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Wavelet-based Bayesian estimation of partially

linear regression models with long memory errors

Kyungduk Koa∗, Leming Qua, , Marina Vannuccib

a Department of Mathematics, Boise State University

Boise, ID 83725, USA
b Department of Statistics, Rice University

Houston, TX 77251, USA

SUMMARY
In this paper we focus on partially linear regression models with long memory errors, and propose a
wavelet-based Bayesian procedure that allows the simultaneous estimation of the model parameters
and the nonparametric part of the model. Employing discrete wavelet transforms is crucial in order
to simplify the dense variance-covariance matrix of the long memory error. We achieve a fully
Bayesian inference by adopting a Metropolis algorithm within a Gibbs sampler. We evaluate the
performances of the proposed method on simulated data. In addition, we present an application to
Northern hemisphere temperature data, a benchmark in the long memory literature.

Key words and phrases: Bayesian Inference, Long Memory, MCMC, Partially Linear Regression
Model, Wavelet Transforms.

1 Introduction

Partially linear regression (PLR) models are semiparametric models since they contain

both a parametric linear trend and a nonparametric component. These models are useful

in situations where the response variable is linearly related to some of the covariates and,

at the same time, depends on other covariates in a nonlinear way. PLR models are also

quite flexible, since they include as special cases both the linear regression model (without

the nonparametric component) and the usual nonparametric regression model (without the

trend parameters). They have been widely adopted in the literature, especially in economics,

finance, and biology. Engle, Granger, Rice and Weiss (1986) first analyzed the relationship

between temperature and electricity sales using these models. Lenk (1999) analyzed traffic

accident data by representing the nonparametric component of the model via a Fourier
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series and adopting a hierarchical prior on the Fourier coefficients. Koop and Porier (2004)

assumed a normal prior on the nonparametric components and standard noninformative

priors on the trend parameter and the error variance. They also extended their methods to

partially linear probit models. Most of the existing contributions on PLR models deal with

identically and independently distributed (i.i.d.) errors, while very few of them address

correlated errors, especially long memory, see for example Germán, Wenceslao and Philippe

(2004) and Beran and Gosh (1998).

Some contributions exist in wavelet-based methods for nonparametric estimation of PLR

models. Qu (2003) and Chang and Qu (2004) exploited the ability of wavelets to adapt

to the unknown smoothness of a function by applying wavelet transforms to the data.

The authors used an l1-penalized least square criterion for model estimation. Fadili and

Bullmore (2005) studied cases where the nonparametric components can be parsimoniously

estimated by choosing an appropriate penalty function. Qu (2006) proposed a partially

Bayesian estimation procedure in the wavelet domain. All these contributions are restricted

to the case of PLR models with i.i.d. normal errors.

In this paper we propose a wavelet-based Bayesian estimation procedure of the model

parameters and the nonparametric function of a PLR model with long memory errors.

Wavelets have a strong connection to long memory processes and have proven to be a pow-

erful tool for the analysis and synthesis of data from such processes. The ability of wavelets

to localize a process simultaneously in the time and scale domains results in represent-

ing many dense matrices in a sparse form. When transforming measurements from a long

memory process, wavelet coefficients are approximately uncorrelated, in contrast with the

dense long memory covariance structure of the data, see Tewfik and Kim (1992), Craigmile

and Percival (2005), and Ko and Vannucci (2006), among others. Here we take advan-

tage of this whitening property and use discrete wavelet transforms in order to simplify

the variance-covariance structure of the response variable by writing the likelihood function

with a diagonalized variance-covariance matrix. This in turn leads to a minimal computa-

tional burden in the estimation of the model parameters. We perform posterior estimation

via Markov chain Monte Carlo (MCMC) methods and assess performances on simulated

data and on the benchmark Northern hemisphere temperature data set.

The remainder of this paper is organized as follows. In Section 2 we introduce the

model and the necessary basic concepts on long memory processes and on discrete wavelet

transforms. We focus in particular on autoregressive fractionally integrated moving average

(ARFIMA) errors. In Section 3 we describe the transformed model in the wavelet domain,

and illustrate prior and posterior models and the MCMC procedure for the estimation of

the parameters and the unknown nonparametric function. In Section 4 we report results
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from simulations and from the application to the Northern hemisphere temperature data.

Some concluding remarks are given in Section 5.

2 The Model

Consider the partially linear regression model

y = Xβ + f (t) + ε, (1)

where y is the (N ×1) vector of response data, X = [x1, . . . ,xl] is the (N × l) design matrix

consisting of (N × 1) covariate vectors xi, i = 1, . . . , l, β is the (l× 1) regression coefficient

vector, tT = (t1, . . . , tN ) is the (N × 1) vector representing equally spaced sample points.

We assume ε to be an (N × 1) zero-mean Gaussian autoregressive fractionally integrated

moving average error with a long memory parameter d ∈ (0, 0.5) and innovation variance

σ2
L. Our aim is to estimate the model parameters, (β, φ1, . . . , φp, d, θ1, . . . , θq, σ

2
L), where the

φ’s and θ’s are autoregressive and moving average (ARMA) parameters, and the unknown

function f (t) in (1).

2.1 Long Memory Errors

A long memory process is characterized by a slow decay in its autocovariance, that is

γ(h) ∼ Ch−α, where C is a positive constant depending on the process, 0 < α < 1 and h is

large. ARFIMA(p, d, q) processes {Xt}
N
t=1, first introduced by Granger and Joyeux (1980)

and Hosking (1981), are defined as the stationary solution of the equation

Φ(B)(1 −B)dXt = Θ(B)εt,

with B the backshift operator, BXt = Xt−1, Φ(B) = 1−φ1B−· · ·−φpB
p, Θ(B) = 1+θ1B+

· · ·+ θqB
q, and {εt}

N
t=1 a Gaussian white noise with zero mean and innovation variance σ2

L.

Applying the fractional d-differencing operator to {Xt}
N
t=1 results in an ARMA(p, q) model.

ARFIMA(p, d, q) processes are stationary and invertible for −0.5 < d < 0.5, with all

roots of the polynomials Φ(·) and Θ(·) being outside the unit circle. The case 0 < d < 0.5

is characterized by long range dependences between distant observations and the autocor-

relations decay hyperbolically to zero as the lag increases. For d = 0 the process becomes a

Box-Jenkins ARMA(p, q) model. For −0.5 < d < 0, it is said to have intermediate memory

and a summable autocorrelation function. A simple but important class of ARFIMA(p, d, q)

processes is the fractionally integrated noise (or ARFIMA(0, d, 0)) process, (1−B)dXt = εt.
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Sowell (1992) explicitly derives the autocovariance function γ(h) of ARFIMA processes,

and Doornik and Ooms (2003) express it in the numerically stable form

γ(h) = σ2
L

Γ(1 − 2d)

Γ2(1 − d)

q
∑

k=−q

p
∑

j=1

ψk ζ̃jC̃(d, p + k − h, ρj)
(d)p+k−h

(1 − d)p+k−h
,

for h = 1, . . . , N − 1, where ψk =
∑q

s=|k| θsθs−|k| (θ0 = 1), ρ1, . . . , ρp are the p roots of the

AR polynomial Φ,

ζ̃−1
j =

p
∏

i=1

(1 − ρiρj)
p
∏

m=1

m6=j

(ρj − ρm),

(a)i is Pochhammer’s symbol defined as (a)i = Γ(a+ i)/Γ(a), and

C̃(d, l, ρ) = ρ2pG(d + l; 1 − d+ l; ρ) + ρ2p−1 +G(d− l; 1 − d− l; ρ)

with G(a; b; ρ) =
∑∞

i=0(a)i+1ρ
i/(b)i+1. The form of the autocovariance function for spe-

cific processes can be derived from the general formulation. For example if {Xt}
N
t=1 is an

ARFIMA(0, d, q) series, the autocovariance function reduces to

γ(h) = σ2
L

Γ(1 − 2d)

Γ2(1 − d)

q
∑

k=−q

ψk
(d)k−h

(1 − d)k−h
,

and in the special case q = 1 we have

γ(h) = σ2
L

(1 + θ2
1)Γ(1 − 2d)

Γ2(1 − d)

{

1 +
2θ1

1 + θ2
1

[

d(1 − d) − h2

(1 − d)2 − h2

]}

(d)h
(1 − d)h

. (2)

Also, for ARFIMA(0, d, 0), the autocovariance function is

γ(h) = σ2
L

Γ(1 − 2d)Γ(d + h)

Γ(d)γ(1 − d)Γ(1 − d+ h)
. (3)

2.2 Discrete Wavelet Transforms

Suppose we observe a time series, Y = (y1, . . . , yN ), as a realization of a random process. A

discrete wavelet transform (DWT), see Mallat (1989), can be used to transform the data Y

into a set of wavelet coefficients. Although it operates via recursive applications of filters,

for practical purposes a DWT of order g is often represented in matrix form as ω = WY,

with W an N × N orthogonal matrix of the form W = [WT
1 ,W

T
2 , . . . ,W

T
g ,V

T
g ]T that

decomposes the data into sets of coefficients ω = [ωT
1 , ω

T
2 , . . . , ω

T
g ,y

T
g ]T , with ωm = WmY

of dimension N(j) = N/2j , j = 1, 2, . . . , g, and yg = VgY of dimension N/2g such that
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N = N ′ +N/2g where N ′ =
∑g

j=1N(j). Coefficients yg are scaling coefficients representing

a coarser approximation of the data, while coefficients ω1, . . . , ωg are wavelet coefficients

representing local features of the data at different scales (or resolution levels). An inverse

transformation exists to reconstruct the data from its wavelet decomposition.

Nonparametric wavelet estimators have now been extensively used in the statistical liter-

ature. In regression models, the majority of the contributions in the literature have focused

on the case of equally spaced data, following the seminal work of Donoho and Johnstone

(1994,1995). Several papers have been published since then, on modelling issues and ex-

tensions, using both classical and Bayesian methods. Rather than give a partial list of

references, we refer readers to the paper of Antoniadis, Bigot and Sapatinas (2001) that

presents an exhaustive review.

3 Bayesian Modelling in the Wavelet Domain

Our aim is to estimate the model parameters (β,Ψ, σ2
L), where Ψ = (φ, d, θ), φ = (φ1, . . . , φp),

and θ = (θ1, . . . , θq), and the unknown function f (t) in model (1). For simplicity let us as-

sume that N = 2J . This is not a real restriction and methods exist to overcome the

limitation allowing wavelet transforms to be applied to any length of data (Taswell and

McGill (1994)).

After applying a column-wise discrete wavelet transform W on both sides of the model,

this can be expressed in the wavelet domain as

ω = Uβ + ϑ+ ǫ′, (4)

where ω = Wy = [ωjk]N×1, U = W [x1, . . . ,xp] = [u1, . . . ,up], with ui = [uijk]N×1, ϑ =

Wf(t) = [ϑjk]N×1 and ǫ′ = Wε = [ǫ′jk]N×1, i = 1, . . . , p, j = 1, . . . , J − 1, k = 1, . . . ,N/2j .

As for the indexed terms, ωjk, uijk ϑjk, and ǫ′jk denote the kth wavelet coefficient at the

j-th scale (or resolution level) of the DWT of the response data y, the covariate xi, the

nonparametric component f (t) and ε, respectively. Here ǫ′ ∼ N(0,Σǫ′), where Σǫ′ = σ2
LΣΨ

is the (N × N) diagonal matrix with elements σ2
Lσ

2
jk indicating the variance of the kth

wavelet coefficient at the jth scale. Exact variances of wavelet and scaling coefficients can

be computed as in Ko and Vannucci (2006) by writing Σǫ(i, j) = [γ(|i − j|)], with γ(h)

the autocovariance function of an ARFIMA process, and then computing the variance-

covariance matrix Σǫ′ as Σǫ′ = WΣǫW
T . Vannucci and Corradi (1999) have proposed a

recursive way of computing variances and covariances of wavelet coefficients by using the

recursive filters of the DWT. Their algorithm has an interesting link to the two-dimensional

discrete wavelet transform (DWT2) that makes computations simple. In the context of this
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paper, the variance-covariance matrix Σǫ′ of the wavelet coefficients can be computed by

first applying the DWT2 to the matrix Σǫ. The diagonal blocks of the resulting matrix

will provide the within-scale variances and covariances at the different levels. One can

then apply the one-dimensional DWT to the rows of the off-diagonal blocks to obtain the

across-scale variances and covariances.

Many authors have shown how wavelet transforms, being band-pass filters, balance the

divergence of the spectrum of long memory data at frequencies close to zero, and therefore

“whiten” the data, i.e., the wavelet coefficients tend to be less correlated than the original

data, see Tewfik and Kim (1992), Craigmile and Percival (2005), and Ko and Vannucci

(2006), among others.

3.1 Prior Model

For Bayesian inference we need to specify a prior distribution for each unknown model

parameter. We use noninformative priors on β and σ2
L, i.e.,

π(β, σ2
L) ∝

1

σ2
L

.

For the prior distribution of d, which dictates the long range dependent behavior of the

model, we use a beta distribution of the type

π(2d) =
Γ(η + ν)

Γ(η)Γ(ν)
(2d)η−1(1 − 2d)ν−1, 0 < d < 1/2.

As for the priors of the φ’s and θ’s, we use uniform distributions in (-1,1) to satisfy the

causality and invertibility of the ARMA processes.

In the literature on Bayesian methods for wavelet-based nonparametric regression models

a commonly adopted prior distribution for the wavelet coefficients ϑjk of the nonparametric

function is a mixture of two distributions. We follow Clyde, Parmigiani and Vidakovic

(1998) and Abramovich, Sapatinas and Silverman (1998) and use mixture distributions of

a zero-mean normal and a degenerate distribution at 0 of the type

ϑjk|γjk ∼ γjkN(0, τ2
j ) + (1 − γjk)δ(0), j = 1, . . . , J − 1, k = 1, . . . ,N(j),

where γjk ∼ Bernoulli(pj), 0 ≤ pj ≤ 1 and δ(0) is a point mass at 0. The N(0, τ2
j )

corresponds to ‘non-negligible’ wavelet coefficients and the δ(0) to ‘negligible’ coefficients.

The hyperparameter pj represents the proportion of the ‘non-negligible’ wavelet coefficients

at scale j, and τj is a measure of the spread of their magnitudes. Here pj and τ2
j are

assumed to be constant for a given resolution level j. These hyperparameters play a very
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important role in the estimation of the nonparametric function f (t) and should be chosen

appropriately. Following Abramovich, Sapatinas and Silverman (1998), we use

pj = min
(

1, Cp2
−(J−j)/2

)

and τ2
j = Cτ2

−(J−j), j = 1, . . . , J − 1. (5)

The estimation of Cp and Cτ will be discussed in Section 3.3.

Assuming independence among β, σ2
L, Ψ, ϑ, and γ, the joint prior distribution can be

written as

π(β, σ2
L,Ψ, ϑ, γ) ∝ σ−2

L

Γ(η + ν)

Γ(η)Γ(ν)
(2d)η−1(1 − 2d)ν−1(2π)−1/2|Σγτ |

−1/2

exp

{

−
1

2
ϑ′Σ−1

γτ ϑ

} J
∏

j=1

N(j)
∏

k=1

p
γjk

j (1 − pj)
1−γjk ,

where Σγτ is the (N × N) diagonal matrix such that the kth element in the jth scale is

γjkτ
2
j .

3.2 Posterior Inference

The posterior distribution of Θ = (β, d, σ2
L, ϑ, γ) given (ω,U) is

π(β, σ2
L,Ψ, ϑ, γ|ω,U) ∝ (2π)−1(σ2

L)−N/2−1|ΣΨ|
−1/2 Γ(η + ν)

Γ(η)Γ(ν)
(2d)η−1(1 − 2d)ν−1

exp

{

−
1

2σ2
L

[

(ω − Uβ − ϑ)′Σ−1
Ψ (ω − Uβ − ϑ)

]

}

|Σγτ |
−1/2 exp

{

−
1

2
ϑ′Σ−1

γτ ϑ

} J
∏

j=1

N(j)
∏

k=1

p
γjk

j (1 − pj)
1−γjk ,

where L(Θ|ω,U) is the likelihood function of ω. Here we use an MCMC method to generate

samples from this posterior distribution. The details of the full conditionals are given in

the Appendix. Clyde, Parmigiani and Vidakovic (1998) consider three posterior inferential

methods (two analytic approximation methods and an importance sampling method) to-

gether with an MCMC method, and show via simulations that the MCMC-based posterior

approach performs well.

3.3 Estimation of the Hyperparameters

In applications the hyperparameters pj and τj need to be appropriately chosen. Because

of the specification (5), this problem reduces to the estimation of the constants Cp and Cτ .

Here we adopt a slight modification of the estimation procedure of Abramovich, Sapatinas
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and Silverman (1998), who suggested maximizing the likelihood function of the wavelet

coefficients that pass the VisuShrink threshold λDJ = σ
√

2log(n), where σ is the median

absolute deviation (MAD) of the finest wavelet coefficients divided by 0.6745 (Donoho and

Johnstone (1994)). We therefore calculate the residuals of model (4), r = ω − Uβ̂OLS,

where β̂OLS = (U ′U)−1U ′ω is the ordinary least squared estimate of β. Treating r as a

wavelet estimate of the sum of the unknown function f (t) and the long memory noise ǫ,

we apply hard thresholding to the residuals using λ = σ̂f

√

2log(n), where σ̂f is the sample

standard deviation of the wavelet coefficients at the finest resolution level of the wavelet

decomposition of the residuals r. Then we maximize

l(Cτ ) = −
g
∑

j=1

Mj







0.5log(σ̂2
f + Cτ2

j−J) − log



Φ



−
λ

√

σ̂2
f + Cτ2j−J















−
g
∑

j=1





1

2(σ̂2
f + Cτ2j−J)

Mj
∑

m=1

x2
jm



 ,

where Φ denotes the standard normal cumulative distribution function, Mj denotes the

number of the wavelet coefficients that pass the hard threshold on the resolution level j,

and xjm, m = 1, . . . ,Mj is the coefficient that passes the threshold on the scale j. A

method-of-moment estimate of Cp given Cτ is

Ĉp =
1

g

g
∑

j=1

Mj

2Φ
[

−λ/
√

σ̂2
f + Cτ2j−J

] .

4 Applications

4.1 Simulation Study

For the simulated data we used

y = βx+ 3f (t) + ε,

where the error ε is assumed to follow an ARFIMA(0, d, 0) or an ARFIMA(0, d, 1) process.

The famous “Blocks”, “Bumps”, “Doppler” and “HeavySine” functions, adopted by Donoho

and Johnstone (1994), were used for the nonparametric functions f (t). In order to generate

the long memory errors, we used a computationally simple method proposed by McLeod and

Hipel (1978) that involves the Cholesky decomposition of the correlation matrix Rε(i, j) =

[ρ(|i − j|)] = [ρ(h)], with h = |i − j| = 1, . . . ,N − 1. The covariance functions (2) and (3)

were used for ARFIMA(0, d, 1) and ARFIMA(0, d, 0) errors, respectively.

For simulations of errors from ARFIMA(0, d, 0) processes, different values of the long

memory parameters, d = 0.05, 0.2, 0.4 were used. A unit innovation variance was chosen,
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i.e., σ2
L = 1. A covariate x was generated from a N(0, 1) and the trend parameter β

was set to 1. When applying discrete wavelet transforms, we used Daubechies minimum

phase wavelets with four vanishing moments for “Bumps”, “Doppler” and “HeavySine”, and

with one vanishing moment for “Blocks” function. Different sample sizes were considered,

specifically N = 128, 256, and 512. For a given N , we simulated 50 datasets and computed

biases and mean squared errors of the estimates of β, d, σ2
L, and f . For the Metropolis move

of d, we used the normal proposal distribution with standard deviation 0.05. We used the

simple least square estimate as an initial value of β. For the initial values of d and σ2
L, we

used 0.3 and 5, respectively, and then perturbed these initial values to obtain over-dispersed

values in order to initialize three MCMC chains. All chains ran for 600 iterations with a

burn-in period of 300. All chains mixed fast and well, and acceptance probabilities for

the Metropolis steps were around 50%. Goodness-of-fit of the nonparametric estimators

was assessed by calculating the mean squared error of f̂ as 1
N

∑N
t=1(f̂(t) − f(t))2 for each

replicate, and then averaging over the 50 replicates. This measure is indicated in the tables

as AMSE. Standard errors are also reported.

Table 1 shows the result. For all values of d the mean squared errors (MSE) and the biases

of β̂, d̂, σ̂2
L consistently decreased in almost all cases as the sample size increased. In the

estimation of the nonparametric component, AMSEs and their standard errors (STDER)

decreased as d approached 0 (i.e., almost uncorrelated errors). The MCMC chains mixed

well and converged to the true values of the model parameters. Figure 1 shows the ideal

four nonparametric functions in the first column, the corresponding contaminated series

with a trend (β = 1) and long memory error (d = 0.2, σ2
L = 1) in the second column, and

the nonparametric function estimates via the proposed method in the third column.

Finally, we report simulation results of ARFIMA(0, d, 1) in Table 2. In the simulation,

the long memory parameter d and moving average parameter θ were set to 0.2 and 0.3,

respectively. For the Metropolis move of θ, we used the normal proposal distribution with

standard deviation 0.05. The other parameters remained the same as in the simulation

with ARFIMA(0, d, 0) errors. The biases and mean squared errors of β̂, d̂, θ̂ and σ̂2 and the

AMSEs and standard errors of f̂(t) were relatively large compared to those of the models

without the moving average parameter, although they still showed good performances.

4.1 An Application to Northern Hemisphere Temperature Data

For an application we considered the Northern hemisphere temperature data, measured in

months during the years 1854-1989, gathered by the Climate Research Unit of the University

of East Anglia, England. This dataset is a benchmark in the long memory literature and has

been used widely for the study of global warming. Beran (1994) fitted a linear trend model

9
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yt = β0 + β1t+ εt to the data and applied the ARFIMA(0, d, 0) model to the residuals that

resulted from detrending the data with the ordinary least square (OLS) estimate. The OLS

estimate of β1 is 0.00032, and d̂ and σ̂2
L were 0.37 and 0.0089, respectively. Beran and Feng

(2002) obtained d̂ = 0.33 and a 95% confidence interval (CI) of (0.19, 0.46) by SEMIFAR

model. On the other hand, one can find that the variability of the series at the beginning

is larger than for the rest of the observations. Craigmile, Guttorp and Percival (2005)

obtained d̂ = 0.361 with a 95% CI of (0.317, 0.408) and σ̂2
L = 0.045 with an estimation

method that ignored the non-constant variance of the data, and an estimate of d̂ = 0.368

with a 95% CI of (0.323, 0.415) and σ̂2
L = 0.032 when taking into account the non-constant

variability.

We applied our wavelet-based MCMC method for PLR models to the Northern hemi-

sphere data. We chose ARFIMA(0, d, 0) as the error term. We discarded the first 608

temperatures, obtaining N = 1024 measurements. This refinement of data was needed to

meet the stationarity assumption of the long memory error in our model. Figure 2 shows

the data versus the estimated trend line (left) and the data versus the estimated nonpara-

metric function after detrending them with the estimated trend β̂ (right). The estimates

of β, d, and σ2
L were 0.0006, 0.3660, and 0.0278, respectively. Our estimate of d is close

to those found by Beran (1994) and Craigmile, Guttorp and Percival (2005). Our estimate

of σ2
L is closer to the one obtained by Craigmile, Guttorp and Percival (2005) when the

nonconstant variability is taken into account. Overall, the temperature in the Northern

hemisphere seems to increase approximately 0.72 degree in Celsius per century. Figure 3

shows the MCMC traces and the density plots of the estimated parameters.

5 Concluding Remarks

We have proposed a wavelet-based Bayesian method for the estimation of the model param-

eters and the nonparametric function in PLR models with long memory errors. We have

taken advantage of the sparsity property of discrete wavelet transforms that reduces the

strongly correlated response variable of the model to a nearly uncorrelated one. We have

designed a Markov chain Monte Carlo method to obtain the posterior distributions of the

model parameters and the nonparametric function. We have shown via simulation studies

that the proposed method is promising and have demonstrated how it can be applied, by

using the benchmark Northern hemisphere temperature data. The contribution of our work,

with respect to existing literature, relies in incorporating strongly correlated long memory

errors into PLR models, and in exploiting the whitening properties of the discrete wavelet

transforms to design a computationally inexpensive inferential procedure.
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Although we have chosen ARFIMA processes for the long memory error of the model,

the proposed procedure can be easily applied to other long memory processes, such as

fractional Brownian motion (fBm) or fractional Gaussian noise (fGn). Extensions to non-

equally spaced designs for the nonparametric predictor function can be also considered. In

this setting inference cannot rely on models that imply the a posteriori independence of the

coefficients, unlike in the case of equispaced data. Mixture prior models can still be applied

to the coefficients of the wavelet expansion but appropriate inferential procedures need to

be developed, perhaps along the lines of what done by Park, Vannucci and Hart (2005).
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Appendix. MCMC on Full Conditional Distributions

Let U∗ = Σ
−1/2
Ψ U , ϑ∗ = Σ

−1/2
Ψ ϑ, and ω∗ = Σ

−1/2
Ψ ω, where Σ−1

Ψ = Σ
−1/2
Ψ Σ

−1/2
Ψ . We

sample the parameters by iterating among the following steps:

(1) sample β from β|Ψ, σ2
L, ϑ, γ, ω, U ∼ N

(

(U∗′U∗)−1U∗′(ω∗ − ϑ∗), σ2
L(U∗′U∗)−1

)

;

(2) sample Ψ from

Ψ|β, σ2
L, ϑ, γ, ω, U ∝ |ΣΨ|

−1/2(2d)η−1(1 − 2d)ν−1

exp

[

−
1

2σ2
L

(ω∗ − U∗β − ϑ∗)′(ω∗ − U∗β − ϑ∗)

]

;

(3) sample σ2
L from σ2

L|β,Ψ, ϑ, γ, ω, U ∼ IG
(

N
2 ,

(ω∗−U∗β−ϑ∗)′(ω∗−U∗β−ϑ∗)
2

)

, where IG(a, b)

denotes the inverse gamma distribution with parameters a and b and pdf p(x|a, b) ∼

(ba/Γ(a))x−(a+1)e−b/x;

(4) sample γjk from P (γjk = 1|β,Ψ, σ2
L, ωjk, uijk) = Ojk/(Ojk + 1) where

Ojk =

√

√

√

√

σ2
Lσ

2
jk

τ2
j + σ2

Lσ
2
jk

× exp

[

τ2
j (ωjk −

∑l
i=1 βiuijk)

2

2σ2
Lσ

2
jk(τ

2
j + σ2

Lσ
2
jk)

]

×
pj

1 − pj
;

(5) sample ϑ from

ϑjk|β,Ψ, σ
2
L, γjk, ωjk, ujk ∼ N

(

γjkτ
2
j (ωjk −

∑l
i=1 βiuijk)

σ2
Lσ

2
jk + τ2

j

,
σ2

Lσ
2
jk · τ

2
j

σ2
Lσ

2
jk + τ2

j

γjk

)

.

Note that, like the prior model, the full conditional distribution of ϑjk is a mixture of a

normal distribution and a point mass at zero. Since the full conditional distribution of Ψ
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does not have a known closed form, we use a Metropolis sampler with independent Gaussian

proposal distributions.
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Figure 1: The four nonparametric functions: (a) Blocks, (d) Bumps, (g) Doppler, and (j) HeavySine.

Plots in the second column show noisy data with Gaussian long memory errors with d = .2 and

σ2

L
= 1. Here β = 1. Plots in the third column show the recovered functions using the proposed

wavelet-based Bayesian method.

Vannucci, M. and Corradi, F. (1999). Covariance structure of wavelet coefficients: Theory

and models in a Bayesian perspective. J. Roy. Statist. Soc. Ser. B 61, 971-986.
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β̂ d̂ σ̂2

L
f̂(t)

d N f(t) BIAS MSE BIAS MSE BIAS MSE AMSE STDER

0.05 27 Blocks 0.003 0.012 0.062 0.006 0.125 0.091 0.639 0.139

Bumps 0.012 0.013 0.069 0.008 0.196 0.073 0.428 0.077

Doppler -0.013 0.009 0.035 0.006 -0.045 0.019 0.109 0.040

HeavySine 0.008 0.009 0.092 0.011 0.098 0.030 0.258 0.045

28 Blocks -0.004 0.008 0.055 0.005 0.130 0.055 0.390 0.069

Bumps -0.011 0.004 0.019 0.007 0.149 0.051 0.304 0.035

Doppler 0.007 0.003 0.025 0.002 -0.014 0.007 0.079 0.027

HeavySine -0.007 0.006 0.011 0.006 0.079 0.022 0.206 0.039

29 Blocks 0.002 0.004 0.033 0.002 0.076 0.016 0.244 0.043

Bumps 0.011 0.001 -0.018 0.009 0.116 0.029 0.251 0.042

Doppler 0.004 0.003 0.023 0.002 0.009 0.004 0.055 0.012

HeavySine -0.003 0.002 0.079 0.008 0.045 0.006 0.135 0.034

0.2 27 Blocks 0.007 0.012 -0.083 0.010 0.161 0.098 0.665 0.149

Bumps -0.029 0.010 -0.026 0.005 0.180 0.073 0.525 0.109

Doppler -0.010 0.009 -0.065 0.008 -0.054 0.023 0.257 0.139

HeavySine 0.008 0.008 -0.043 0.007 -0.046 0.017 0.394 0.112

28 Blocks -0.008 0.007 -0.062 0.008 0.057 0.026 0.481 0.115

Bumps 0.032 0.008 0.019 0.004 0.138 0.029 0.398 0.080

Doppler -0.006 0.005 -0.049 0.006 -0.077 0.010 0.165 0.070

HeavySine 0.000 0.003 0.034 0.004 0.018 0.010 0.316 0.079

29 Blocks 0.007 0.002 -0.057 0.006 0.003 0.007 0.326 0.069

Bumps -0.012 0.001 -0.021 0.003 0.120 0.023 0.331 0.057

Doppler 0.016 0.002 -0.035 0.003 -0.024 0.005 0.120 0.050

HeavySine 0.004 0.002 0.027 0.003 -0.005 0.005 0.230 0.048

0.4 27 Blocks 0.010 0.013 -0.206 0.048 0.346 0.218 1.721 0.817

Bumps -0.007 0.011 -0.176 0.036 0.054 0.033 1.412 1.524

Doppler -0.013 0.006 -0.189 0.040 -0.173 0.041 1.274 1.419

HeavySine -0.006 0.007 -0.156 0.032 -0.141 0.041 1.462 1.078

28 Blocks -0.014 0.004 -0.148 0.030 0.076 0.026 1.382 0.666

Bumps 0.003 0.005 -0.110 0.016 0.038 0.011 1.223 0.977

Doppler 0.005 0.004 -0.117 0.018 -0.112 0.019 1.267 0.982

HeavySine -0.006 0.005 -0.066 0.009 -0.071 0.015 1.276 1.231

29 Blocks -0.000 0.003 -0.047 0.006 0.011 0.007 1.127 0.579

Bumps -0.002 0.003 -0.051 0.004 0.031 0.006 1.215 0.851

Doppler 0.007 0.002 -0.073 0.008 -0.052 0.008 1.162 0.082

HeavySine 0.006 0.001 -0.051 0.004 -0.035 0.007 0.998 0.598

Table 1: Biases, MSEs and AMSEs of the estimated model parameters from the wavelet-based

Bayesian estimation procedure when the error is simulated from an ARFIMA(0, d, 0). Both β and

σ2

L
are set to 1.
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β̂ d̂ θ̂ σ̂2

L
f̂(t)

N f(t) BIAS MSE BIAS MSE BIAS MSE BIAS MSE AMSE STDER

27 Blocks -0.004 0.016 -0.091 0.021 -0.209 0.258 0.180 0.148 1.164 0.333

Bumps -0.013 0.018 -0.092 0.031 0.311 0.120 0.825 0.776 1.921 0.316

Doppler 0.010 0.006 -0.074 0.008 0.123 0.061 -0.153 0.049 0.558 0.164

HeavySine -0.022 0.009 -0.025 0.008 0.213 0.079 -0.046 0.048 0.960 0.297

28 Blocks -0.006 0.004 -0.018 0.010 0.179 0.056 -0.094 0.033 0.903 0.287

Bumps 0.002 0.006 0.105 0.010 0.259 0.110 0.316 0.137 1.291 0.274

Doppler -0.014 0.003 -0.086 0.012 0.097 0.041 -0.121 0.028 0.462 0.153

HeavySine -0.013 0.004 -0.016 0.004 0.178 0.064 -0.022 0.022 0.682 0.181

29 Blocks 0.003 0.003 0.016 0.002 0.092 0.051 -0.076 0.021 0.867 0.229

Bumps -0.003 0.002 -0.044 0.004 0.128 0.051 0.281 0.109 1.122 0.151

Doppler 0.006 0.001 -0.091 0.011 0.097 0.019 -0.088 0.012 0.343 0.108

HeavySine 0.007 0.002 -0.019 0.008 0.078 0.032 0.007 0.010 0.436 0.108

Table 2: Biases, MSEs and AMSEs of the estimated model parameters from the wavelet-based

Bayesian estimation procedure when the error is simulated from an ARFIMA(0, d, 1). The moving

average parameter θ is set to 0.3, and both β and σ2

L
are set to 1.
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Figure 2: Left: Northern Hemisphere temperature data with N = 1024 (dashed line) and fitted

trend (solid line), Right: Northern Hemisphere temperature data after detrending by the estimated

trend β̂ (dashed line) and estimated nonparametric function f̂(t) (solid line).
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Figure 3: Northern Hemisphere Temperature: MCMC traces of β̂, d̂, σ̂2

L
and corresponding density

plots after a burn-in period of 300 iterations.
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