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ACCURACY, RESOLUTION, AND STABILITY PROPERTIES OF A
MODIFIED CHEBYSHEV METHOD∗

JODI L. MEAD† AND ROSEMARY A. RENAUT‡

SIAM J. SCI. COMPUT. c© 2002 Society for Industrial and Applied Mathematics
Vol. 24, No. 1, pp. 143–160

Abstract. While the Chebyshev pseudospectral method provides a spectrally accurate method,
integration of partial differential equations with spatial derivatives of order M requires time steps
of approximately O(N−2M ) for stable explicit solvers. Theoretically, time steps may be increased
to O(N−M ) with the use of a parameter, α-dependent mapped method introduced by Kosloff and
Tal-Ezer [J. Comput. Phys., 104 (1993), pp. 457–469]. Our analysis focuses on the utilization of this
method for reasonable practical choices for N , namely N � 30, as may be needed for two- or three-
dimensional modeling. Results presented confirm that spectral accuracy with increasing N is possible
both for constant α (Hesthaven, Dinesen, and Lynov [J. Comput. Phys., 155 (1999), pp. 287–306])
and for α scaled with N , α sufficiently different from 1 (Don and Solomonoff [SIAM J. Sci. Comput.,
18 (1997), pp. 1040–1055]). Theoretical bounds, however, show that any realistic choice for α, in
which both resolution and accuracy considerations are imposed, permits no more than a doubling of
the time step for a stable explicit integrator in time, much less than the O(N) improvement claimed
by Kosloff and Tal-Ezer. On the other hand, by choosing α carefully, it is possible to improve on
the resolution of the Chebyshev method; in particular, one may achieve satisfactory resolution with
fewer than π points per wavelength. Moreover, this improvement is noted not only for waves with the
minimal resolution but also for waves sampled up to about 8 points per wavelength. Our conclusions
are verified by calculation of phase and amplitude errors for numerical solutions of first and second
order one-dimensional wave equations. Specifically, while α can be chosen such that the mapped
method improves the accuracy and resolution of the Chebyshev method, for practical choices of N ,
it is not possible to achieve both single precision accuracy and gain the advantage of an O(N−M )
time step.

Key words. Chebyshev collocation, accuracy, stability, partial differential equations

AMS subject classifications. 65M70, 65M12

PII. S1064827500381501

1. Introduction. Spectral methods are based on global approximations,

u(x) ≈
N∑
j=0

ajφj(x),

where the basis functions φj(x) are assumed to be infinitely differentiable global func-
tions, typically eigenfunctions of singular Sturm–Liouville problems [4]. The method
of calculation for the coefficients {aj} determines the type of spectral method as
Galerkin, Galerkin–Tau, or collocation [4].

The study presented here concerns collocation methods, in particular the Cheby-
shev pseudospectral (CPS) collocation method, for which the basis functions are the
set of orthogonal polynomials, the Chebyshev polynomials,

φj(x) = Tj(x) = cos(j cos−1 x),

and collocation is at the Chebyshev points xk = cos(πk/N), k = 0 : N . This method
gives highly accurate approximations for the solution of partial differential equations
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[4, 8] and has been widely used and studied [3, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17].
On the other hand, although the low to mid end of the spectrum of the differential
operator is well approximated by the eigenvalues of the CPS differential operator as
N tends to infinity, the CPS operator overestimates the larger values of the spectrum
[20]. These so-called outliers are of O(N2) and restrict the time step that may be used
to integrate a partial differential equation with an explicit ordinary differential equa-
tion solver to be O(N−2). By suitable transformations the Chebyshev grid becomes
more evenly spaced [3, 13] and the outliers are reduced to O(N), hence potentially
permitting larger time steps, O(N−1).

In section 2 we review the properties of the parameter dependent grid trans-
formation introduced by Kosloff and Tal-Ezer [13], and, contrary to the conclusion
of Hesthaven, Dinesen, and Lynov [11], we determine that the optimal choice of α
with regard to both accuracy and resolution theoretically returns the method to the
Chebyshev case. On the other hand, it is possible to achieve good results in relation
to practical levels of precision, single or double, for fixed α, provided that α is not
chosen near 1. The emphasis of this work concerns the impact of the mapped method
for a choice of N that may be realistically used in three-dimensional simulations; we
assume then that N is taken to be rather small, N � 30. In this case, α must be
taken to be rather small such that the choice suggested by Hesthaven, Dinesen, and
Lynov [11] is indeed good. However, we also show that for small choices of α the
accuracy is very sensitive to small changes in α so that, for example, in practice the
choice sin(1.0) is much better than cos(0.5). In addition, for such practical choices of
both α and N , the anticipated O(N−1) time step is replaced by at most a doubling
of the time step used in the Chebyshev method; otherwise minimal single precision
accuracy is not achievable. In sections 3 and 4 we confirm these observations by
calculation of amplitude and phase errors introduced by numerical solutions of first
and second order wave equations in one dimension. Moreover, we demonstrate the
sensitivity of the accuracy to the choice of the parameter. We find that choosing α
for resolution, as suggested in [13], minimizes the phase and amplitude errors for the
first order case. For the second order wave, the optimal parameter choice does lead to
minimal phase and amplitude errors for large N . Finally, since our focus is the study
of these methods for practical N our results complement and extend the analysis in
Don and Solomonoff [7], in which the focus was strictly on accuracy, without regard
to a need to keep N relatively small.

2. Grid transformations. We consider the grid transformations in which the
grid for −1 ≤ y ≤ 1 is obtained by the transformation y = g(x) for some, possibly
parameter dependent, continuous transformation g : [−1, 1] → [−1, 1]. The resulting
grid in y is stretched with respect to the original grid in x. Under the mapping,
interpolation of function u(x) by the order N interpolant

u(x) ≈ PN (x) =

N∑
j=0

u(xj)φj(x),

for a set of polynomial basis functions φj(x), j = 0 : N , is replaced by an interpolant
in the variable y = g(x),

u(y) ≈ qN (y) =

N∑
j=0

u(yj)ψj(y),(2.1)
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for a new set of basis functions ψj(y), j = 0 : N , ψj(y) = φj(g
−1(y)), not necessarily

polynomial in y.
In order to solve a given partial differential equation, in variable u(y), on the

transformed grid, the grid values u(yj) must be used to obtain values for the deriva-
tives of u of any order. This is accomplished via repeated application of the chain
rule to reexpress derivatives of u(y) in terms of derivatives of u(x) with respect to x,
yielding, for example, for the first order derivative

du

dy
(yk) ∼= 1

g′(xk)

N∑
k=0

Dkju(yj)(2.2)

[3, 13]. Here the entries Dkj are the entries of the matrix, D, which approximates
the first order differential operator such that the derivative approximations on the
original grid are given by u′(xk) ∼= (Du)k. Thus for the derivative on the stretched
grid, the operator D is replaced by AD, where A is a diagonal matrix with entries
Akk = 1/g′(xk). We note that the approximations to derivatives on the new grid
are not necessarily polynomial. This contrasts with the mapping method introduced
by Carpenter and Gottlieb [5] in which the derivative is provided with respect to
polynomial basis functions in the original variable. For this method it is necessary
that the initial function is expressed with respect to a grid in which its accuracy is
high at all points.

The operators for higher order derivatives are obtained in a similar fashion [13, 16].
Here we will need the second order derivative operator

d2

dy2
≈ A2D2 −A2D,(2.3)

where D2 is the second order operator for the original grid and A2 is the diagonal
matrix with entries g′′(xk)/(g′(xk))3. We note that this operator is not equivalent to
operation by (AD)2. Likewise, the third order derivative operator should be obtained
similarly, rather than by (AD)3, contrary to the suggestion in [7].

2.1. The Kosloff–Tal-Ezer transformation. In this report our focus is on a
study of the parameter dependent transformation of the Chebyshev grid,

y(x) = g(x) =
sin−1(αx)

sin−1(α)
, 0 < α < 1,(2.4)

introduced by Kosloff and Tal-Ezer [13]. The choice of the parameter α determines
the degree to which the grid is stretched under the mapping and the degree to which
the elements of the matrix D are scaled by the diagonal matrix A. The scaling of D
for α = .99999 and N = 32 is illustrated in Figures 2.1 and 2.2. We see that the larger
entries in D are considerably damped by A. While the entries of D are of O(N) for
the middle rows, those entries in the bordering rows are of O(N2); see, for example,
[4]. Obviously, the entries of O(N2) have been damped to size O(N) by the scaling
with A,

Akk =
1

g′(α, xk)
=

sin−1(α)
√

1 − α2x2
k

α
.

Noting the approximation αl = cos(lπ/N) ≈ 1 − (1/2)(lπ/N)2 + O((lπ/N)4), for l
small relative to N , this scaling can be verified. In particular, Akk increases from
O(1/N) at k = 0, to O(1) for k at the middle of the matrix, and then decreases back
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Fig. 2.1. Magnitude of elements of D for N = 32.
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Fig. 2.2. Magnitude of elements of AD for N = 32, α = .99999.

to O(1/N) for k = N . While the more severe scaling with α tending to 1 permits the
use of larger time steps for stability, in the limit α = 1 the mapping (2.4) is singular.
In this case, the matrix A is singular, A00 = ANN = 0, and the Dirichlet boundary
conditions

u′(−1) = u′(1) = 0

are imposed on the solution u.
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2.2. The parameter α.

2.2.1. Accuracy. In order for the mapped method to maintain the high accu-
racy of the Chebyshev method, it is essential that the singularity in the mapping is
controlled. Kosloff and Tal-Ezer [13] demonstrated that this can be accomplished by
specifying α through the relationship

εN = εN =

(
1 −√

1 − α2

α

)N

,(2.5)

namely,

αa =

(
cosh

| ln εN |
N

)−1

.(2.6)

If εN is taken to be machine precision the error due to the mapping can be ignored.

2.2.2. Resolution. Chebyshev. The truncation of the series approximation to
u(y) also introduces an error, εA, which for the unmapped Chebyshev method controls
the resolution of waves on the grid. Specifically, we consider the resolution of waves
sin(kπx), k = 1, 2, . . . , kmax, for a series approximation of order N . Gottlieb and
Orszag [9] noted that εA, which can be expressed as a sum of terms involving Bessel
functions, Jm(kπ), m ≥ N + 1, is dominated by the first ignored term of the series,

εA ≈ 2(−1)pJ2p+1(kπ) cos((2p + 1)θ),

N = 2p − 1 (see equation (3.41) in [9]) because |Jm(kπ)| tends to zero very quickly
with increasing m. The extent to which εA can be taken as negligible for given k
depends on the speed with which |JN (kπ)| tends to zero with increasing N . Gottlieb
and Orszag [9] found that εA decreases very quickly for N/k > π. Hesthaven, Dinesen,
and Lynov [11] deduced this requirement by consideration of the asymptotic limit for
εA from

lim
N→∞

JN (kπ) � 1√
2πN

(
ekπ

N

)N

;

see equation (9.3.1) in [1]. However, it is readily verified computationally that this
estimate is not valid for practical choices of N , N ≤ 200. On the contrary, equation
(9.1.63) in [1] may be used to obtain the much better estimate

|JN (kπ)| =

∣∣∣∣JN

(
Nkπ

N

)∣∣∣∣
≤

∣∣∣∣ (kπ/N)N exp(N
√

1 − (kπ/N)2

1 +
√

1 − (kπ/N)2

∣∣∣∣,
from which we also deduce that εA → 0, provided N/k > π. Moreover, for N/k = π,
by equation (9.1.61) in [1], we find that

0 < JN (N) <

√
2

32/3Γ(2/3)N1/3

decreases very slowly with N . Hence the requirement of π points per wavelength for
the Chebyshev method is strict.
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Mapped Chebyshev. Kosloff and Tal-Ezer [13] extended these ideas for the mapped
method and were able to demonstrate a potential improvement in resolution as com-
pared to the Chebyshev method. In particular, by analysis of the dominant term in the
truncated series they found that the maximal wave number which can be resolved is

kmax =
N sin−1(α)

πα
.(2.7)

In the limit as α → 1, this provides the Fourier result, kmax = N/2, but as α → 0 the
Chebyshev conclusion, kmax = N/π, is obtained. We may therefore anticipate that,
while the resolution requirement does indeed conflict with the accuracy requirement,
the mapped method potentially offers improved resolution as compared to the Cheby-
shev method, provided (N/π) < kmax < N/2 can be chosen such that accuracy is not
compromised. This contradicts the assumption that kmax < (N/π) in [11].

Hesthaven, Dinesen, and Lynov [11] rightly noted that an N dependent choice
for α in which α becomes closer to one with increasing N will not permit exponential
convergence with N . Specifically, the choice α = cos(lπ/N) for small l, when inserted
in (2.5), yields the fixed limit

lim
N→∞

εN = e−lπ.

On the other hand, taking l = N/(2π), hence α = cos(0.5), does provide expo-
nential convergence, εN ∼ e−N/2 [11]. However, inserting α = cos(0.5) in (2.7) we
find kmax ∼ (1.22)(N/π), some 20% larger than the suggested maximal N/π in [11].
The discrepancy arises from the utilization of the approximation of (2.7) for α ≈ 1,
α = cos(lπ/N), kmax = (N/2)− l, for α sufficiently different from 1. Alternatively, us-
ing the approximation α ≈ 1 in (2.7) directly, and kmax/N = 1/π, yields α = sin(1.0),
rather than cos(0.5). However, neither of these choices actually enforces the resolution
requirement of π points per wavelength. Rather, on inserting the choices α = cos(0.5),
sin(1.0) in (2.7), without any approximation of α, yields 2.57 and 2.64 points per wave-
length, respectively. Moreover, any choice of α > 0 predicts the mapped resolution
to be better than that of the Chebyshev method, while the limit case kmax = N/π
inserted in (2.7) yields α = 0.0.

Suppose, then, that we seek to resolve all waves up to a certain percentage of
the maximum possible wavenumber N/2, kmax = (p/100)(N/2), (200/π) < p < 100;
equivalently, we seek resolution, r, π < r < 2, where r is the number of points
per wavelength. The parameter α, independent of N , can then be obtained as the
solution of

sin

(
παkmax

N

)
− α = 0,(2.8)

from which the value for ε in (2.5) may also be calculated. We illustrate these calcu-
lations in Figure 2.3 in which we plot α(p) and ε(p), asterisks and pluses, respectively.
For comparison, we also indicate the values of ε for α = cos(0.5), sin(1.0) and an
additional choice α = .91901, to be explained shortly. We note that α and ε are
both increasing functions of p, which illustrates the competition between the require-
ments of resolution and accuracy. In particular, for higher percentages p resolution
improves and the range of wavenumbers resolved is larger, but concurrently ε in-
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Fig. 2.3. α, (2.8), and ε, (2.5), as a function of percent of modes resolved up to N/2.

creases and the accuracy is reduced. On the other hand, while α rapidly increases
from 0 to roughly .8, for resolution of waves up to roughly .7N/2, ε increases to 1
more gradually. Moreover, while the choices for α, sin(1.0) and cos(0.5), are close,
roughly .84 and .88, respectively, the resulting small change in ε, also in the second
decimal place, becomes significant for the accuracy, dependent on εN , as illustrated in
Figure 2.4. For comparison a selection of values ε(p)N , p = 75, 85, 95, is also shown.
We deduce that even single precision accuracy, εN ∼ 10−6, cannot be achieved with
a resolution of fewer than π points per wavelength (p ≈ 64) unless N > 30 is taken.
On the other hand, for larger but still marginally practical N , a small change in α is
significant for the attainment of double precision; in particular, for N = 60, we find
εN ∼ 10−16, 10−14 for α = sin(1.0) and cos(0.5), respectively. While these choices
both yield spectral accuracy in the limit as N → ∞, this limiting case is not relevant
for any practical range of N .

In summary our results further complement the analyses presented in [7] and [11].
Specifically Don and Solomonoff [7] deduced that α must scale with N to provide
spectral accuracy, while Hesthaven, Dinesen, and Lynov [11] deduced that a fixed
choice of α is sufficient, specifically α = cos(0.5). While these results are indeed
valid, we have shown that the dependence of the accuracy on N for a fixed choice
of α severely limits accuracy for small N and that for larger N the accuracy is very
sensitive to small changes in α. Moreover, in considering the range of waves sin kπx,
0 < kmax < N/2, which can be resolved on a grid, it is more appropriate to consider the
choice of α from percentage, p, of waves up to the maximum N/2, kmax = pN/200 that
are resolved, rather than the number of modes, l, that are not resolved kmax = N/2−l.

2.2.3. Stability. Our final consideration in the choice of α is the size of the
time step that might be expected in order to stably integrate a first order equation.
Again, using the approach in [11], which is derived from that in [13], we note that
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Fig. 2.4. εN , (2.5), as a function of percent of modes resolved up to N/2.

asymptotically with N the time step should scale inversely with the minimum grid
size, such that

∆tmap =
α

sin−1(α)
√

1 − α2
∆tcheb = β(α)∆tcheb,

where ∆tmap and ∆tcheb are the time steps associated with the mapped and un-
mapped methods, respectively. Here it is the potential that β(α) ∼= N , near α = 1,
that makes the mapped method attractive. However, it is clear from Figure 2.5 that
the maximal values of β are possible only when the choice for α compromises accuracy.
Still, theoretically, a rough doubling of time step, particularly for a large simulation,
would still be attractive. This is achieved for α = .91901 > cos(0.5), the root of
β(α) = 2, for which accuracy εN ∼ 10−10, for N = 60 is achievable, but for which
accuracy does not become acceptable until N is at least 35. Hence by this analy-
sis one must compromise either accuracy or the speed of integration if the mapped
method is to be used to advantage over the unmapped method, unless a single large
domain is used in the simulation. To confirm these estimates as a predictor for the
maximal time step we also calculated the ratio ρ(D)/ρ(AD), ρ the spectral radius,
for a range of values for α and N ; see Table 2.1. The results in Table 2.1 show that
the theoretical ratio increases with N to a maximum value as predicted by β(α), il-
lustrated in Figure 2.5. This maximum value is approached very quickly for small N
and α, discouraging a move to larger N in order to gain relative increase in stable
time step. Moreover, these results do not predict that the potential gains for increase
in the time step are close to O(N). We conclude that there is limited potential to
significantly increase the stable time step for a given choice of N . While these results
are negative regarding usage of the mapped method, Don and Solomonoff [7] included
in their analysis the sensitivity of these eigenvalue calculations, for which the mapped
method is far less sensitive. Hence the achievable improvement may be anticipated to
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Fig. 2.5. Theoretical scaling in timestep β(α) for optimal α illustrated in Figures 2.3 and 2.4.

Table 2.1
Estimate of increase in time step for the mapped method from the ratio ρ(D)/ρ(AD).

alpha
N 0.3090 0.3827 0.5000 0.7071 0.8415 0.8660 0.8776 0.9190 0.9900 1.0000
8 1.0003 0.9999 0.9980 0.9828 0.9508 0.9412 0.9361 0.9147 0.8630 0.8278

16 1.0240 1.0379 1.0689 1.1647 1.2747 1.2983 1.3082 1.3161 1.2231 1.1487
32 1.0314 1.0501 1.0933 1.2416 1.4682 1.5390 1.5782 1.7656 2.1737 2.0264
64 1.0335 1.0536 1.1002 1.2648 1.5329 1.6220 1.6727 1.9318 3.7901 3.8292

128 1.0341 1.0545 1.1020 1.2711 1.5510 1.6456 1.6999 1.9819 4.5522 7.4462
256 1.0342 1.0547 1.1025 1.2727 1.5558 1.6519 1.7070 1.9954 4.8118 14.6780
512 1.0342 1.0548 1.1026 1.2731 1.5570 1.6535 1.7088 1.9988 4.8847 29.1330

1024 1.0342 1.0548 1.1026 1.2732 1.5573 1.6539 1.7093 1.9997 4.9037 58.0315

be somewhat higher than these estimates because ρ(D) typically underestimates the
actual value of the spectral radius.

3. Numerical evaluation: First order equation.

3.1. Phase and amplitude errors. To verify the discussion in section 2 we
investigate the accuracy of the modified method from the calculation of the phase
and amplitude errors introduced in the solution of the one-dimensional wave equation.
The approach follows the method of Kopriva [12] for the equivalent investigation of
the Chebyshev method and assumes that the error introduced by time integration can
be made negligible by taking a sufficiently small time step.

For the initial value problem

ut + ux = 0, −1 ≤ x ≤ 1, 0 ≤ t < 8,

u(x, 0) = eikπx, −1 ≤ x ≤ 1,(3.1)

u(−1, t) = e−ikπ(1+t), 0 ≤ t < 8,
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Fig. 3.1. Phase and amplitude errors Chebyshev, αc = 0.

the analytic solution is given by

u(x, t) = eikπ(x−t),

for which the amplitude is one, the phase kπ(x − t), and the number of points per
wavelength, for grid with N+1 points, is r = N/k. Then, assuming that the computed
solution is of the form

û(xj , t) = eiθj , θj = aj + ibj ,

the amplitude error is 1− e−bj and the phase error kπ(xj − t)−aj . Kopriva [12] used
this calculation for the Chebyshev method to demonstrate that these errors decrease
exponentially as the number of points per wavelength, r, increases. This is illustrated
in Figure 3.1.

3.2. Implementation. In our implementation the time integration is accom-
plished using the standard fourth order four stage Runge–Kutta (RK) solver. To main-
tain the formal accuracy in time, the time dependent boundary condition, u(−1, t) =
e−ikπ(1+t) = h(t), is imposed at each stage of the RK integration using the method
in [6]. Specifically, the boundary condition and its derivatives are used to obtain the
intermediate stage values, u(m)(−1, t), m = 1 : 3, as

u(1)(−1, t) = h(t) +
δt

2
h′(t),

u(2)(−1, t) = u(1)(−1, t) +
δt2

4
h′′(t),(3.2)

u(3)(−1, t) = h(t) + δth′(t) +
δt2

2
h′′(t) +

δt3

4
h′′′(t).

The calculation of entries of the derivative operator, D, can be accomplished
via a number of different algorithms; see, e.g., [2, 7, 8, 19]. In our implementation
Fornberg’s algorithm, [8], was used. While this operator can be used to evaluate the
derivative at the grid points using a matrix-vector product, the derivative may also be
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Table 3.1
Relative error in the solution of (3.1) with 4 points per wavelength.

Matrix-vector FFT
N Chebyshev αs = sin(1.0) Chebyshev αs = sin(1.0)
8 3.006480E−01 5.502124E−02 3.006480E−01 5.502132E−02
16 1.007892E−01 9.352306E−04 1.007892E−01 9.352304E−04
32 1.511967E−02 1.473285E−06 1.511970E−02 1.516212E−06

Table 3.2
Relative error in the solution of (3.1) with 8 points per wavelength.

Matrix-vector FFT
N Chebyshev αs = sin(1.0) Chebyshev αs = sin(1.0)
8 2.005779E−03 4.793553E−03 2.005823E−03 4.793477E−03
16 6.898087E−06 7.127883E−05 6.905703E−06 7.127340E−05
32 1.984337E−07 1.176971E−07 4.119758E−08 3.412978E−08

obtained using the discrete fast Fourier transform; see [4]. This approach immediately
extends also for the mapped method. Specifically, suppose that u(y(x)) is given by

u(yj) =

N∑
k=0

ākTk(xj), j = 0 : N,

where

āk =
1

γk

N∑
j=0

u(yj)Tk(xj)wj ,

with

wj =

{
π/2N, j = 0, N ,
π/N, 1 ≤ j ≤ N − 1,

γk =

{
π
2 ck, k < N ,
π, k = N ,

and ck =

{
2k = 0,
1 otherwise.

Then the derivative values are given by

u′(yj) =
1

g′(xj)

N∑
k=0

b̄kTk(xj),

where the b̄k are defined by the recurrence

ck b̄k = b̄k+2 + 2(k + 1)āk, 0 ≤ k ≤ N − 1,

equivalent to the recurrence for the series coefficients ak for u(x).
In all numerical tests the conclusions are valid regardless of the method for the im-

plementation of the derivative, matrix-vector (MV) or fast Fourier transform (FFT).
This is illustrated in Tables 3.1 and 3.2 for two choices, the Chebyshev and the case
with αs = sin(1.0), for N up to N = 32. Results when r = 4 are identical up to 6
decimal places and up to 5 decimal places for r = 8. For larger, but not practical,
N , one should anticipate reduced accuracy of the MV method; see Canuto et al. [4].
Hence, for practical choices, the method which can be implemented most efficiently
for the given architecture may be chosen. While Canuto et al. [4] demonstrated that
the MV method is most likely most efficient for practical choices of N , this may not
always be the case if a well-tuned FFT routine is available.
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Fig. 3.2. Phase and amplitude errors for high accuracy using αa.

3.3. Numerical experiments. Numerical tests were designed to evaluate the
spectral accuracy of the mapped Chebyshev method with certain choices of the pa-
rameter α, as compared to the Chebyshev method, for realistic practical choices of
N . To evaluate the impact of the choice for α, the following choices were made:

(i) α chosen for maximal theoretical accuracy, i.e., αa is chosen according to
(2.6), with ε ≈ 2−53.

(ii) α chosen to show sensitivity due to small change in α as compared to αh:

αs = sin(1.0) � .84.(3.3)

(iii) α chosen for maximal theoretical resolution, where α � 1 is assumed, as in
[13]:

αr = sin

(
π

r

)
.(3.4)

(iv) α chosen to study impact of fixed choice for α near 1, for which boundary
conditions will become Dirichlet in limit α = 1:

αdb = .99.(3.5)

(v) α chosen as per Hesthaven, Dinesen, and Lynov [11]:

αh = cos(0.5) � .88.

These choices, and the Chebyshev method αc = 0, were evaluated for a range of values
for N and the number of points per wavelength. Finally, we evaluate the number of
points per wavelength required to achieve minimal relative error for these methods.

3.4. Numerical results. The results of the experiments are illustrated in Fig-
ures 3.2–3.7. It is immediately confirmed from Figure 3.1 that the Chebyshev method
is not accurate for less than 3 points per wavelength. Moreover, the phase error dom-
inates the amplitude error for small r, but at roughly 5 points per wavelength the
errors are comparable.
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Fig. 3.3. Phase and amplitude errors for αs = sin(1.0).
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Fig. 3.4. Phase and amplitude errors for resolution, αr = sin(π/r).

While the modest increases in N yield only modest improvements in accuracy,
the impact is more pronounced as r increases, until maximum achievable accuracy
in double precision is attained. In particular, for N = 25 all modes with r � 7 are
resolved equally well in terms of both phase and amplitude accuracy. Not surprisingly,
the high accuracy choice for α, αa (see Figure 3.2), for which αa is relatively small,
.171460, .310752, and .436969 for N = 15, 20, 25, respectively, yields conclusions sim-
ilar to that for the αc = 0 case. With N = 25 all nodes with r � 6 yield equivalent
accuracy in phase and amplitude, while with N = 15 the maximal accuracy is still not
achieved until r = 10. The positive impact of picking α to provide improved resolu-
tion, e.g., αr = 1, .587785, .309017, for r = 2, 5, 10, respectively, particularly for small
r, is clearly seen in Figure 3.4, but the impact as r increases is not significant. Note
the large errors for small r and large α, which decrease substantially as r increases,
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Fig. 3.5. Phase and amplitude errors for αdb = .99.
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Fig. 3.6. Comparison of phase and amplitude errors in first order derivative approximation for
different α and fixed N = 25.

and hence α decreases. On the other hand, the very limited achievable accuracy for
αdb = .99 is apparent in Figure 3.5. Still, fixing α but increasing N , corresponding to
increasing the maximal resolution for this α, improves the results.

In Figure 3.6 we compare the previous results, ignoring the worst case, αdb = .99,
and introducing the comparison of the choices αh and αs. The improved accuracy
of αs over αh confirms the theoretical study in section 2. Moreover, the mapped
methods outperform the Chebyshev method, not only for small r, hence confirming
the resolution analysis in section 2, but also at larger r showing the gains that are
realized by emphasizing the theoretical ability of the mapped method to offer accuracy
for fewer than π points per wavelength. Moreover, while these results suggest that
the choice αr is optimal, it must also be noted that these results pick αr to match
the ratio N/k to the given initial condition. Thus these results for αr are falsely
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Fig. 3.7. For given N , r needed to achieve relative error less than 10−6.

optimistic. However, almost comparable accuracy is achievable over a range of initial
conditions for αs, while the accuracy choice αa is too severe.

Finally, in Figure 3.7 we illustrate the number of points per wavelength that are
needed, for choices of α, as a function of N . We conclude that single precision accuracy
requires in all cases tested up to N = 32, a minimum of 5 points per wavelength.
Moreover, the mapped method marginally outperforms the Chebyshev method for N
small, N � 30, provided α is far from 1.0. Additionally, it is not possible to achieve
single precision accuracy with the fixed choice αs = sin(1.0) until N approaches 20.
Similarly, single precision accuracy cannot be achieved if αdb = 0.99 and N � 60.

4. Numerical evaluation: Second order equation. In order to fully evaluate
the impact of the modified method on accuracy we also considered the one-dimensional
two way wave equation,

utt = uxx, −1 ≤ x ≤ 1, 0 ≤ t < 8,(4.1)

u(x, 0) = eikπx

ut(x, 0) = −ikπeikπx

}
, −1 ≤ x ≤ 1,(4.2)

u(−1, t) = e−ikπ(1+t)

u(1, t) = eikπ(1−t)

}
, 0 ≤ t < 8,(4.3)

for which u(x, t) = eikπ(x−t). For implementation we extended the first order imple-
mentation described in section 3. We note that the second order derivative can again
be calculated by either MV multiply or the FFT. In order to use the RK method we re-
formulate the second order equation as a system of first order equations in v = [u,w]T ,
w = ut. Formal accuracy of the RK method is imposed by applying the method in
[6], (4.1), for both boundaries, and to both components of v(x, t).

In Tables 4.1 and 4.2, we evaluate the accuracy on the implementation of the
derivative operation for the second order wave equation. While the results again
agree, this time to 5 decimal places, the FFT is in this case more reliable, confirming
the discussion of Don and Solomonoff [7] on the sensitivity of the calculation of the
higher derivative operators, particularly with large N and for the mapped method.
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Table 4.1
Relative error in the solution of (4.1)–(4.3) with 4 points per wavelength.

Matrix FFT
N Chebyshev αs = sin(1.0) Chebyshev αs = sin(1.0)
8 7.293058E−01 3.768539E−02 7.293058E−01 3.768472E−02
16 1.357839E−01 2.859397E−04 1.357852E−01 2.852290E−04
32 5.458733E−03 7.434244E−07 5.459800E−03 3.233326E−07

Table 4.2
Relative error in the solution of (4.1)–(4.3) with 8 points per wavelength.

Matrix FFT
N Chebyshev α = sin(1.0) Chebyshev α = sin(1.0)
8 6.585752E−04 1.403180E−03 6.596680E−04 1.401453E−03
16 2.239754E−06 1.833787E−05 9.982809E−07 1.998241E−05
32 2.100210E−06 1.201101E−06 1.455820E−07 3.843321E−08

Moreover, with 4 points per wavelength the mapped method using αs = sin(1.0)
outperforms the Chebyshev method, but for r = 8 the benefit is not realized for
small N .

A comparison of the accuracy for different choices of α similar to that done in
the first derivative approximation was done. Individual results for each choice of
α yield similar behavior as for the first order equation. In particular, for fixed α
with N , αs = sin(1.0) provides comparable accuracy for r ≥ 4, but errors decrease
exponentially when α is chosen either for resolution, α dependent on r not N , or for
accuracy, α dependent on N and not r. There is again an advantage to use of the
mapped method for a small number of grid points per wavelength.

5. Conclusions. Don and Solomonoff [7] have shown that α must be scaled
with N to provide spectral accuracy, while Hesthaven, Dinesen, and Lynov [11] have
shown that spectral accuracy can be achieved with N fixed. In this work, we calculated
the phase and amplitude errors in the modified method and illustrate that for small
N � 30, high accuracy is achievable only if α is small. The cases with small α (namely
when α is chosen to optimize either accuracy, αa, or resolution, αr) illustrate similar
properties as the Chebyshev case, namely that the phase and amplitude errors decay
exponentially as the number of points per wavelength increases.

There are two main conclusions of this work. First, the O(N) increase in the
stable time step for the mapped method cannot be obtained for realistic N . One of
the apparent major benefits of choosing α = 0 is that the time step for stable solutions
may be increased by as much as N . Theoretically, however, if we hope to double the
time step for stable implementations and still achieve high accuracy, N needs to be
large; for example, for accuracy 10−10, N must exceed 60.

Second, the theoretical estimates indicate that a choice of α = 0 provides good
resolution with fewer than π points per wavelength. Since the Chebyshev method
requires at least π points per wavelength for resolution, more accurate solutions can
be found by the modified method under the right circumstances, as described in the
next paragraph.

The choice of α for a given N depends on the accuracy required, and we have
shown that the accuracy for a given N , N relatively large, N > 30, is very sensitive
to small changes in α. In addition, it is not always possible to reach single precision
accuracy with the modified method. For example, the choice of αs = sin(1.0) must
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be accompanied by N > 20 for single precision accuracy; see Figure 3.7. However,
if N is large enough, or α chosen small enough, the modified method can be more
accurate than the Chebyshev method even when more than the minimum number of
points per wavelength for resolution are used; see Table 3.1 and Figure 3.6, where the
same number of points per wavelength are used for both methods. In Table 3.1, 4
points per wavelength were used, while in Figure 3.6 the mapped method has smaller
phase and amplitude errors when up to 8 points per wavelength are used. Of course,
the Chebyshev method is more accurate when there are a large number of points
per wavelength, which for a wide range of wavelengths requires large N , but with
8 points per wavelength (Table 3.2) both the mapped and unmapped methods have
errors with the same order of magnitude. With 4 points per wavelength (Table 3.1) the
error of the mapped method is up to four orders of magnitude smaller than that of the
unmapped Chebyshev method. The better accuracy is a result of the fact that α = 0
requires fewer points per wavelength for resolution than α = 0. It is significant that
the mapped method is able to improve accuracy with a smaller sampling rate because
this is crucial in keeping the size of N within a reasonable range computationally,
both with regards to memory and computation requirements, the latter through the
size of time step that can be used for the time integration.
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