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Abstract

Variational data assimilation for Lagrangian geophysical fluid dynamics is introduced.
Lagrangian coordinates add numerical difficulties into an already difficult subject, but also
offer certain distinct advantages over Eulerian coordinates. First, float position and depth are
defined by linear measurement functionals. Second, Lagrangian or ‘comoving’ open domains

are conveniently expressed in Lagrangian coordinates. The attraction of such open domains
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is that they lead to well-posed prediction problems [Bennett and Chua, (1999)] and hence
efficient inversion algorithms.

Eulerian and Lagrangian solutions of the inviscid forward problem in a doubly periodic
domain, with North Atlantic mesoscales, are compared and found to be in satisfactory agree-
ment for about one day. Viscous stresses vastly extend the interval of agreement at the cost
of considerable complexity, so in this first study the machinery of variational assimilation is
developed and tested for inviscid dynamics, simulated data and short assimilation intervals.
It was found that the intricate machinery could be consistently developed, managed, and

satisfactorily tested at least within the confines of the chosen parameters.

1 Introduction

Data assimilation combines a model and data in order to get the best estimate of the state
of the ocean. "Best” is defined here in the weighted least squares sense. In principle, the
data compensate for poorly known information, such as boundary values, initial conditions, and
parameterizations.

Lagrangian data are increasingly becoming available. Expressing the dynamics of the model
in Lagrangian coordinates, rather than Eulerian coordinates, offers distinct advantages and
disadvantages. Here we take first steps towards variational assimilation of Lagrangian data into
a Lagrangian model. The data are simulated float trajectories on an isopycnal surface, while the
dynamics are those of the inviscid shallow water equations. The scales of the simulated fields

are those of the mesoscale or eddy variability in the western North Atlantic.
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One of the difficulties with Lagrangian data and Lagrangian models is that ‘Lagrangian chaos’
can occur. For example, recent float deployments have shown that floats released in neighboring
pairs or triplets can have drastically different trajectories [Rossby et al., (1999)]. Detailed dis-
cussions on chaos in Lagrangian motion can be found in [Aref, (1984)], [Samelson, (1996)], and
[Yang and Liu, (1996)]. A consequence of this chaos is that for long integration times, particle
positions can become sensitive to initial conditions, forcings and errors in parameterizations.
Thus it is important to use data assimilation in order to keep the solution realistic.

Assimilation of drifter data into a primitive equation model, for prediction of particle tra-
jectories, was reported in [Ozgékmen et al., (1999)]. They conclude that if there is 1 particle
per a 0.25° x 0.25° region, accurate predictions can be obtained for one week to three months,
depending on the region. They also note that prediction error increases with time, most likely
due to the above mentioned chaotic behavior of Lagrangian motion. Of course, shear leads to
loss of predictability in Eulerian models too, but Lagrangian models do offer one highly signif-
icant advantage. They naturally facilitate the formulation and integration of regional models,
when the domain is moving with the flow, or ‘comoving’ [Bennett and Chua, (1999)]. A few
explanatory remarks are in order.

In the open ocean, the Eulerian form of the primitive equations is ill-posed as an initial-
boundary value problem [Oliger and Sundstrém, (1978)], unless the boundary conditions are
applied mode by mode in the vertical direction. The problem occurs if particle speeds lie within
the range of phase speeds of internal gravity wave modes, because the flow is variously super-

critical and subcritical, according to which mode is involved. It therefore becomes impossible
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to ascribe the correct number of vertically local boundary conditions at each vertical level.

However, the generalized inverse problem for the primitive equation model is well posed in
the open ocean [Bennett, (1992)]. The best fit, in a weighted least squares sense, of the data,
the model and local boundary values for all fields at all levels is governed by variational or
Euler-Lagrange equations, and they form a well-posed two point boundary value problem in
time.

The linearized Euler-Lagrange equations can not be solved by a finite number of backward
integrations and forward integrations, because they are ill-posed (since the forward primitive
equation model is ill-posed). However, the solution of the linear or nonlinear Euler-Lagrange
equations is the minimum of a cost functional, and the minimum (extremum) can be found
by direct substitution methods such as gradient decent, random walk and hybrid Monte Carlo
searches [Bennett and Chua, (1994)].

As mentioned, it has recently been shown [Bennett and Chua, (1999)] that the initial bound-
ary value problem for the inviscid primitive equation model is well posed if its open boundaries
are fluid particles, that is, if they are moving with the flow or are ‘comoving’ . Since vorticity is
conserved on fluid particles, vorticity cannot advect into or out of the domain. Divergence can
radiate into or out of the domain as gravity wave propagation, and every mode is subcritical
in the reference frame of the moving boundary. In the vertical, the boundary conditions do
not need to be applied mode by mode. It is particularly convenient to express the equations of
motion in Lagrangian coordinates when the domain boundary is comoving. In addition, assim-

ilation of Lagrangian data such as location, temperature and salinity, into a model represented
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in Lagrangian coordinates, leads to linear measurement functionals.

In summary, the increasing availability of Lagrangian data, the well-posedness of inviscid
primitive equation models in comoving domains, and the linearity of measurement functionals
from float data prompt us to take steps in the task of variational assimilation of Lagrangian
data into a prototype of the invsicid primitive equations in a comoving domain. This prototype
consists of the shallow water equations.

In Section 2 we will state the Lagrangian form of the shallow water model and compare it
to the Eulerian form. In Section 3 we will give the inverse of the Lagrangian formulation, and
in Section 4 we will give results from a short-term inversion with synthetic data and inviscid

dynamics.

2 Lagrangian formulation of the dynamical model

2.1 Dynamics: models and scales

Let A be the longitude, and 8 the latitude of a particle. If r is the earth’s radius, the zonal and

meridional velocities on the sphere are defined by

DX Do
u=rcosfp, v=ro, (1)
where _DDt is a material derivative, following the motion. The Eulerian form of the momentum

equations in the shallow water model is

Du - U .
Ft+kx (;tan0+2931n0)u——th (2)
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or

Du U . _ g Oh

Dt (;tan0+2Qsm0>v ~ rcosfor ®)
Dv U X B g Oh

D_t+ (;tan@-l—ZQSlnH)u = —;% (4)

where h is the equivalent depth, g the mean gravitational acceleration, and €2 the angular
sidereal rotation rate of the earth [Gill, (1982)]. The total material derivative on time following

the motion is

2 = 2 + Li + 22 (5)
Dt Ot rcos@OXN 108
The continuity equation is
Dh
or
oh 1 0 0
E—i_rcose 5(hu)+%(hvc030) =0 (7)

In the Eulerian form, we use as independent variables the position (A,f), and we solve for
the particle velocities u, v and depth h as dependent variables at time f. In the Lagrangian
form, we use as independent variables the initial particle position («,/), and we solve for the
subsequent particle position (A, 8) and depth h as dependent variables at time ¢. The first form
describes the evolution observed at points fixed in space, while the second form is the evolution

that would be observed as we follow the motion of particles.
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The change in coordinates from (A, €, t) to («, B, t) is performed using (1) and the trans-

formation

u(A, 0,t) = u(\ o, 5,t),0(a, B,1),1). (8)

The Eulerian partial derivatives of h, for example, are related its Lagrangian partial derivatives

by
oh  _,(0h 30 90 9h
X I (6a 08 da 6ﬂ) ’ (9)
h  __ (ONOh OAOh
% = 7" (oa0s~ 50 1)

where the Jacobian of the transformation is

YN
 dadB 0BOa’

Conservation of momentum on the rotating sphere is expressed in Lagrangian coordinates

as

9%\ oA 00 —g Oh 00 00 Oh

A _ (222 190 % SR A 11

o ( ot " ) o 0 = Geoso” (aa 98 o 86) (11)
%0 oA 00 . —g .1 {OXOh  Oh OX

while conservation of volume becomes

O(hcos0J)

=0, (13)

Note that the partial derivatives in (11)-(13), with respect to ¢, are for fixed initial particle

position («, ).
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The region of interest here is that of the North Atlantic Current project [Anderson et al., (1996)];

it extends from 35° North to 55° North and from 55° West to 30° West. In this region, the de-
formation radius is approximately 20 km, and phase speeds ¢ are 2 m/s [Chelton et al., (1998)].
We shall not use the real float data available in that region [Anderson et al., (1996)] in this first

study, but we shall use simulated fields with these scales.
2.2 Numerics

The essential computational problem with (11)-(13) is that the Lagrangian strains g—g, g—g,

%, % can become increasingly large, as neighboring fluid particles move further and further
apart. There is little published experience with the numerics for the Lagrangian form of the
shallow water model. Semi-Lagrangian methods are widely used [Staniforth and Coté, (1991)] to
improve the efficiency of numerical weather prediction models. The Lagrangian form of advection
is used to advance the velocities; however, the trajectories of the particles are interpolated on
to the Eulerian grid at the current time. When assimilating float data, it is unattractive to
interpolate to an Eulerian grid, as any such interpolation introduces error. Thus we shall
experiment first with fully Lagrangian integrations, and keep semi-Lagrangian methods as an
alternative for later consideration.

Dissipation must eventually be added to (3)-(7), otherwise the system becomes unsta-
ble owing to a turbulent cascade to the maximum resolved wave number (the particle ve-

locities can violate the Courant-Friedrichs-Lewy condition, and in addition, the depths can

become negative, in which case the numerical gravity wave dynamics become elliptic e.g.,
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[Bennett and Middleton, (1983)]). With a deformation radius of 20 km and phase speeds of
2 m/s, parameters corresponding to those in the North Atlantic, we found that the Lagrangian
form (11)-(13) became unstable a couple of days before the Eulerian form, indicating that the
Lagrangian numerics can be more sensitive. Once friction is added to both the Eulerian form
and the Lagrangian form with a grid Reynolds number (fluid speed X longitudinal grid spacing
+ viscosity) [Bennett and Middleton, (1983)] equal to 1, both methods are stable for at least
100 days. It may be argued that including dissipation resolves the ill-posedness of the Eulerian
problem, eliminating the need for the Lagrangian domain. We argue that it would in general
do so by fitting discontinuities with spurious viscous boundary layers. We wish to resolve the
ill-posedness of the underlying inviscid problem, by correct choice of the domain and boundary
conditions. Therefore, in this preliminary study, we will only assimilate data for a few hours and
without friction. It must also be conceded that rigorous inclusion of viscous effects in (11)-(13)
leads to great complications.

Initially, we choose simple numerics, although more work needs to be done for accurate nu-
merical integration of (11)-(13). We used centered second order finite difference approximations
on the A grid [Arakawa, (1966)] with no filtering. To compensate for the low order of the numer-
ics, and the threat of rapidly growing shears % etc., 20 points per wavelength were used in the
spatial approximation. These calculations were performed on the CM5 and CM500e Connection

Machines at the College of Oceanic and Atmospheric Sciences, Oregon State University.
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2.3 Numerical test problem

The test problem uses boundary and initial conditions for a combination of plane waves of small
amplitude, or Sverdrup waves [Gill, (1982)]. The combination solves the linear form of (3)-(7)

exactly, and is given by

u = —2sin(é — wt) wQQfTﬂ [(?éjs)];w sin(y) — w cos('y)] (14)
v = 2cos(d — wt) w2g£{f2 [(72/;l)lw cos(y) + % Sin(’y)] (15)
h = H+2cos(vy)cos(d — wt)H, (16)

o o o (T2k/5\% (72147

Here c is the phase speed, H = ¢2/g the mean depth, H = eH, e = .01, and f = 2Qsinf
the Coriolis parameter. Since the deformation radius is 20 km, we choose a longitudinal wave
number k = 22 per radian of longitude, and a latitudinal wave number [ = 18 per radian of

latitude. In addition

v = k(720/5 + 221/5) (17)

§ = 1(720/4 — Tr/2). (18)

These give spatially periodic initial conditions in the interval of interest.
The meridional velocities range from —.04m/s to .04 m/s, and the zonal velocities range
from —.03m/s to .03 m/s. The equivalent depth, h, ranges between .402m and .416 m. The

initial conditions are plotted in Figure 1 to illustrate these properties.
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At a Lagrangian open boundary, the correct open boundary conditions are; the equivalent
depth at each boundary, the current latitude at each point on the North and South boundaries,
and the current longitude at each point on the East and West boundaries [Bennett and Chua,
(1999)]. However, the equivalent boundary conditions at an Eulerian open boundary, i.e. spec-
ifying equivalent depth at each boundary, v at East and West, and v at North and South lead,
in general, to an ill-posed problem. Since periodic boundary conditions in periodic Lagrangian
and Eulerian coordinates lead to well-posed problems in both forms, they were used in this
experiment.

There were 440 grid points in the horizontal direction, 360 in the vertical, and the time step
was 500 seconds.

After integrating for one day, the waves had traveled approximately three wavelengths. The
path that one particle (or float) took during this day is the dependent variable in the Lagrangian
form, and is plotted in Figure 2. We see here how solutions of the Lagrangian form simulate
trajectories; and in this case, the trajectories are open loops since the dynamics are nonlinear.
All particles in the domain behave similarly.

The total distance each particle traveled from its initial position, is plotted in Figure 3.
There are 440 x 360 = 158,400 particles, and in order to distinguish them in the Figure, only
1/7 of them are plotted. The symmetry of the patterns is due to the periodic initial conditions
and boundary conditions. After one day, some particles may have returned to a position near
their initial position. Nevertheless, the path they took is much larger than their distance from

their initial position, as evidenced by Figure 2.

11
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The initial domain is an open rectangular region, and in the Lagrangian form, it distorts
with time. After one day, there is only a small distortion of the domain, and the Lagrangian grid
still appears rectangular. In Figure 2 we see that the largest distance a particle has moved is 400
m latitudinally and 600 m longitudinally, which is not noticeable in a domain of approximate
width 3000 km and length 2000 km.

We also illustrate the computational difficulties with the increasing Lagrangian strains %,

g—g, %, % in Figure 4. They are each plotted vs. time for a period of 5 days. Initially g—i‘y =

% =1, and % = % = 0. The strains oscillate initially, as we would expect from the initial
conditions (14)-(18). After 5 days the strains increase by an amount of O(10~2), and as they
continue to increase, the right hand side of (11)-(12) will become large, and the computations
eventually become unstable.

Since solutions of the differential equations degrade with time, their accuracy is assessed at
the final integration time. The exact solution of the nonlinear equation is not known, so the
accuracy of the solution of the Lagrangian form was determined by comparing it to solutions of
the Eulerian form. In order to compare the two forms, the velocities and depth found on the
distorted Lagrangian grid were interpolated to the Eulerian grid using the function ‘griddata’
in Matlab. We choose the option ‘linear’ which uses Delaunay triangularization to create a
triangular grid for the scattered data. Then the data are fit to a locally linear surface.

The difference between the two solutions is plotted in Figure 5; including the equivalent

depth, meridonal and zonal velocities. The displacement in equivalent depth is approximately

2H, thus the Lagrangian solution differs from the Eulerian solution by about 2 x 10~* /8.17 x

12
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103 = 2.5%, and similarly for the velocities.
3 Inverse Formulation

The example in Section 2.3 indicates that the Lagrangian form of the shallow water model,
without friction, may be numerically integrated with good accuracy for time periods up to one
day, when the initial and boundary data have scales of North Atlantic eddy variability. In this
section, we will describe the assimilation method, and in Section 4 we will assimilate a few hours
worth of simulated data. We realize that longer assimilations are needed, with months of data.
It will accordingly be necessary to include friction which greatly complicates the Lagrangian

form. The diffusive term V24 in Eulerian coordinates becomes

1 0(L.0) 1 __,8(\M)
9 1 bl - 1 ’
reosto {7"2 cos? HOJ d(a, B) + 7"2J A, B) )’

where

8(At7 0) M — J—l 8()\’ At)

_ 71
L= 5@ p) 8(, B)

on a flat earth in Lagrangian coordinates. Therefore, we decided first to verify that it is possible
to solve the Euler-Lagrange equations for variational assimilation with respect to the inviscid
Lagrangian reduced gravity shallow water model.

The generalized inverse, or best fit of the model and data, may be obtained using the calculus
of variations. This leads, as indicated, to an Euler-Lagrange system which in turn can be solved
using the representer method [Bennett, (1992)]. This method is based on the assumption that

the model and the measurement functionals are linear, but it may be applied iteratively to
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nonlinear problems [Bennett, (1992)].

As mentioned in the Introduction, the measurement operators for float depth and position
are linear in the Lagrangian form. However, the model is highly nonlinear, since the pressure
gradient term involves an inverse jacobian, and products of partial derivatives. In order to
overcome this difficulty, we define the tangent linearization of the model, derive the associated
linear Euler-Lagrange equations, solve the latter by the representer method, and iterate. This
approach is described in detail in [Ngodock et al., (1999)] for an Eulerian model with Eulerian

(moored) data.
3.1 [Iterative tangent linear model
Let A=) 0 ]T anda=[a f ]T (the superscript 7' denotes transposition), and linearize

(11)-(13) about a previous iterate. That is, given values of A and h at all points in space @ and

time ¢ for the (n — 1)st iterate, we find them at the nth iterate by solving the linear equations

P’A"
W(a,t) = L"'\"(a,t) +g," " (19)
R (o, t) = 1" 1. A" (a,t) + g™ L. (20)

n=1 are all functions of A"~!, and the partial

The matrix L" !, vectors 1"~! and g,"~ !, and g,
derivative operators /0, 8/0B, 8/0t, 02 /0adf, 0 /0a? and 62 /0B>. Explicit expressions are
given in appendix A, including an equivalent vector form more amenable to programming. Note
that n is not a time index, but an index for functional iteration.

In Figure 6, we plot the latitude, longitude and equivalent depth of one particle, or float,

over a time period of a few hours. An initial guess or background (e.g. A°) is needed to begin the
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iterations. In this experiment, € (as in section 2.3) was chosen to be 0.1, but for the background,
€ = 0.01. Thus the background solution is slower than the solution from the nonlinear model.
In addition, the location of the float in the background is the same as that from the nonlinear
solution initially, however, the equivalent depth is different. The background values for A and
h, at each time step, are plotted along side solutions of (19)-(20) for the first three iterations.

By the second iteration, solutions of the linear model converge to the nonlinear model. In
fact, solutions in the third iteration are indistinguishable from the second; for all of A, X, and 6.
Figure (7) shows similar plots, but for the average of h, A\, and 0 over the entire domain. The
convergence occurs by the second iterate in all cases. Slower convergence is expected for longer
integration times.

Results from this experiment indicate that given a background solution near the nonlinear
solution, iterations on the tangent forward linear model converge to the nonlinear solution. Had
this not been the case, we would have little encouragement for proceeding with the nonlinear
Euler-Lagrange or adjoint equations. In the inversion, the background is taken to be the solution

of the forward nonlinear problem.

3.2 TIterative inverse problem statement

In general, we shall assume there are errors in the model, and thus will only allow the model to
act as a weak constraint. However, in order to simplify the Jacobian terms in (11) and (12) in this
preliminary study, we have substituted the solution of (13): h = (J cos )~ 'h(ex,0) cos(f(cx,0))

(note here that J(a,0) = 1). This means we are assuming that there are no errors in the

15

J. MEAD & A. BENNETT in JOURNAL OF MARINE SYSTEMS (2000)



This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online
at Journal of Marine Systems, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/S0924-7963(01)00024-0

continuity equation, nor in the initial condition for A.

Let
f)\: [ f,\ fa ]’ 7= [ z')\t ,iet ]’ (21)
br=[ b b b b ], bR =[phe phe phe phn ], (22)
e)‘=[ei\ ey @ é ] =l ... eh 1 (23)

be the errors in the dynamics, velocity initial conditions, boundary conditions, and data respec-

tively. That is, we replace (19) with

2371
(98?2 _ Ln—lAn+gln—1+fA (24)
and
= ln—l -An-l-an_l, (25)

is the same as (20). The initial conditions are

A(e,0) = «a (26)
d ., B ,
5" (@0) = u' +14 (27)
F"(e,0) = k!, (28)

for given initial position e, velocity u! = [ u/ o’ ]T, and depth h!. The boundary conditions
are

A".n, = AB 4ot (29)

hy = hP -+, (30)

16
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for given current latitude or longitude A2, and depth hZ at the boundary. Here r is an index
(n, s, e, w) that represents either the north, south, east, or west boundary, and n, is the unit
normal vector in the corresponding direction.

A generic notation like that of [Ide et al., (1997)] is useful for general discussion; however,
we wish to expose the Lagrangian detail here. Later, it could be mapped into generic notation.

Assume we are given the longitude, latitude and equivalent depth of a float on an isopycnal
as data. Then the data are direct measurements of the fields in the Lagrangian form. Let M’
be the number of times data are taken from the floats (e.g. if 5 floats record data 2 times each,

then M’ = 10). Denote the location of the float d*, and the depth of the float by d". Then for

1<m<M
d) = Ao, tm) + €, (31)
iy, = h(aum,tm) + €y, (32)
where €, and ¢!, are the errors in the mth datum point. Note that the total number of data is

M=3M', and o, is the initial position of the float from which the mth data point was taken
at time t,,.

At each iterate ‘n’, we minimize the cost functional

T T
n o _ ) a2 ] ()2de ) A2
J[)\]—fo/odt/lgd(f)+WZ/B()d +Wb/0(b)dt (33)
T M M M
+Wh'/ (bh)2dt_|_w)\ Z(em/\)2+w0 Z(6m0)2+wh Z(emh)2
0 m=1 m=1

m=1

subject to (25), using the calculus of variations. Here W\, W;, Wy, W, w?, and w" are
prescribed weights for the errors in the momentum equations, initial conditions, boundary con-
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ditions and data. In this first study, we assume that f* etc., are uniform white noise in space

and time. That is, the weighting is homogeneous and ‘diagonal’.

3.3 Euler-Lagrange equations

From now on, the iteration subscripts n and n — 1 are omitted. The optimal solutions Xand h

minimize (33) and satisfy the Euler-Lagrange equations

62)\‘4 M .
= = LA = > " wh(d), = Aotm, tm))d (@ — am)O(t — tm) (34)
i
C = lA . }\A - Z wh(dﬁn - ib(amatm))‘s(a - am)(S(t - tm) (35)
m=1

where A4 is the adjoint variable corresponding to A, and L4 and 14 are time-dependent adjoint
operators corresponding to L and 1 respectively. Definitions are given in Appendix B. In addition,
¢ is the Lagrange multiplier which enforces (25) as a strong constraint.

The adjoint equations (34)-(35) are subject to the terminal conditions:

M(a,T) =0 (36)

A
W(Q’T) =0 (37)
((a,T) = 0. (38)

Now A and h in (34) and (35) satisfy
X _ LA WA 39
e g1+ Wi (39)
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with initial conditions

A = a (41)
%—i‘ = ol w4 (42)
B = A, (43)
and boundary conditions
An, = A+ W lp(LA, a4, ¢) (44)
hy = BB+ W, 1.q(LA Y. (45)

Definitions of p and q are also given in Appendix B.

Note that in order to solve for A and il, we need A4 and ¢, which in turn require X and h. Thus
the Euler-Lagrange equations comprise a two-point boundary value problem in the smoothing
time interval [0,7]. Representers decouple the Euler-Lagrange equations into M initial-value
and final-value problems. The representer method used to solve for ;\, and iz, is described in
detail in [Bennett, (1992)], [Chua et al., (1999)]. An indirect approach avoids calculating most
of the representers [Egbert et al., (1994)], [Amodei, (1995)], but it is not needed here, as M is

small. Results will be shown in the next section.

4 Experiments

4.1 Discrete inverse with open boundaries

In this section we will fit the Lagrangian model (24)-(30) to simulated data (31)-(32). First
consider that in order to do this, we minimize the discrete form of the cost functional (33).
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Define the time steps and spatial points, as in (8), by

th = kAL, k=0,..,NK (46)
o = =bb°+ilAa, i=1,..,NI (47)
B; = 35°+iAB,  j=1,..,NJ. (48)

Then for \;jz = May, B}, tx), with 65 and h;j, defined similarly, the discrete form of (33) is

NK NI-1 NJ NI NJ—-1

JA = ST (Wi ST S0+ we Yo S (40?7 | AanpAt (49)
k=2 i=2 j=1 i=1 j=2
NK NI-1NJ-1
+> 0 > > 2vigwlhige — Lk - Mgk + (92)ig8) DaABAE (50)
k=1 i=2 j=2
NI-1 NJ NI NJ—-1
F W DY @)+ Wi Y Y (%) | hadB (51)
i=2 j=1 i=1 j=2
NK NJ NI
A D S Wiora (032)% + Wipe (05)21AB + > [Wias (0)* + Wi (07)*10c | AL (52)
k=1 \j=1 i=1
NK [(NJ-1 NI
A D Wiy (05) + Wne (B52)21AB + Y Wi (bli)? + Wi (b37)*1 A | At (53)
k=1 \ j=2 i=1
M
+ Z W)+ Wl (el)? + wh(el)2. (54)
m=1

Note here that the terms corresponding to A and 6 are written out explicitly and have different
indices in the summations, as does h. This is because open boundary conditions are applied at
t=At,... NKAt.

We digress for a moment from the current problem to make a statement about data assim-
ilation in a region. In the forward model, the boundary conditions applied at the first time

step should be within O(At) of the initial conditions at the boundary. If not, there will be a

20

J. MEAD & A. BENNETT in JOURNAL OF MARINE SYSTEMS (2000)



This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online
at Journal of Marine Systems, published by Elsevier. Copyright restrictions may apply. doi: 10.1016/S0924-7963(01)00024-0

discontinuity at the boundary, and spurious reflection of waves will occur. In the inverse model,
the errors at the boundary should also be continuous initially. This can be done by appending
the penalty functional, as follows.

For example, at the western boundary, the numerics for the forward model are continuous

initially if
Xai, Bj,t1) — Ao, B, to) = O(A), (55)

where A(a1,B),t1), A(ai,Bj,t0) are given by the boundary condition and initial condition re-

spectively. The numerics for the inverse model are continuous initially if
[Me, Bj,t1) = Ap (B, )] = [M(au, By, to) — aa] = O(A), (56)
and in addition
b (B, t1) = O(At). (57)

(Note that we have assumed no initial error in float position)
In the forward model, we choose initial conditions and boundary conditions such that (56)

holds. For the inverse problem, we must also append the penalty functional with

(bkw (Ei, t1)>2 (58)

to ensure that (57) holds. In this example, (58) already appears in the penalty functional (52),

but if there were errors in the initial condition, we would need to add an extra term.
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4.2 Prior dynamical errors and weights

The weights on the errors need to be prescribed a priori. The weights not only influence how
well the model fits the data, but also the amount by which the model is in error and the data
are in error. In this work, we are using constant, uniform weights and show that the inviscid
model can fit the data during the short smoothing interval of a few hours. In the future, we
will use real data and more sophisticated weights related to error covariances, in which case the
reduced penalty functional will be used as a significance test of the prior statistics for the errors
[Bennett, (1992)].

The Euler-Lagrange equations (34)-(45) actually require the inverse of the weights, or the
hypothetical covariances for the various errors [Bennett, (1992)]. Given the values of w and u
in Section 2.3, and r the radius of the earth, the Lagrangian form (11)-(13) has velocities in
radians/sec

ON u 2 4x1072 9
—_—~— N — A — Ay ]_ - 59
ot r T 6 x 106 331075 (59)

and accelerations in radians/sec?

PN wu  fu 4 4x1072
ot? T T % " 6 x 106

7 x 1071, (60)
Twin experiments are considered, and we arbitrarily choose the inverse weight for the dynamics
to be either 25% or 10% of the accelerations (60). In both experiments, the standard deviation
of the initial conditions were chosen to be 10% of the velocities (59).

The width (or length) of the domain is approximately 0.4 radians (about 27° of longitude

or latitude). Thus we choose the standard deviation of A and € at the boundaries to be 10% of
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0.4 radians. All of the corresponding weights are given in Table 1.

There are several internal checks for a numerical algorithm for representer calculations.
First, the so-called ‘representer matrix’ should be symmetric, save for roundoff error. Second,
the results of two methods for calculating the posterior data residuals or misfits should also
agree, save for roundoff error [Chua et al., (1999)]. These tests enable exhaustive checking of
the adjoint equations arising from the discrete penalty function (49)-(54). These tests give no
indication of the truncation error of the numerics, nor of the validity of the choice of weights.
Suffice it to say that, after considerable effort, our code passed the tests so we were confident at
least of minimizing J[A] defined by (49)-(54).

4.3 Simulated data and data errors

Simulated data are taken from one float over a period of a few hours. The float’s longitude,
latitude or equivalent depth is sampled at six times, thus M = 6. We choose the values of di‘n
and dP, from (31)-(32) to be 98% of A or h found from the solution of the nonlinear problem.

In the twin experiments, the standard deviations of the simulated data are chosen to be either

1% or 30% of the width of the domain.

4.4 Twin experiment results

Figures 8-9 are time series of the location and depth of one float. The background, or first guess,
is the solution of the nonlinear forward problem with initial conditions and boundary conditions
described in Section 2.3. The initial longitude of the float given by the background solution is

—50.45°. The data gives the longitude of the float as —49.45° after 33 minutes. In Figure 8, the
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model is able to adjust 111 km in 33 minutes to fit the first data point, and it continues to fit
all the data exactly. As the inversion is iterated, the fit to the data becomes more nonlinear.
Similar results are found when fitting the latitude and depth of the isopycnal.

In Figure 9 the specified errors in the data are increased from 1% to 30% and the specified
errors in the dynamics are decreased from 25% to 10%. Recall that we are only adjusting the
errors in the dynamics for A, 6, since the equivalent depth h is assumed to be error free. The
change in the error for the data does not effect the inversion of the depth of this float. However,
now the longitude and latitude do not fit all of the data, as might be expected.

These short-range inversions do little more than verify the logic of the algorithm and code.
It will be essential to include friction in order to sustain even forward integrations of tens of

days or more, on North Atlantic mesoscales.

5 Conclusions

We have introduced variational data assimilation of Lagrangian data into an open ocean model
expressed in Lagrangian form. Our first demonstrations involved inviscid dynamics, on scales
of North Atlantic mesoscale variability. With high spatial resolution, and after one day, the
solution of the reduced gravity shallow water equations in an open domain is virtually the
same whether calculated using the Lagrangian or Eulerian form. Functional iteration without
data does recover the forward solution of the nonlinear dynamics, that is, iterations on the
tangent linear model converge to the nonlinear solution. In addition, representer solutions

can be consistently constructed from the FEuler-Lagrange variational equations for the tangent
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linearized Lagrangian dynamics in an open domain.

It remains to introduce viscous stresses into the Lagrangian dynamics, by transforming
the Eulerian viscous terms into Lagrangian coordinates, in order to enable comparisons with
solutions of the Eulerian viscous dynamics, and to introduce real float data. Lagrangian primitive

equation dynamics will be a further challenge.
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Appendix A

The Lagrangian reduced gravity model, linearized about a previous iterate in Section 2.3, can

be written in the following manner: let the vector of unknowns be denoted

T
— o\ 90 AN O\ Oh Oh a0 o0
"'—[9 9% o " %a 93 8a 08 ba 08 1] ;

then the linear form of (11)-(13) at the nth iteration is

82)\11 n
oz T KT
o%0n
ra
A" = m-1",

where
k = [k ko ks ka O 0 ks kg kr ks ko ¥
I = [1 1y 0I5 Iy s Ig Iy 0 0 Ig]"
mZ[m1000m2m300m4m5m6]T-
Now let
hinit = h(aaﬁa O)J(Ot,ﬁ, O) Cos 9((1, /Ba 0)
and recall

a(hn—l’on—l) B ahn—l aen—l B ahn—l aen—l
d(a,)  0a 0B 98  oa ’
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for example. Then

k1

ko

k3

k4

ks

- tan @1 9(hn—L, om1)

oam—1 ggn—1 ogn—1 g
9 2 0n—1 20 2 0’0—1 _
see ot ot o t  rZhing
aen—l
2 n—1
tan 0 v
n—1
2tan @™ ! 8)\7 +2Qtan ™!

g 1 a(hn—l, gn—l)
 r2hyy cos O 1 d(a, B)
g rn—1 991
 r2Rhing cos 071 93
g hn—l 80n—1
72hins cos 071 Do
g hn—1 opn—t
72hin; cos 0?1 98
g hn—l ahn—l
" r2hy cos 071 o
aAnflaenfl
ot ot
g hn—l a(hn—l, gn—l)
+r2him cos1  9(a,B)

(0" 'sec? 0" + tan g™ ') — 20 5

[2 + 6" tan ™71,
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I

lo

lg

l7

ls

and

oA
at

(cos® 0™~ — sin? 9" 1)(

a)\n—l )

ot
_la(A"—l,h"—l)
7'2hint B(OA, B)

g n—1 n—1 ahn—l
he h cos 0 05 B

9 n—1 n—1 ah‘n_l
h 0 —
72 Rt €08 oo

g n—1 nfla)‘n_l
T h cos 6 55 B

—cos 0" L sinf" 1 (20 4 2

g n—1 n—1 oA~ !
h o —
72 hint €08 Oa

n—1

o 1O (cos?on —sin? 0 )20+ o

ot
_ g hn—la()‘n_lahn_l)
7"2hint 8((1’ IB)

a)\n—l g

ot

hn—l Sin 0n—1 B(An_lﬁ hn_l)

2+ 3, B)

8)\"_1) N (a/\n—l

2
7) cos 0" tging" !

ot

[0" ' sin@™ ! — 2cos 677,

tan !

8971—1

agnfl

8/\71—1

a)\nfl

_ hing

e L
. Ping

me = Ccosfr1(Jn1)2 9B
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mso= cos n—1(Jn—1)2  fa
o Pint

ma = cosn—1(Jn—12 9
- hint

s “cosOnr1(Jr1)2 B
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me —

cos gn—1jn-1
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The explicit expressions in (19) are

0 0 0 9?2 9?2 9?2 o2
L(1,1) = k28 Jr/€4(m2(9 +m385)+k5(m2w+m3w)+k6(m2w+m38—ﬂ2)
0 0 0 0 o2 o2
L(1,2) = k1+k38 —I—k4(m1+m4a +m5aﬁ)+k5(m18—a+m4w+m5w)
0 5?2 0?2 0 0
+k6(m18,8+m48 ﬂ+m58ﬂ2)+k7 +k88,3
0 0 0 0 0 9?2 ?
L(2,1) = 128 +l3(m28 +m38,8)+l46 +158B+16(mgw+m3w)
2 0?2
+l7(m2a ﬂ+m38—ﬁ2)
0 0 0 9?2 9?2
L(2,2) = ll+13(m1+m46 +m5aﬁ)+lﬁ-(m18 —I—m4a 2+m5@)
+1 ( i+ 6_2+ 8_2)
Mg T M Gas T 0582
91(1) = ko + kams
g1(2) = lg+ mels,
and in (20) are
0 0
l(l) = m2£+m3%
0 0
1(2) = m1+m4%+m5%
g2 = Mg.
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Appendix B

Here we will give the inverse formulation (34)-(45) from Section 3.3, in detail. Definitions of T,

k, l, and m in the following equations are given in Appendix A. The adjoint equations are

92\A

ot?

%64
ot?

_ ot o0t o0t 004 oc 9
B 2815 2ot " oa oB o 9B

- E WM, = M@, tm))8 (@ — o )3(t — t)

where ;\, 9, and h satisfy

oA oA oA
= k1/\A—k3a _k78 — kg o5 + 1104 + mi¢ — my
—m5 Z 0(0tmytm))d(0r — Q) d(t — t)
8)\‘4 oA 964 004
= kM — ks — kg—— + 1304 — lg— —
4 5 6 98 + i3 5 Har Toa B
M A
- Z wh(d}:n - h(amatm))(s(a - am)é(t - tm)a
m=1
9%\ 1 A
9%0 X A
h = m-+
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with initial conditions

and boundary conditions

Mae, B,1)
Moww, B,1)
0(ct, Bn, 1)
0(a, By t)
h(c, Bn, 1)
I, By, )
h(ae, B,1)

(s, B, 1)

e, B,0) = «a
f(c, 8,00 = B
M, 8,0) = u' + WA (a, 8,0)

bi(c, 8,0) = o +W;'04a,B,0)

h" = b,

AP (B,1) + Wi 1404 (ce, B, 1) + mal (ae, B, 1)]
AB(B,t) = WL (1467 (0w, B, 1) + Ml (0w, B, 1)]
05 (a,t) + Wit ks A (a, Bn, 1) + mis(at, Bns t)]
08 (a,t) — Wl (ks A (e, Bs, 1) + msl(a, B, t)]
hy (0, t) + Wi (ke (@, Bn, 8) + 1767 (e, B, 1))
hl(a,t) — W, ke A (v, Bs, t) + 1264 (v, Bs, )]
he (B,8) + Wil [ksA (e, B, 1) +166™ (ae, B, 1)]

hg(/@a t) - W[jhi [kS)\A(awa ﬁa t) + ZGQA(aw, B, t)]

(B-12)
(B-13)
(B-14)
(B-15)
(B-16)
(B-17)
(B-18)

(B-19)

where the subscripts n, s, e, and w denote the north south east and west directions respectively.
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Appendix C

bhw | ble, bhs, phn
bro, pre, pls, pon
b" o
b)\

C

dy, do . db
d,

f

™ re

f/\

g

91, 92, L, L
h, k1, hB
H, H
e, g0

i

J

JA]

k, 1

L4, 14

M

ny

P; q

T

u, v, ul, vl

Wf)\, er, Wi, Whe,,
Wirw, Wirne, Wios, Wign s
Winw ;Wine » Wins, Win,,

Wan WIa Wb7 Wh

LIST OF SYMBOLS

boundary error in h at West, East, South, and North

boundary error in A at West and East, and in 8 at South and North
[bh“’, bhe, bhs, bhn]

[b)‘w, b)‘e, bes’ ben]

phase speed, 2 m/s

data for longitude, latitude, and the equivalent depth, m =1,... /M
(A, d7]

Coriolis parameter 2(2 sin 0

error in dynamics for A, 6

(£, 19

mean gravitational acceleration, 9.7976 m/s?

terms in the linearization of the Lagrangian dynamics

equivalent depth, the initial value, and boundary value

mean depth, and eH

error in initial meridional and zonal velocities

[i*, i%]

jacobian for the transformation from Eulerian to Lagrangian coordintes
cost functional

longitudinal and latitudinal wavenumbers

adjoint terms in Euler-Lagrange equations

number of times data is taken from each float

unit normal vector in North, South, East, West directions; r = (n, s, e, w)
boundary terms in the adjoint equations

earth’s radius, 6370.949 km

meridional and zonal velocities, and their initial values

weights on the errors in the dynamics, initial velocities, and boundary

values for the location, and equivalent depth

[WfA, er], [WIA“ W19L]7 [Wb)\w, WbAe, Wbos, Wben], [thw, the, ths, thn]
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initial longitude and latitude in Lagrangian coordinates

[a, A]

parameters in analytical solution to linear shallow water problem

error in data for h, A, and 6

[, €]

longitude, latitude, and boundary values

A, 0]

adjoint variable in Euler-Lagrange equations, and minimizer of cost functional
weights on the errors in the data for the longitude, latitude and equivalent depth
[w, w’]

angular rotation rate of earth, 7.292115 x 1075 rad/sec
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Figure 1: Initial depth, meridional and zonal velocities given by the Sverdrup wave. There are 22

waves in the meridonal direction, and 18 waves in the zonal, which correspond to a deformation

radius of 20 km.
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Figure 6: Linear iterates from the Lagrangian shallow water model.
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The velocities of the

background solution are approximately 0.04 m/s, of the nonlinear solution are 0.4 m/s.
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Figure 7: Average over all trajectories in the linear iterates from the Lagrangian shallow water

model.
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Figure 8: Time series convergence of float with initial position -50.45° longitude, 38.78° latitude.

The equivalent depth, longitude or latitude is given by the data at six different times (33, 50,
83, 125, 143 and 163 minutes) and assimilated into the model. The standard deviation of the

data is 1% of the width of the domain, and the inverse weight in the dynamics is 25% of the

accelerations.
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Figure 9: Time series convergence of float with initial position -50.45° longitude, 38.78° latitude.

The equivalent depth, longitude or latitude is given by the data at six different times (33, 50,
83, 125, 143 and 163 minutes). The standard deviation of the data is 30% of the width of the

domain, and the inverse weight in the dynamics is 10% of the accelerations.
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Table 1: Numerical parameters and weights.

Time interval At 100 s
Space interval Aa, AB | ©/792 rad, /810 rad
Dynamical weight(25%) WnAaABAL| 1 x 10'2 (rad/s)*
Wi AaABAL | 1.8 x 1012 (rad/s)™*
Tnitial weight Wi AaAB | 2.5 x 108 (rad/s) 2
Wie, AaAB | 5% 108 (rad/s) 2
Data weight(1%) WMAaABAL = W AaABAL 6.25 x 10* rad =2
W ANaABAL 6.25 x 10* m—2
Boundary weight Wb)‘w = Wb)‘e = ng * = ng "
W AaAt 625 rad >
Wy = Wye = Wp's = W'
W, AaAt 625 m 2
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