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Abstract

Knowledge of the three dimensional positions of bones
at a joint as a function of time is required to accurately
model joint kinematics. 3-D bone geometry data from a
static computer tomography (CT) images can be combined
with time sequence information from 2-D video fluoros-
copy images to produce 3-D position data over time. The
process involves creating virtual X-rays from the CT
image through digitally reconstructed radiograph (DRR)
projections. Historically, the process of matching the 3-D
and 2-D data has required human interaction. We have
eliminated the need for manual initialization using a
Monte Carlo technique with a variable search range. The
search range decreases as the matching improves,
avoiding the inherent problems of local minima in the opti-
mization search. Experiments demonstrate that image
positions can be matched to within 1 degree rotation,
azimuth and elevation without human intervention.

1. Introduction

The position of bones in a joint under stationary condi-
tions is straightforward to determine. The position and
kinematics of joint bones during motion is more difficult
to attain using standard non-invasive motion capture tech-
niques, and is the subject of research for many researchers.
Knowledge of the bone positions over time will quantify
the kinematics and allow modeling and measurement of
the forces present on tendons, ligaments and muscles
during activities such as jump landings and deep knee
bends. This can allow researchers to analyze sources of
anterior cruciate ligament (ACL) injuries, wear on pros-
thetic implants and tracking of surgical instruments during
surgery relative to preoperative Computed Tomography
(CT) scans. The goal of this research is to develop a
method for collecting accurate, three-dimensional kine-
matic data of bones and joints in vivo using a video fluo-
roscopy technique combined with CT data.

Research to aid clinical assessments of knee joint
motion has been performed by placing markers on the skin
to measure the dynamic movement in a joint [2]. This

approach does not necessarily describe what the bones are
doing because the sensors are attached to a soft tissue
instead of the bone. To obtain greater accuracy of bone
movement, markers have been placed into the bones of
canines and tracked as the joint moves [7]. This is not a
suitable approach for use on humans.

Three dimensional position over time can be deter-
mined by matching CT data to 2-D fluoroscopy images.
The CT data can be manipulated to create a virtual x-ray
image of the joint in various positions, Figure la. These
images can be matched to a true x-ray, Figure 1b, by
adjusting the camera position. Once the images are
matched, the spatial locations of the bones in the joint are
known. This has been performed using joints with pros-
thetic implants. The fluoroscopic data is compared to a
CAD model of the prosthetic joint [1, 5]. The CAD model
is rendered in the desired position and from that 2-D
rendering a silhouette of the prosthetic implant is
produced. The silhouette image is then matched to the x-
ray. Accurate three-dimensional data describing the orien-
tation of the implant in the joint can be obtained using
both of these methods because it is significantly easier to
locate the edges of a metallic object in an x-ray as opposed
to the edges of bone. These methods are also precise
because the shape of the prosthetic joint is known in
advance. Due to occlusion in the opaque projections of the
implants, multiple equivalent projected images can result.
This has been overcome by having a human make an
initial positioning of the 3-D joints.

These methods have been extended to tracking natural
bones by segmenting the bones in the CT model and using
this information to create silhouettes. Contours of bone
surface folds are also included in the projection to offer
more detail to help reduce the effects of occlusion [4].
This projected image is then compared to a single plane
radiograph for matching.

The full CT data can be used to obtain a virtual 2-
dimensional rendering of the joint called a Digitally
Reconstructed Radiograph (DRR). You et. al created
DRRs from a 3-D CT model but utilized a biplane radio-
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(a)

(b)

Figure 1: (a) Digitally Reconstructed Radiograph (DRR) (b) Fluoroscopy frame.
(a) (b)
Figure 2: (a) bilevel DRR edge image (b) multi-level DRR edge image.

graph for the matching image [9]. This allows for greater
accuracy but the system requires two x-ray sources to
produce the biplane image, increasing x-ray exposure and
system complexity.

Penny et. al [3, 8] used a single DRR compared to an X-
ray image to track instrumentation during surgery relative
to a CT taken prior to surgery. They manually restricted
their field of view to a single vertebra to be sure the
matching algorithm would select the vertebra of interest.

The proposed method is minimally invasive, does not
require the subject to have a prosthetic joint, and uses rela-
tively little equipment. It also removes the requirement of
having a human intervene to initialize the position search.
Section 2 will describe the proposed method in full. The
experiments that have been conducted and the results
attained are described in Section 3. Section 4 describes
areas where these results can be expanded.

2. Method

The process begins by taking a static CT scan of the
joint as well as fluoroscopic video of the joint while in
motion. The CT data is used to create a DRR of the joint,
Figure 1a, using a process outlined by Siddon [6]. If the

simulated x-ray source and film are positioned correctly
the resulting DRR should match the target fluoroscopic
image frame. A coordinate system consisting of an x-ray
source and film positioned at equal radial distances on
opposite sides of the origin was created. The CT cube is
nominally in the center of this sphere and the x-ray source
and film move with an azimuth and elevation around this
center. The CT cube can translate from the center position
of this sphere. The film can also rotate its position. The
diameter of this sphere (the distance from the x-ray source
to the film) is set using apriori information about the fluo-
roscopy unit configuration during image capture. This
model was created in such a way that it allows selection of
the virtual camera positions with respect to the CT data in
six degrees of freedom.

Once a DRR is obtained for a given pose, the edges of
the target and search images are found. The edges in the
two images are used to identify the match. Two different
methods of extracting the edges are used. The first sums
the square of the vertical and horizontal edges found using
a Sobel operator and thresholds it at a twice the RMS
value of the resulting image, Figure 2a. The second edge
image is found by summing the absolute value of the
images found with the horizontal, vertical and two diag-
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onal Sobel operators, Figure 2b. The first of these methods
produces a bilevel image, the second has a range of values.

The edge image produced by each DRR during the
search process is compared to the edge image of the target
image by evaluating the overlap of the edges using a
contour match score

> J(x y)K(x, y)
contour match score = &v) (1)

> K(x,y)

(x,y)
where J(x,y) is the target image, and K(x,y) is the DRR
search image [5]. For edge images that contain only 0’s
and 1’s, the resulting edge score is between zero and one
with a perfect match indicated by a one. Edge images with
a range of intensity values will not have a match score of 1
even if there is a perfect fit. To produce a comparable
metric, the edges of the multivalued target image are also
compared to itself. Contour match scores are then calcu-
lated as in Equation 1 and are divided by this value to
obtain a score between zero and one.

The process of determining the unknown variables is
divided into two parts: an initial search and a fine search.
The initial search is to get a set of position parameters in
the approximate orientation of the bones. This replaces a
manual approach to initialization used in [1]. Our method
uses a Monte Carlo approach to randomly select values for
the camera orientation of each DRR. This was chosen to
avoid the problems of local minima that were cited in
other work [5]. Initially an azimuth, elevation and rotation
of 0 degrees is set. Likewise an initial position of (0, 0, 0)
(x, y, z) translational mm is set. A DRR is created, then the
azimuth, elevation and rotation angles as well as the three
translational distances are all randomly perturbed. For the
coarse search the variables are all perturbed by some
amount. They are also peturbed by an equal amount in the
opposite direction. A match score is calculated for the seed
position, as well as the positive and negative perturbation
positions. The position with the maximum match score of
these three values is set as the new seed point. The size of
this perturbation is gradually decreased as the match score
increases. Then for the fine search, the variables are
perturbed independently and the six resulting match scores
are compared with the global maximum. By continually
decreasing the search step-size the edge match score
approaches 1.

For a fluoroscopic video sequence, only small changes
in bone position are expected between frames. The search
in subsequent frames will begin with the optimal position
of the previous frame and only the fine search will be used
for determining the position on these frames.

Once the camera position relative to the bones in the CT

image has been established for each frame, the bone posi-
tions are also known. This data can then be used to
construct a three-dimensional rendering of the joint in
motion.

3. Experiments and Results

Data for our experiments was gathered from CT scans
of a porcine knee. The CT volume was reduced by a factor
of four in each dimension to reduce the computational
complexity. This still retains the essential shape informa-
tion of the joint bones and a significant amount of detail.
The process was implemented in Matlab, with the DRR
routine written in C and called via CMEX.

Two categories of experiments were run. Both experi-
ments used DRR images at arbitrary poses as the target
image rather than using actual Fluoroscopic image so the
abilities of the edge features and search strategies could be
evaluated. The first experiment evaluates the error
between search and target positions and the value of the
contour match score corresponding to the difference. Two
target poses are chosen for this experiment. For each pose
the edge images corresponding to that DRR are calculated.
The search pose is then generated at elevation, azimuth
and rotation values in 0.1° increments away from that
pose. The corresponding contour match scores are calcu-
lated. From this experiment it was seen that the elevation
would be the first to converge in a search. When the match
score for bilevel edges was greater than 0.68 the error in
elevation was less than 1°, when the match score was
greater than 0.86 the rotation error was less than 1°, and
when the contour match score was greater than 0.98, the
azimuth error was less than 1°. For gray scale edges when
the match score was greater than 0.70 the error in eleva-
tion was less than 1°, when the match score was greater
than 0.89 the rotation error was less than 1°, and when the
contour match score was greater than 0.98, the azimuth
error was less than 1°. It was also observed that the
contour match metrics, while not identical nor having
perfect correspondence, were highly correlated; higher
match scores for gray edges were also found when the
bilevel images had higher match scores.

The second set of experiments evaluated the search
strategy. For these experiments the translational position
was fixed. The coarse search strategy started with a pertur-
bation between 0 and 2 degrees until an edge score of 0.2
or higher is found. Then the perturbation reduces to a
random value between 0 and 1 degree until the match
score of 0.3 is reached. Then finally the search step is
reduced from 1 degree to 0.6 degrees until a match score
of 0.7 is attained. At that time the fine search begins. For
the fine search the azimuth, elevation and rotation are each
independently varied by a positive and negative measure
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between 0 and 0.6 degrees until a final match of 0.8 is
attained.

To be able to know with certainty the closeness of the
best fit, matching experiments were done by creating a
target DRR. For gray level edges this was done at each of
28 poses. For each pose the search was run five times.
Searching was done until a match score of 0.98 was
attained. The aggregate results are shown in Table 1. In all
experiments a match to within half a degree was found,
and in most cases better for all three angles. Better
matches could be found if the search was continued until a
higher match score was attained. For bilevel edges the
search was run for 15 poses and each continued until a
match threshold of 0.85 was found. The results are shown
in Table 2. The amount of error was less, but the time to
converge was more. This is likely because for gray scale
edges the edge information is spread over a wider range of
pixels and small improvements in registration will make a
noticeable difference in the match score, whereas when
the match is close, the spread of edge information makes
identifying the optimum more challenging.

Table 1: Aggregate Results of Search Experiment

Gray Edges AZ EL ROT
(degrees) (degrees) (degrees)

Mean 0.40 0.46 0.11

Std 0.33 0.34 0.07

Median 0.32 0.40 0.11

Min 0.00 0.00 0.00

Max 1.97 1.55 0.33

Table 2: Aggregate Results of Search Experiment

AZ EL ROT

B/W Edges (degrees) (degrees) (degrees)
Mean 0.14 0.14 0.04
Std 0.10 0.11 0.03
Median 0.11 0.12 0.04
Min 0.01 0.00 0.00
Max 0.41 0.44 0.10

4. Future work

The results reported above give a good basis for justi-
fying further work on this method. Searches including the
translational variables will show how these variables add
to the process. Since the search using gray level edges
converged faster and the search with bilevel images was
more accurate, a search that starts with gray level edges
and then switches to using thresholded edges after a
certain convergence may provide better overall results.

The work shown to this point was for matching to a
simulated x-ray. The search for the tibia and femur
matches must be done separately to allow matches to fluo-
roscopy frames acquired of the same porcine knee where
the bones may be in different positions relative to each
other.

The fluoroscopic images need to be calibrated for their
true position. Markers were attached to the bones (drilled
in) and used to calibrate position using a two-camera
digital video system. These markers are visible in the CT
images, DRR and fluoroscopy images. Their positions
need to be extracted and used to calibrate real world coor-
dinates to the azimuth, elevation and rotation coordinates
used in this work.
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