective function (Eq. 3) is less

than a selected tolerance, the inversion stops. If the
value of the objective function is much smaller than the

noise level, the model has over-fit the data. In this case,

the model contains features that are necessary to fit the

noise in the data. The stopping criterion is ideally set to

some measure of the noise level in the data. One such

measure of the noise level is the standard deviation of

the noise. For the curved ray inversion, the iterations

stop when the root mean square (RMS) traveltime
residual is less than the stopping criterion.

To investigate the effect of noisy data, I generated

four traveltime sets with added Gaussian random noise

distributions to compare with the noise-free travel times.

The noisy traveltime sets had a mean of 0 with standard

deviations of 0.1 ns, 0.4 ns, 1.0 ns, and 2.0 ns. I also

randomly added or subtracted 0.5 per cent of the total

traveltime of the arrival to increase the traveltime error

with increased traveltime, a more realistic noise distri-
bution. Table 1 lists statistics on the residuals from the

different inversions. I set the stopping criteria for the 1.0

and 2.0 ns added noise cases to the standard deviations,

1.0 and 2.0 ns respectively. For the 0.1 ns added noise

case, the inversion routine stopped after reaching the

imposed 25 iteration limit. The RMS residual oscillated

about a 0.22 ns, greater than the 0.1 ns criterion. So that

the routine converged, I set the stopping criterion to
0.25 ns. The inversion also stopped after the 25 iteration

limit for the case of added noise with a standard

deviation of 0.5 ns. In this case, instead of changing the

stopping criterion, I added noise with a 0.4 ns standard

deviation to the traveltimes. With this level of noise, the

inversion converged to the 0.5 ns stopping criterion. In

all cases, the inversions converged to the stopping value

after no more than 7 iterations.

Figure 5 shows the inverted models from the

different standard deviations. As the amount of added
noise is increased, the images are less like the test model.

When the added noise is greater than 0.4 ns, the models

are a poor image of the test model. Although the

features are apparent in the 1.0 ns standard deviation

case, without the test model for comparison the features

would probably be misidentified. The models from less

noisy traveltimes adequately image the main features of

the test model.

I also generated non-Gaussian random noise

distributions (Fig. 6) to test the curved ray algorithm.

One set of arrivals has random noise added with

a Laplace distribution. The Laplace distribution has

a 0 ns mean and a width of 0.28 ns. The third set of

noisy arrivals have added random noise with a gamma

distribution. The gamma distribution has two parame-

ters, the order and the width. I use a third order gamma

function with a width of 0.12. I chose the widths for the

Laplace and gamma distributions to have approximate-

ly the same standard deviation, defined as the square

root of the second moment about the mean, as the

Gaussian distribution. The Laplace and gamma dis-

tributions had standard deviations of 0.395 ns.

The results for the different noise distributions are

shown in Fig. 7. The inverted models are similar. The

three models with noise have a more varied velocity

distribution within constant velocity zones than the

noise-free traveltimes, but all four models image the

features in the test model. The type of noise distribution

does not change the inverted model significantly. Non-

gaussian noise traveltimes do not seem to effect the

ability of the inversion method to image the features of

the test model.

For the rest of the analysis, I will use traveltimes

with added Gaussian noise with 0 mean and a 0.4 ns

standard deviation.

Effects of Regularization

I also investigated the use of different types of

regularization as constraints for the curved ray inverse

procedure. I inverted the traveltimes with added

Gaussian random noise using flatness (first difference,

21 1) and smoothness (second difference, 1 22 1)

constraints (Aldridge and Oldenburg, 1993). The

flatness constraint seeks to find the model without

velocity changes. In other words, I want a solution with

as little lateral change as possible. The smoothness

constraint seeks to minimize the gradient of the velocity

change in the designated direction. That is, I want

a solution that has small changes in velocity gradient.

I used nine different regularization constraints,

listed in Table 2, to analyze the effects of different

regularization schemes. The regularization weights can

be varied in the horizontal and vertical directions by

a scalar. I tested schemes that weighted the horizontal

direction, the vertical direction, and both directions. I

chose scalar values of 5, 15, 25, or 50. These values were

Table 1.

Standard

deviation

(ns)

Mean

residual

(ns)

RMS

residual

(ns)

Minimum

residual

(ns)

Maximum

residual

(ns)

Noise-free 0.082 0.319 21.787 1.705

0.1 0.029 0.247 21.267 1.184

0.4 20.002 0.491 22.195 2.211

1.0 0.064 0.997 24.057 4.281

2.0 0.002 1.989 28.303 8.645
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sufficient to constrain the inversion without imposing

too much structure. I tried inverting without weighting

in one direction, for example, (25, 0). However, not

weighting in both directions caused the forward

modeling step to fail to trace rays between all the

source-receiver pairs. The smoothness regularization

schemes converged within 10 iterations. The flatness

constraints with equal weighting and strong weighting in

the vertical direction did not converge to the 0.5 ns

RMS residual value within 25 iterations.

Figure 8 shows the results of the different regular-

ization constraints in the curved ray inversion. The

inverted velocity models are similar and adequately

image the main features of the test model. Strongly

horizontally regularized models (8b, 8d, 8f, and 8h)

appear to have short, discontinuous layers within the

larger layered zones. The strongly vertically constrained

models (8c and 8g) show a variation in the horizontal

direction, especially above 2 m and below 6 m. The

velocity variations within layers appear greater in the

smoothness models than the flatness models. The

boundaries of the layers in the smoothness models are

less horizontal than in the flatness models. The flatness

regularization with 15 horizontal and 5 vertical weight-

ing is the best choice for this test model.

A method of assessing the uncertainty in the

inverted result is to find many models and compute the

average model and its standard deviation. Figure 9

compares the test model, the model with a (15, 5)

flatness constraint, the average of the 9 regularization

Figure 5. Inversions for the noise-free traveltimes and for traveltimes with added random Gaussian noise with a 0 mean

and different standard deviations: a) Test model, b) Noise-free, c) 0.1 ns standard deviation, d) 0.4 ns standard deviation,

e) 1.0 ns standard deviation, and f ) 2.0 ns standard deviation.
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models, and their standard deviation. The average

model looks similar to the flatness model. The stan-

dard deviations in the upper 2 m are mostly less than

15 ms/m. Below 2 m, the standard deviations are

smaller, less than 3 ms/m. Based on Fig. 9c and 9d, the

features in the average model below 2 m are reliably

determined.

Importance of Starting Model

Another important parameter for curved ray

tomographic inversions is the starting model for the

nonlinear inversion. The curved ray inversion routine

traces rays through the starting model, then alters the

model to reduce the misfit error. A danger in this

iterative method is that the routine finds a local

Figure 6. Histograms of the added random noise. The different distributions have approximately the same widths.

Figure 7. Noise-free versus noisy travel times. a) Inverted model using noise-free travel times. Inverted model using travel

times with noise added to simulate realistic data: b) Gaussian distribution, c) LaPlace distribution, and d) Lognormal

distribution.
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minimum rather than the global minimum solution. The

inversion routine uses the starting model to compute an

objective function value. One hopes this objective

function value is sufficiently close to the problem’s

global minimum that the inversion converges to this

global minimum and not to a local minimum. To test

that the solution is the global minimum of the objective

function, I inverted the traveltimes using several

different starting models (Fig. 10). Table 3 lists the

velocities for the starting models except for the ZOP and

the Test-Average case. Models 1 through 5 are constant

velocity models; models 6 through 8 are two-layer

models with the velocity gradient occurring between 1.8

to 2.2 m depth. Curved ray algorithms perform better

with velocity gradients instead of sharp contrasts. The

ZOP model is derived from the simulated zero offset

profile experiment. A ZOP experiment consists of travel

times recorded when the transmitter and receiver are at

the same depth. I derived the Test-Average model by

averaging the velocities from the test model horizontally

and weighting by the horizontal distance of the velocity

layer in the model.

The resulting tomograms are similar (Fig. 11),

suggesting that the solution is well behaved. A notice-

able difference between the homogeneous models and

the two-layered models occurs at 2 m depth. The

inversion better images the large velocity contrast at

2 m when the starting model includes such a discontinu-

ity. The ZOP result is the most different. The inverted

model contains a gradient at 2 m similar to the

homogeneous models. However, a thin, lower velocity

layer occurs at 3 m depth, coinciding with the base of

the gradient zone in the ZOP starting model. This layer

is the most significant difference from the test model.

This layer could be interpreted as an additional layer not

Table 2.

Weights

(Hor., Ver.) Flatness Smoothness

25, 5 yes yes

5, 25 yes yes

25, 25 yes yes

15, 5 yes yes

50, 50 yes no

Figure 8. Effects of the regularization constraints. The inverted travel times contain Gaussian noise. The top row shows

models with a flatness constraint. The bottom row shows models with a smoothness constraint. The models are aligned

vertically such that constraints with similar weighting are paired.
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Figure 9. Average of regularization constraints. a) The test model; b) the model inverted with a flatness constraint of 15
horizontally, 5 vertically; c) the average of the 9 regularized models; d) the standard deviations from the average model.

The gray scale for the standard deviations is scaled to emphasize the variation in the lower 2 m. In all the models, black

indicates values greater than or equal to the largest value. The range in the gray scale was chosen to show the variation in

standard deviations below 2 m.

Figure 10. Selected starting models used to assess the dependence of the inversion on the choice of starting model. The

test model is shown for comparison.
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present in the test model. Surprisingly, the increased

detail and accuracy of the Test-Average starting model

does not result in a substantially better image of the test

model. Below 2 m, the Test-Average inverted model is

similar to the two-layer models. The similarity of the

models inverted with different starting models indicates

that the tomography problem is reasonably well

behaved and it has found the global minimum.

Again, to assess the reliability of the inversions,

Fig. 12 compares the test model, a two-layer starting

model, the average of the starting model results, and the

standard deviations from the average. The average

model images the main features of the test model as well

as the other models presented. Not unexpectedly, the

standard deviations are greatest above 3 m and at layer

boundaries, for example at 6 m depth. Above 3 m, the

standard deviations are as large as about 9 m/ms. Below

3 m, the standard deviations are small, less than 1.5 ms/

m, indicating that the model is well resolved.

Importance of Reference Model

The reference model is an important parameter for

the nonlinear inversion. The second term of the

objective function (Eq. 3) is a measure of the misfit

between the current model and the reference model, the

solution length. The inversion must also minimize this

term in conjunction with the data misfit term. The

reference model is used to impose some structure on the

solution so that reasonable models are found. However,

the usual goal of crosshole tomography is to determine

the geologic structure between the wells because this

information is not well known. The reference model

should define the features we are confident exist in the

subsurface without including too much detail. To test

the effects of imposing structure on the inverted model, I

Table 3.

Model Velocity m/ns

1 0.08

2 0.06

3 0.10

4 0.04

5 0.14

6 0.14, 0.08

7 0.14, 0.10

8 0.14, 0.06

9 ZOP

10 Test-Average

Figure 11. Results of inverting with different the starting models. The plots are arranged in the same order as in Fig. 10

for comparison.
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inverted the traveltimes using several different reference

models (Fig. 13). These models are the same as the

models used in the starting model test (Table 3).

Again, the resulting tomograms are similar

(Fig. 14), suggesting that the solution is well behaved.
Not surprisingly, the two-layered reference models

better image the velocity change at 2 m depth than the

constant velocity reference models. This boundary is

sharper in the layered reference models, with the

exception of the ZOP reference model (Fig. 14g). The

ZOP model also contains a thin low velocity zone at

about 3 m depth that is not in the other models. As in

the starting model test, this layer coincides with the base
of the gradient zone in the ZOP starting model. This

analysis indicates that simple reference models are

sufficient to provide accurate images and that too much

structure in the reference model may introduce artifacts.

Figure 15 compares the test model, a two-layer

starting model, the average of the reference model

results, and the standard deviations from the average.

As in the starting model test, the average model images

the main features of the test model as well as the other
models presented. Again, the standard deviations are

greatest above 3 m and at layer boundaries, for example

at 6 m depth. At 3 m, a large standard deviation occurs.

This depth coincides with the 3 m layer artifact in the

ZOP model. The large standard deviations at the layer

boundaries, such as 3 m and 6 m, are more distinct than

in the starting model test. Another interesting difference

is the large change in standard deviation near 6 m depth.
In the reference model test, this change is at about

5.75 m whereas in the starting model test, the change is

at 6 m. Above 3 m, the standard deviations are as large

as about 9 m/ms. Below 3 m, the standard deviations are

small, less than 1.5 ms/m, again indicating a well re-

solved model.

Effect of Grid Size

A difficult decision in parameterizing a tomogra-

phy problem is choosing the size of the modeling grid

cells. I chose four different grid sizes for the comparison:

0.05 m, half the spatial sample interval, 0.1 m, equal to

the sample interval, 0.25 m and 0.5 m, both greater than

the sample interval. Figure 16 shows the results of this

analysis. The inversion routine successfully traced 1640

rays, that is, to all the source-receiver pairs, in the 0.25
and 0.5 m grid size inversion. For the 0.1 m grid size,

the inversion traced 1638 rays. However, the inversion

for the 0.05 m grid size traced only 1313 rays. Increasing

the regularization did little to improve the number of

rays traced in the 0.05 m case. The 0.05, 0.1, and 0.25 m

grid size image the main features of the test model. The

0.5 m grid size image shows the main features, but they

are not as distinct. The 0.05 m grid size model shows an
obvious asymmetry in the layering between 7 and 8.5 m.

The ray density plot has a higher ray density on the left

side of the model than on the right side. This ray density

difference probably causes the asymmetry in the velocity

model. The ray density asymmetry is less apparent in the

0.1 m grid size inversion. The 0.25 m grid size model

shows a velocity gradient from left to right between 2 to

3 m depth. This gradient is more pronounced in the
0.5 m grid size model and extends to 5.5 m depth. All

four grid sizes image the main features of the test model

Figure 12. Average starting model and its standard deviations compared to one model and the test model. Standard

deviations greater than 1.5 ns are black. The gray scale was chosen to emphasize the small standard deviations below 3 m.
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below 2 m, but the 0.5 m grid size is too large to

distinguish the zone boundaries.

Table 4 presents some statistics from the inver-

sions. For the 0.25 m and 0.5 m grid size inversions, the

number of iterations was fixed because the RMS

residual for later iterations oscillated about the final

RMS residual value. The statistics show that the 0.05 m

grid size inversion had the lowest RMS residual and the

narrowest residual range. However, this inversion only

used 1313 traveltimes. The 0.25 m and 0.5 m grid size

inversions had small means, but the RMS residual

values were greater than the smaller grid sizes and the

residual range was greater. An important consideration

when choosing the grid size is to ensure that nearly all

the traveltimes are used in the inversion. From the grid

size analysis, an appropriate grid size would be about

the size of the sample interval of the data.

Effect of Ray Coverage

Finally, I study the effects of limited ray coverage

on the model. The full traveltime set has rays that

encompass angles between approximately 270 and 70

degrees. I windowed the traveltimes for different angular

coverages of 610, 640, and 670 degrees. Table 5 lists

the statistics from the inversions. Figure 17 shows that

using a wide angular coverage better resolves the lateral

velocity changes in the model. As the angular coverage

narrows, the lateral resolution decreases. In the 610

degree case, the model consists of horizontal layers with

no obvious lateral changes. The 640 degree case images

lateral velocity changes, but the boundaries are more

blurred compared to the 670 case. With near surface

tomography acquisition, the distance the energy can

propagate limits wide angular coverage, not the

geometry of the experiment.

Conclusion

I have presented a synthetic modeling study to

examine some of the issues that effect tomographic

inversion of crosshole radar data. I looked at the effects

of the forward model, the type of model constraints, the

starting and reference models, and the grid size. The

inversion routines control these factors. I also examined

the effect of noise in the data and ray coverage through

the model. The field acquisition controls these effects,

and once the data has been collected, they can not be

changed.

Figure 13. Selected reference models used to assess the dependence of the inversion on the choice of starting model. The

test model is shown for comparison.
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Figure 15. Average reference model and its standard deviations compared to one model and the test model. Standard

deviations greater than 1.5 ns are black. The gray scale was chosen to emphasize the small standard deviations below 3 m.

Figure 14. Results of inverting with different the reference models. The plots are arranged in the same order as in Fig. 10

for comparison.
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The straight ray and curved ray methods imaged

the vertical and horizontal velocity changes equally well.

However, the reliability of features in the models based

on the ray density plots are very different. The straight

ray model has the highest ray density at the center of the

model and the ray density decreases uniformly away

from the center. For the curved ray model, the ray

density is heterogeneous with the highest ray densities

along velocity boundaries and in a double X-pattern. If

ray densities are an indication of model reliability, then

the locations of the reliable model features are much

different. The curved ray method would provide a better

estimate of the reliability since the true ray paths bend

between source and receiver.

The greatest effect on the inversion results is the

angular coverage of the experiment. Limited aperture

experiments will poorly image horizontal velocity

variations in the subsurface. The choice of grid size

also strongly influences the model. Too small a grid size

led to models that did not use all the traveltimes. Too

large a grid size resulted in a model that blurred the

boundaries of the model and caused velocity artifacts.

Not surprisingly, the amount of noise effects the

results. Inverted models from noisy traveltimes did not

image the features of the test model reliably and

interpretation of those models could lead to misidenti-

fication of subsurface features. Noisy traveltimes will

poorly image the subsurface. To best image the sub-

surface, carefully acquiring the data to limit the amount

of noise is critical.

However, the type of distribution of the random

noise added to the traveltimes had little effect on the

results. Even though the objective function is based on

a least squares measure of misfit, models from

traveltimes with non-Gaussian noise were similar to

the Gaussian noise model. The noisy models were also

similar to the noise-free model. The distribution of noise

appears to have little effect on the resulting model.

Figure 16. Effects of the grid size used in the forward model and inversion. a) 0.05 m, b) 0.1 m, c) 0.25 m, and d)

0.5 m grids.

Table 4.

Grid size

(m)

Mean

residual

(ns)

RMS

residual

(ns)

Minimum

residual

(ns)

Maximum

residual

(ns) Iterations

0.05 0.070 0.559 22.115 2.523 5

0.10 20.002 0.491 22.195 2.122 5

0.25 20.005 0.656 22.498 2.211 10

0.50 20.007 1.205 24.724 4.625 2

Table 5.

Angular

coverage

Mean

residual

(ns)

RMS

residual

(ns)

Minimum

residual

(ns)

Maximum

residual

(ns)

Traced

rays

210, 10 0.019 0.486 22.903 1.653 196

240, 40 0.019 0.461 22.939 1.409 799

270, 70 0.029 0.460 23.442 1.982 1636

All 0.032 0.464 23.442 1.849 1640
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A surprising result of this study is that the starting

model, reference model, and type of regularization had

little effect on the inverted models. The similarity of the

inverted models under different parameterizations in-

dicates that inversions of crosshole tomography are well

behaved. By computing the mean and standard devia-

tions of these models, I can appraise their reliability.

Below about 2 m, the standard deviations are less than

2 ms/m for different starting and reference models and

less than 3 ms/m for the different regularization schemes.

The small standard deviations indicate that tomographic

models are reliable estimates of the traveltimes.

The most important factor in obtaining reliable

results from crosshole tomography is acquiring wide

aperture, densely sampled data with little noise. Experi-

ments should be designed to include energy that

propagates as close to vertical as possible. Spatial

sampling at the size of the expected anomalies or less

will provide greater potential to resolve small features in

the ground. Fortunately, the choice of starting and

reference models and the regularization scheme do not

appear to add large artifacts to the models.
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