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[1] Soil depth is an important input parameter in hydrological and ecological modeling.
Presently, the soil depth data available in national soil databases (STATSGO and
SSURGO) from the Natural Resources Conservation Service are provided as averages
within generalized land units (map units). Spatial uncertainty within these units limits their
applicability for distributed modeling in complex terrain. This work reports statistical
models for prediction of soil depth in a semiarid mountainous watershed that are based
upon the relationship between soil depth and topographic and land cover attributes.
Soil depth was surveyed by driving a rod into the ground until refusal at locations selected
to represent the topographic and land cover variation in the Dry Creek Experimental
Watershed near Boise, Idaho. The soil depth survey consisted of a model calibration set,
measured at 819 locations over 8 subwatersheds representing topographic and land cover
variability and a model testing set, measured at 130 more broadly distributed locations in
the watershed. Many model input variables were developed for regression to the field
data. Topographic attributes were derived from a digital elevation model. Land cover
attributes were derived from Landsat remote sensing images and high-resolution aerial
photographs. Generalized additive and random forests models were developed to predict
soil depth over the watershed. They were able to explain about 50% of the soil depth
spatial variation, which is an important improvement over the soil depth extracted from the
SSURGO national soil database.

Citation: Tesfa, T. K., D. G. Tarboton, D. G. Chandler, and J. P. McNamara (2009), Modeling soil depth from topographic and land

cover attributes, Water Resour. Res., 45, W10438, doi:10.1029/2008WR007474.

1. Introduction

[2] Soil depth is one of the most important input
parameters for hydroecological models. Spatial patterns in
soil depth arise from complex interactions of many factors
(topography, parent material, climate, biological, chemical
and physical processes) [Jenny, 1941; Hoover and Hursh,
1943; Summerfield, 1997]. As a result, prediction of soil
depth at a point is difficult. Spatial patterns in soil depth
significantly affect soil moisture, runoff generation, and
subsurface and groundwater flow [Freer et al., 2002;
Stieglitz et al., 2003; McNamara et al., 2005; Seyfried et
al., 2009; Gribb et al., 2009]. Soil depth also provides an
indication of the available water capacity, and exerts a major
control on biological productivity [Gessler et al., 1995],
which in turn affects evapotranspiration. Consequently, ac-
curate representation of soil depth at scales relevant to these
processes is increasingly important for use in distributed
simulation models of hydrology and ecology. Soil depth is
highly variable spatially and laborious, time consuming and
difficult to practically measure even for a modestly sized

watershed [Dietrich et al., 1995]. There is thus a need for
models that can predict the spatial pattern of soil depth.
[3] In theUnited States, the Natural Resources Conservation

Service (NRCS) national soil databases (SSURGO and
STATSGO) have been the main sources of soil depth
information used as input for hydroecological modeling
[Anderson et al., 2006]. In these databases, soils are
spatially represented as discrete map units with sharp
boundaries. A map unit may comprise multiple soil com-
ponents but these components are not represented spatially
within the map unit. As a result, soil attributes are spatially
represented at map unit level as a mean or some other
representative value of the components. Such a representa-
tion of soils is discrete, highly generalized and is incom-
patible with other landscape data derived from digital
elevation models [Moore et al., 1993; Zhu, 1997; Zhu and
Mackay, 2001; Schmidt et al., 2005]. This limits applica-
bility for spatially distributed hydroecological modeling.
[4] Various approaches have been explored to improve

the characterization of soil properties over landscapes to
overcome the limitations of existing soil databases created
using conventional soil survey methods [Mark and Csillag,
1989; Goodchild, 1992; Moore et al., 1993; Bierkens and
Burrough, 1993; Zhu and Band, 1994; Dietrich et al., 1995;
Zhu et al., 1996, 1997; McBratney and Odeh, 1997]. These
are part of a general effort to develop and refine the spatial
data for use in hydroecological modeling at scales consistent
with other spatially distributed model inputs. Schulz et al.
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[2006] reviewed the importance of spatial data representa-
tion to advance understanding of hydrological processes in
general. As models improve in their ability to capture small-
scale details, the structure of spatial patterns in the data
becomes increasingly important [Grayson and Blöschl,
2000]. In the context of soils, the spatial pattern with respect
to topography has long been used by soil mappers [Mark
and Csillag, 1989; Goodchild, 1992; McBratney et al.,
2003; Scull et al., 2003] and recently is the focus of efforts
in hydropedology that examine synergies between soil and
hydrological processes [Lin et al., 2006].
[5] Fuzzy logic has been suggested as an approach to

refine the scale of soil information [McBratney and Odeh,
1997]. In particular Zhu and Band [1994] and Zhu et al.
[1996, 1997] have developed a model SoLIM that combines
fuzzy logic with GIS and expert system development
techniques that capture the opinions of experts in the fuzzy
logic functions used to map soil attributes from spatial soil
forming factors. Zhu and Mackay [2001] took this approach
one step further and evaluated the effects of spatial detail of
soil information, generated with this model on watershed
hydrological response. They showed that detailed spatial
soil information influenced simulated hydrographs and net
photosynthesis, underscoring the importance of detailed
spatial soil information for hydroecological modeling. A
limitation of this work was that no observed hydrographs
were available for the watershed simulated, so it was not
possible to quantify the improvement in hydrologic simu-
lations because of the more detailed soil information. There
are also concerns regarding the subjectivity of expert
opinions captured in a model such as SoLIM.
[6] Moore et al. [1993] and Gessler et al. [1995] applied

statistical approaches to model the pattern of soil properties
over landscape. Relationships between soil properties and
landscape factors (e.g., slope, wetness index, and plan
curvature) were first extracted from point measurements
and then used to predict soil properties over the remaining
area. Geostatistical approaches have also been used to
interpolate soil properties [Bierkens and Burrough, 1993;
Odeh et al., 1994; Zhang et al., 1995; Zhu, 1997], but their
application is often limited by the large amount of data
required to define the spatial autocorrelation.
[7] In contrast to the statistical approaches mentioned

above, Dietrich et al. [1995] suggested a process-based
approach for predicting the spatial variation of colluvial soil
depth. By assuming (1) that soil production is a function of
soil depth (2) and that soil transport is proportional to slope
and (3) that soil production is in local dynamic equilibrium
with the divergence of soil transport, topographic curvature
becomes a surrogate for soil production. Observations of
cosmogenic 10Be and 26Al concentrations from bedrock,
reported by Heimsath et al. [1997; 1999], validated the
relationship between curvature and soil production with an
exponentially decreasing dependence of soil production on
depth for their Tennessee Valley site in California. These
ideas have been further pursued in other areas [Heimsath et
al., 2000, 2001]. Heimsath et al. [2005] showed that on
steep slopes a depth-dependent transport model is more
broadly applicable. Saco et al. [2006] incorporated these
ideas into a landscape evolution model that was used to
evaluate the dependence of soil production on simulated soil
moisture. This provided a mechanism whereby soil depths

could vary spatially even under conditions of dynamic
equilibrium, where a soil production function dependent
only on soil depth would predict constant soil depth.
[8] The various modeling approaches for predicting soil

depth over landscapes, described above, showed only partial
success. While the physically based model has shown
reasonable prediction capability in unchanneled valleys
[Dietrich et al., 1995], the cause of the exponential soil
production function has not been explained and the poten-
tial dependence on other factors, such as soil moisture has
only had limited evaluation. The roles of chemical and
physical breakdown of the underlying rock and its influence
on soil production, and the effects of various topographic
factors (aspect, slope, elevation etc.) are not explicitly
considered in these models.
[9] In this paper, we develop statistical models for pre-

diction of the spatial pattern of soil depth over complex
terrain from topographic and land cover attributes. We
introduce new topographic attributes, derived from a digital
elevation model (DEM), intended to have explanatory
capability for soil depth. Various land cover attributes were
derived from Landsat remote sensing images. Generalized
additive models (GAM) and random forests (RF) statistical
modeling techniques were applied to predict soil depth from
these topographic and land cover attributes using soil depth
data measured at 819 points in 8 subwatersheds within the
Dry Creek Experimental Watershed (DCEW). This calibra-
tion data set was randomly divided into a training subset
consisting of 75% of the data and a validation subset
consisting of the remaining 25% that was used to estimate
the prediction error for variable and model complexity
selection [see, e.g., Hastie et al., 2001, chapter 7]. Soil
depth data measured at an additional 130 more broadly
distributed locations within DCEW was used as an out of
sample data set to test the model results. Predicted and
measured soil depth was also aggregated at the scale of
SSURGO map units and compared to soil depth from the
SSURGO soil database.

2. Study Area

[10] This study was carried out in the Dry Creek Exper-
imental Watershed (DCEW), about 28 km2 in area, located
in the semiarid southwestern region of Idaho approximately
13 km northeast of the city of Boise, United States
(Figure 1). The general area, known as the Boise Front,
comprises mountainous and foothills topography. Eleva-
tions in the DCEW range from 1000 m at the outlet where
Dry Creek crosses Bogus Basin Road to 2100 m at the
highest headwaters [Williams, 2005; McNamara et al.,
2005; Williams et al., 2008]. The average slope is about
25%, with steeper north facing slopes than south facing
slopes.
[11] The climate of DCEW has been classified by

McNamara et al. [2005] using the Koeppen climate
classification system [Henderson-Sellers and Robinson,
1986] as a steppe summer dry climate (BSk) for the lower
part and moist continental climate with dry summers (Dsa)
for the upper part. Precipitation is highest in winter, as snow
in the highlands and rain in the lowlands, and in spring in the
form of rain. There are occasional summer thunderstorms.
Autumns are generally dry [Williams, 2005; Williams et al.,
2008]. The average annual precipitation ranges from 37 cm

2 of 16

W10438 TESFA ET AL.: SOIL DEPTH FROM TOPOGRAPHY AND LAND COVER W10438



at lower elevations to 57 cm at higher elevations [Williams,
2005]. Streamflow typically remains low in the early and
midwinter and peaks in the early to midspring because of
the annual snowmelt freshet [McNamara et al., 2005].
[12] Vegetation in Dry Creek is dominated by grasses,

forbs and sagebrush at lower elevations, transitioning into
chaparral and then fir, spruce, and pines at higher elevations
[McNamara et al., 2005]. Soils are formed from weathering
of the underlying Idaho Batholith, which is a granite
intrusion ranging in age from 75 to 85 million years
[McNamara et al., 2005]. The soils range from loam to
sandy loam in texture [Williams, 2005; Gribb et al., 2009]
and according to the SSURGO soil database the percentages
of total sand, silt and clay range from 42% to 76%, 12% to
39% and 8% to 18% respectively. However, Gribb et al.
[2009] reported that the gravel content can be up to 38%.
The soils are generally well drained and have high surface
erosion potential. Soils on the south facing slopes generally
have coarser texture than soils covering the north facing
slopes. South facing slopes have more rock outcrops than
the north facing slopes.

3. Methodology

3.1. Field Data Collection

[13] Eight subwatersheds were selected to represent the
elevation, slope, aspect and land cover variability present
within DCEW. Soil depth, topographic curvature (field
observed curvature), and vegetation were surveyed at a total
of 819 points within the eight subwatersheds. Survey
locations were chosen to represent the range of topographic
and land cover variation in the subwatersheds. At each

survey point the GPS location (with 3 to 6 m accuracy) was
recorded. An Aerial photograph (with 1 m resolution) and
field notes were used to refine the GPS positioning of the
survey locations. At each location two or three soil depth
replicates 2–3 m apart were collected by driving a 220 cm
long 1.27 cm diameter sharpened copper coated steel rod
graduated at 5 cm interval vertically into the ground using a
fence post pounder until refusal. For the first set of surveys
two replicate depth measurements were made and a third
measurement was made if the difference between the first
two was more than 20 cm. For the later surveys three depth
measurement replicates were recorded at all points.
[14] The advantage of the depth to refusal method is that

it is a direct and simple measurement of soil depth. It is
inexpensive, albeit laborious and time consuming and
limited to depths to which a rod can be pounded. A
disadvantage is that the measurement is biased to under-
estimating actual depth to bedrock, since there is uncertainty
as to what actually causes refusal. Rocks and gravel that
occur as residual relicts from weathering or colluvium may
limit the rod penetration resulting in underestimation of soil
depth. Figure 2 illustrates the soil profile in Dry Creek at
locations where pits have been dug. These illustrate some of
the irregularity of soil depth and occurrence of rocks that
may result in underestimation of soil depth from this depth
to refusal approach. Soil depth recorded by pounding the
rod to refusal at two road cuts, where bedrock was exposed,
gave soil depth consistent with the visible depth to bedrock.
While there is uncertainty in any one soil depth measure-
ment due to these effects, taken in aggregate they seem to
provide reliable information on soil depth.

Figure 1. Dry Creek Experimental Watershed (DCEW) near Boise, Idaho, in the western United States.
Points show locations where soil depth was sampled. Extent of DCEW is longitude 116.179–116.099�W
and latitude 43.688–43.741�N.
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[15] To quantify the uncertainty in our data we examined
the variability of the range from replicate depth to refusal
measurements at 641 of the sample points in six subwater-
sheds. (This information was not available for two subwater-
sheds where only the depth replicate average was recorded in
the field). The mean depth replicate range was 9.2 cm with
95th percentile of 25 cm and maximum range of 75 cm.
This indicates that although in the most extreme case the
depth range was 75 cm, that for the vast majority of points
the uncertainty was less that 25 cm with an average uncer-
tainty around 10 cm.
[16] The soil depth survey was carried out in 2005 and

2006, during early spring when the soil was moist and more
easily penetrated by the rod. Topographic curvature was
recorded by visual assessment as concave (�1), convex (1)
or intermediate (0) and the dominant land cover type was
recorded as one of bare, grass, mixed grass and shrubs,
shrubs, coniferous forest or deciduous forest. The first
author carried out this survey for 761 of the points in seven
subwatersheds, while soil depth data for 58 points in the
eighth subwatershed, had been previously collected using
the same methods [Williams et al., 2008]. The data from
these 819 points are designated as the calibration data set. A
further 130 soil depth observations were collected using the
same method at more broadly distributed locations, at least
50 m away from the selected subwatersheds, within the
boundary of the watershed, and generally on the southwest
side logistically accessible from the road. These are desig-
nated as the testing data set.

3.2. Geospatial Data

[17] Primary geospatial data used included a digital
elevation model (DEM) (obtained from the USGS Web
site http://seamless.usgs.gov/), Landsat TM imagery (path
41 row 30 obtained from the USGS), an aerial photograph
(obtained from NRCS Idaho State Office), and the
SSURGO soil database for survey area symbol ID903
(Boise Front) (obtained from NRCS Idaho State Office).

A wide range of geospatial explanatory attributes were
derived from the DEM and Landsat TM images.
3.2.1. Data Derived From the DEM
[18] The 1/3 arc sec DEM from the USGS seamless data

server was projected to a 5 m grid for the derivation of the
topographic attributes (Table 1) considered as potential ex-
planatory variables for predicting soil depth over the land-
scape. Although the spatial footprint of the USGS DEM is
likely 10 to 30 m, a 5 m grid resolution was chosen to limit
degradation due to interpretation and projection from the
geographic coordinate data provided by the USGS. Exploit-
ing the general terrain-based flow analysis concepts for
enriching the information content from digital eleva-
tion models [Tarboton, 1997; Tarboton and Ames, 2001;
Tarboton and Baker, 2008], a number of new topographic
attributes were derived from the DEM. First a flow field is
derived by filling spurious sinks from the DEM then
calculating flow directions, using either the D8 or D1 flow
model. The D8 model [O’Callaghan and Mark, 1984]
assigns flow from each DEM grid cell to one downslope
neighbor in the direction of steepest descent. The D1 flow
model [Tarboton, 1997] apportions flow between adjacent
neighbors on the basis of the direction of steepest downward
slope on the eight triangular facets constructed in a 3 � 3
grid cell window using the center cell and each two
neighboring grid cells in turn. For the purposes of obtaining
additional flow related derivative quantities from the DEM
the important outcome from deriving the flow field is the
set of proportions, Pij, defining the proportion of grid cell i
that drain to grid cell j. For the D8 method these are either 0,
or 1, while for the D1 model these are between 0 and 1,
subject to the condition that

P
iPij = 1. With the flow

field defined using proportions, recursion, extending the
recursive algorithms used for contributing area [Mark,
1988; Tarboton, 1997; Tarboton and Baker, 2008], can be
used to define and compute an extensive set of derivative
attributes that have potential explanatory capability for soil
depth. A complete list of topographically derived explanatory

Figure 2. Illustrations of soil profiles in DCEW from soil pits.
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Table 1. DEM-Based Explanatory Variables

Symbola Description

elv Elevation above sea level
sca Specific catchment area from the D1 method [Tarboton, 1997].

This is contributing area divided by the grid cell size (from TauDEM specific catchment area function).b

plncurv Plan curvature is the curvature of the surface perpendicular
to the direction of the maximum slope (from ArcGIS spatial analysis tools curvature function)
[Moore et al., 1991,1993]. A positive value indicates convex up;
a negative value indicates concave up; and zero indicates flat surface.

prfcurv Profile curvature is the curvature of the surface in the direction of maximum slope
(from ArcGIS spatial analyst tools curvature function) [Moore et al., 1991; 1993].
A negative value indicates convex up surface; a positive value indicates concave up;
and zero indicates flat surface.

gncurv The second derivative of the surface computed by fitting a fourth-order polynomial
equation to a 3 � 3 grid cell window (from ArcGIS spatial analyst tools curvature function)
[Moore et al., 1991; 1993].

aspg The direction that a topographic slope faces expressed in terms of degrees from the north
(from ArcGIS spatial analyst tools aspect function)

slpg Magnitude of topographic slope computed using finite differences
on a 3 � 3 grid cell window (from ArcGIS spatial analyst tools slope function)

ang* D1 flow direction [Tarboton, 1997]:
the direction of the steepest outward slope from the triangular facets centered
on each grid cell and is reported as the angle in radians counter-clockwise from east
(TauDEM Dinf flow directions function)

ad8 D8 contributing area: the number of grid cells draining through
each grid cell using the single flow direction model
(TauDEM D8 contributing area function)

sd8 D8 slope: the steepest outward slope from a grid cell to one
of its eight neighbors reported as drop/distance, i.e., tan of the angle
(TauDEM D8 flow directions function)

stdist D8 distance to stream: horizontal distance from each grid cell
to a stream grid cell traced along D8 flow directions by moving until a stream grid
cell as defined by the Stream Raster grid is encountered (TauDEM flow distance to Streams function)

slpt D1 slope [Tarboton, 1997]: the steepest outward slope from the triangular facets
centered on each grid cell reported as drop/distance, i.e., tan of the slope angle
(TauDEM Dinf flow directions function)

plen* D8 longest upslope length: the length of the flow path from the furthest cell
that drains to each cell along D8 flow directions
(TauDEM grid network order and flow path lengths function)

tlen* D8 total upslope length: the total length of flow paths draining to each grid
cell along D8 flow directions (TauDEM grid network order and flow path lengths function)

sd8a Slope averaged over a 100 m path traced downslope along D8 flow directions
(from GRAIP, D8 slope with downslope averaging function)c

p The D8 flow direction grid representing the flow direction from each grid
cell to one of its adjacent or diagonal neighbors, encoded as 1 to 8 counterclockwise
starting at east (TauDEM D8 flow directions function)

sar Wetness index inverse: an index calculated as slope/specific catchment area
(TauDEM wetness index inverse function).

sph8* D8 horizontal slope position from equation (16)
modcurv* Curvature modeled based on field observed curvature from equation (29).
lhr* Longest D1 horizontal distance to ridge from equation (1)
shr* Shortest D1 horizontal distance to ridge from equation (2)
ahr* Average D1 horizontal distance to ridge from equation (3)
lhs* Longest D1 horizontal distance to stream from equation (4)
shs* Shortest D1 horizontal distance to stream from equation (5)
ahs* Average D1 horizontal distance to stream from equation (6)
lvr* Longest D1 vertical rise to ridge from equation (1) with vdist, equation (7)
svr* Shortest D1 vertical rise to ridge from equation (2) with vdist, equation (7)
avr* Average D1 vertical rise to ridge from equation (3) with vdist, equation (7)
lvs* Longest D1 vertical drop to stream from equation (4) with vdist, equation (8)
svs* Shortest D1 vertical drop to stream from equation (5) with vdist, equation (8)
avs* Average D1 vertical drop to stream from equation (6) with vdist, equation (8)
lsr* Longest surface distance to ridge from equation (1) with sdist, equation (9)
ssr* Shortest surface distance to ridge from equation (2) with sdist, equation (9)
asr* Average surface distance to ridge from equation (3) with sdist, equation (9)
lss* Longest surface distance to stream from equation (4) with sdist, equation (9)
sss* Shortest surface distance to stream from equation (5) with sdist, equation (9)
ass* Average surface distance to stream from equation (6) with sdist, equation (9)
lps* Longest Pythagoras distance to stream from equation (10)
sps* Shortest Pythagoras distance to stream from equation (11)
aps* Average Pythagoras distance to stream from equation (12)
lpr* Longest Pythagoras distance to ridge from equation (13)
spr* Shortest Pythagoras distance to ridge from equation (14)
apr* Average Pythagoras distance to ridge from equation (15)
lsph* D1 Longest horizontal slope position from equation (17)
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variables is given in Table 1 with new attributes indicated by
an asterisk. Figure 3 gives definitions for variations of the
newly derived distance to ridge and distance to stream
attributes. Algorithms for new topographic attributes are
given in sections 3.2.1.1–3.2.1.11.
3.2.1.1. Horizontal Distance to Ridge (*hr)
[19] The horizontal distance to ridge is defined as the

horizontal flow distance tracing upslope from a grid cell to a
grid cell that does not receive flow from an upslope
neighbor computed on the basis of the D1 flow model.
Because multiple flow paths may converge at any grid cell,
there may be multiple upslope ridge grid cells. We therefore
define three variants of the horizontal distance to ridge
function. The longest horizontal distance to ridge (lhr) is the
flow distance to the furthest upslope ridge grid cell. The
shortest horizontal distance to ridge (shr) is the flow
distance to the nearest upslope ridge grid cell. The average
horizontal distance to the ridge (avr) is the mean horizontal
flow distance calculated by weighting the distance on
the basis of the proportions of incoming flow from upslope
grid cells. Numerically, these are evaluated recursively as
follows:

lhr xið Þ ¼ Max
k:Pki>0f g

hdist xi; xkð Þ þ lhr xkð Þð Þ

if
X

Pki > 0; 0 otherwise ð1Þ

shr xið Þ ¼ Min
k:Pki>0f g

hdist xi; xkð Þ þ shr xkð Þð Þ

if
X

Pki > 0; 0 otherwise ð2Þ

ahr xið Þ ¼
X

Pki hdist xi; xkð Þ þ ahr xkð Þð ÞX
Pki

if
X

Pki > 0; 0 otherwise ð3Þ

where hdist(xi, xk) gives the horizontal distance from grid cell
xi to upslope neighbor xk, accounting for whether the cells are
adjacent or diagonal neighbors. The notation {k:Pki > 0}
indicates the set of neighbors, k, that have a proportion of
their flow contributing to grid cell i. The minimization or
maximization is over this set. These functions are recursive
because they depend on the value at an upslope neighbor, xk.

The terminal condition for these recursions is that ridge grid
cells that have no contribution from upslope (i.e.,

P
Pki = 0)

are assigned a distance value of 0.
3.2.1.2. Horizontal Distance to Stream (*hs)
[20] The horizontal distance to stream is calculated trac-

ing downslope from a grid cell to a stream on the basis of
the D1 flow model. There are again three variants for this:
the longest (lhs), shortest (shs) and average (ahs) horizontal
flow distance to the stream. Numerically, these are evaluated
recursively as follows:

lhs xið Þ ¼ Max
k:Pik>0f g

hdist xi; xkð Þ þ lhs xkð Þð Þ ð4Þ

shs xið Þ ¼ Min
k:Pik>0f g

hdist xi; xkð Þ þ shs xkð Þð Þ ð5Þ

ahs xið Þ ¼
X

Pik hdist xi; xkð Þ þ ahs xkð Þð Þ=
X

k:ahs xkð Þ�0f g
Pik ð6Þ

In this case the recursions are downslope, because they
traverse grid cells downslope terminating at grid cells on a
stream raster grid for which lhs(xk), shs(xk) and ahs(xk) are
initialized to 0. In evaluating these distance to stream functions

Table 1. (continued)

Symbola Description

ssph* D1 Shortest horizontal slope position from equation (18)
asph* D1 Average horizontal slope position from equation (19)
lspv* Longest vertical slope position from equation (20)
sspv* Shortest vertical slope position from equation (21)
aspv* Average vertical slope position from equation (22)
lspp* Longest Pythagoras slope position from equation (23)
sspp* Shortest Pythagoras slope position from equation (24)
aspp* Average Pythagoras slope position from equation (25)
lspr* Longest slope position ratio from equation (26)
sspr* Shortest slope position ratio from equation (27)
aspr* Average slope position ratio from equation (28)

aAsterisk indicates a new topographic variable.
bTauDEM is the terrain analysis using digital elevation models software (http://hydrology.usu.edu/taudem/).
cGRAIP is the Geomorphologic Road Analysis Inventory Package software (http://www.engineering.usu.edu/dtarb/graip).

Figure 3. Definitions of some derived topographic
attributes.
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the stream raster grid was determined using TauDEM (http://
hydrology.usu.edu/taudem/) with drainage area threshold of
100 5 � 5 m grid cells.
3.2.1.3. Vertical Rise to Ridge (*vr)
[21] The longest (lvr), shortest (svr) and average (avr)

vertical rise to ridge from any grid cell xi is defined by
tracing upslope from a grid cell completely analogously to
horizontal distance to ridge calculations on the basis of the
D1 flow model, but instead using elevation differences
zk � zi in place of the hdist(xi, xk) function in (1 to 3).
Specifically, hdist(xi, xk) is replaced by

vdist xi; xkð Þ ¼ zk � zi ð7Þ

3.2.1.4. Vertical Drop to Stream (*vs)
[22] Similarly, the longest (lvs), shortest (svs) and average

(avs) vertical drop to stream from any grid cell xi is calculated
tracing downslope from a grid cell completely analogously
to horizontal distance to stream calculations on the basis of
the D1 flow model, but instead using elevation differences
zi � zk in place of the hdist(xi, xk) function in (4 to 6).
Specifically, hdist(xi, xk) is replaced by

vdist xi; xkð Þ ¼ zi � zk ð8Þ

3.2.1.5. Surface Distance to Ridge (*sr)
[23] The surface distance is defined as the flow distance

along the slope (Figure 3). The surface distance between
grid cells is given by

sdist xi; xkð Þ ¼ hdist xi; xkð Þ
cos atan slp tð Þð Þ ð9Þ

where slp_t is the slope (recorded as drop/distance or tan)
computed on the basis of the D1 flow model. Longest (lsr),
shortest (ssr) and average (asr) surface flow distances to
ridge from any grid cell xi are calculated by using sdist(xi, xk)
rather than hdist(xi, xk) in equations (1)–(3).
3.2.1.6. Surface Distance to Stream (*ss)
[24] Similarly surface distance to stream from any grid cell

xi is calculated on the basis of the D1 flow model by using
sdist(xi, xk) rather than hdist(xi, xk) in equations (4)–(6). Here
lss, sss and ass are used to denote the longest, shortest and
average surface distances to the stream.
3.2.1.7. Pythagoras Distances to Stream (*ps)
[25] The Pythagoras distance is defined by considering

both vertical and horizontal flow distances along the full
length of a hillslope (Figure 3), and combining them using
Pythagoras’ theorem. We define the following Pythagoras
distances on the basis of the different variants of vertical and
horizontal flow distances defined above.

Longest Pythagoras distance to stream

lps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lhs2 þ lvs2

p
ð10Þ

Shortest Pythagoras distance to stream

sps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
shs2 þ svs2

p
ð11Þ

Average Pythagoras distance to stream

aps ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ahs2 þ avs2

p
ð12Þ

3.2.1.8. Pythagoras Distance to Ridge (*pr)
[26] Similarly three variants of Pythagoras distances to

the ridge are defined as follows:

Longest Pythagoras distance to ridge

lpr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lhr2 þ lvr2

p
ð13Þ

Shortest Pythagoras distance to ridge

spr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
shr2 þ svr2

p
ð14Þ

Average Pythagoras distance to ridge

apr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ahr2 þ avr2

p
ð15Þ

3.2.1.9. Slope Position (*sp)
[27] The relative position of a point on a hillslope can be

defined on the basis of the distance to the stream compared to
the total length of the hillslope from the distance to the ridge
plus the distance to the stream. Given the several variants on
distances to the stream and ridge, both horizontal and vertical,
we define a number of slope position variants as follows:

D8 horizontal slope position

sph8 ¼ stdist

stdist þ plen
ð16Þ

where plen is the D8 longest upslope length (Table 1).

D1 longest horizontal slope position

lsph ¼ lhs

lhr þ lhs
ð17Þ

D1 shortest horizontal slope position

ssph ¼ shs

shr þ shs
ð18Þ

D1 average horizontal slope position

asph ¼ ahs

ahr þ ahs
ð19Þ

D1 longest vertical slope position

lspv ¼ lvs

lvr þ lvs
ð20Þ

D1 shortest vertical slope position

sspv ¼ svs

svr þ svs
ð21Þ

D1 average vertical slope position

aspv ¼ avs

avr þ avs
ð22Þ
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Longest Pythagoras slope position

lspp ¼ lps

lpr þ lps
ð23Þ

Shortest Pythagoras slope position

sspp ¼ sps

spr þ sps
ð24Þ

Average Pythagoras slope position

aspp ¼ aps

apr þ aps
ð25Þ

Slope position varies from 0 at the stream to 1 at the ridge,
providing a measure of how far up the slope a point is.
3.2.1.10. Slope Position Ratio (*spra)
[28] Slope position ratio is the ratio of vertical slope

position to horizontal slope position. It can be defined as
longest, shortest and average depending on the type of the
slope position used in its calculation.

Longest slope position ratio

lspr ¼ lspv

lsphþ lspv
ð26Þ

Shortest slope position ratio

sspr ¼ sspv

ssphþ sspv
ð27Þ

Average slope position ratio

aspr ¼ aspv

asphþ aspv
ð28Þ

[29] Slope position ratio is bound between 0 and 1 and
provides an indication of the curvature of the slope. Slope
position ratio greater than 0.5 occurs when the vertical slope
position is greater than the horizontal slope position, mean-
ing that a point is further up the slope in a vertical sense
than horizontal sense as occurs when the slope is convex.
Points on a concave slope that fall below the straight
line from ridge to stream will have slope position ratio less
than 0.5.

3.2.1.11. Modeled Field Curvature (mod_curv)
[30] In our preliminary work, the field observed curva-

ture, encoded as �1, 0, 1 for concave, intermediate and
convex respectively, had some explanatory capability for
soil depth. This is of limited practical use because field
observed curvature is not available at unsampled locations
where we want to predict soil depth. To obtain a quantity
that captures similar information, but is based only on
explanatory variables available for use in prediction we
used stepwise regression to model field observed curvature
as a function of other explanatory variables. The result
from this process, designated as modeled field curvature
(modcurv) is a continuous (as opposed to discrete �1, 0, 1)
variable given by

modcurv ¼ 0:055þ 0:115*plncurv

� 0:320*sph8þ 8:150*sar � 0:030*gncurv ð29Þ

where, plncurv, sph8, sar and gncurv denote plan curvature,
D8 horizontal slope position, wetness index inverse and
general curvature respectively (Table 1). This continuous
quantity is used as a surrogate for discrete field observed
curvature and was taken as an explanatory variable
alongside the other DEM derived variables in the statistical
model development.
3.2.2. Data Derived From Remote Sensing Images
[31] After georeferencing and rectification, the Landsat

TM image of June 2001 path 41 row 30 was used to derive
various land cover attributes (Table 2) that are potentially
important for modeling soil depth. Six Landsat TM bands
(1, 2, 3, 4, 5, and 7) were used as input information.
[32] A thematic map of land cover (lc) was created

through supervised classification of the Landsat image.
The aerial photograph was used to select training sites
where the field observed land cover types (road, rock
outcrop and bare area; grasses; mixed grasses and shrubs;
shrubs riparian and deciduous forests; and coniferous forests)
were identified and used in the ERDAS IMAGINE super-
vised classification algorithm [ERDAS, 1997] to produce
land cover classes.
[33] Principal component analysis [Jensen, 1996] was

used to identify orthogonal components from the six Landsat
input bands that explain significant variance. The first three
components that explained 99% of the variance were retained
as land cover attributes (pc1, pc2, pc3).

Table 2. Explanatory Variables Derived From Landsat TM Image

Symbol Description

lc Land cover map derived using supervised classification in ERDAS IMAGINE. Land cover is represented
as a numerical value encoded as follows: 1 road, rock outcrop and
bare; 2 grass; 3 mixed grass and shrub; 4 shrub, riparian and deciduous
forest; 5 coniferous forest

pc1 First principal component from ERDAS IMAGINE principal component analysis function
pc2 Second principal component from ERDAS IMAGINE principal component analysis function
pc3 Third principal component from ERDAS IMAGINE principal component analysis function
tc1 First tasseled cap component from ERDAS IMAGINE tasseled cap transformation function (represents brightness)
tc2 Second tasseled cap component from ERDAS IMAGINE tasseled cap transformation function (represents greenness)
tc3 Third tasseled cap component from ERDAS IMAGINE tasseled cap transformation function (represents wetness)
ndvi Normalized difference vegetation index from ERDAS IMAGINE NDVI function
vi Vegetation index from ERDAS IMAGINE vegetation index function
cc Canopy cover index calculated following Zhu and Band [1994]
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[34] The tasseled cap transformation [Kauth and Thomas,
1976; Crist and Cicone, 1984] was used to convert the six
Landsat TM bands (1, 2, 3, 4, 5, and 7) into three
components (tc1, tc2, tc3) designated as brightness, green-
ness and wetness. These are weighted linear combinations
of the TM bands:

tci ¼ a1*tm1þ a2*tm2þ a3*tm3þ a4*tm4þ a5*tm5

þ a7*tm7 ð30Þ

where each tasseled cap component (tci, i = 1, 2, or 3) is
evaluated using coefficients aj for each Landsat TM band, j,
that were derived by Crist and Cicone [1984] from
empirical observation.
[35] The normalized difference vegetation index (ndvi)

[Jensen, 1996], vegetation index (vi) [Jensen, 1996] and
canopy cover (cc) [Zhu and Band, 1994] were derived using
the following equations:

ndvi ¼ tm4� tm3

tm4þ tm3
ð31Þ

vi ¼ tm4� tm3 ð32Þ

cc ¼ 100 1� tm5� tm5min

tm5max � tm5min

� �
ð33Þ

In the last equation Landsat thematic mapper (TM) band
tm5 is the middle infrared radiance TM band and subscripts
min and max designate the lowest and highest values of this
in the image.

3.3. Statistical Analysis

3.3.1. Normalization

[36] Box-Cox transformations [Sakia, 1992] were used to
transform the measured soil depth (sd) and each explanatory
variable so that their distribution was near normal:

t xð Þ ¼
xl � 1
� �

l
ð34Þ

Here, t(x) denotes the transform of variable x with
transformation parameter l. l was selected to maximize
the Shapiro-Wilks normality test W statistic as implemented
in R [Shapiro and Wilk, 1965; R Development Core Team,
2007]. Normalized variables were used in all the statistical
modeling works in this paper.
3.3.2. Models
[37] We applied two types of prediction methods: Gen-

eralized Additive Models (GAM) [Hastie and Tibshirani,
1990] and Random Forests (RF) [Breiman, 2001] to predict
soil depth using the explanatory variables (Tables 1 and 2).
[38] GAM [Hastie and Tibshirani, 1990] is a statistical

approach that generalizes multiple regression by replacing
linear combinations of the explanatory variables with com-
binations of nonparametric smoothing or fitting functions,
estimated through a back-fitting algorithm. The GAM
model is:

E sdjx1; x2; . . . ; xp
� �

¼ aþ f1 x1ð Þ þ f2 x2ð Þ þ . . .þ fp xp
� �

ð35Þ

where, x1, x2, . . . , xp are explanatory variables (predictors),
sd is soil depth (response variable) and fi are nonparametric
smoothing splines that relate sd to the x1, x2, . . . , xp. The
model assumes that the mean of sd is an additive
combination of nonlinear functions of the explanatory
variables x1, x2, . . ., xp. We used the GAM package [Hastie,
2008] as implemented in R [R Development Core Team,
2007].
[39] Random Forests (RF) is a statistical classification

and regression model that combines many classification and
regression trees [Breiman, 2001]. Each tree is built from a
bootstrap sample drawn from the training data set with
replacement. We used the Random Forests package [Liaw
and Wiener, 2002] in the R software [R Development Core
Team, 2007] to develop RF prediction models. The three
main aspects of RF are as follows: (1) from the training set
containing s points, s points are sampled with replacement
to build a regression tree; (2) among k explanatory varia-
bles, m� k is specified so that at each node m variables are
randomly sampled and the best split among them is iden-
tified; and (3) each tree is grown until the specified
minimum terminal node size is reached. Steps 1, 2, and 3
are followed to construct n trees. Each tree provides a
prediction for any new data point and the random forest
predictor is formed by taking the average over the n trees.
[40] In applying this model we used m = k/3 and n = 500.

The R default value of 5 was used for the minimum terminal
node size.
3.3.3. Variable Selection and Model Complexity
[41] Questions in developing a predictive regression

model include which potential explanatory variables to
use and what to do about interdependent explanatory varia-
bles. Many of our explanatory variables are variants on
similar quantities, so we are specifically concerned about
the effect of this explanatory variable correlation on model
prediction error. Breiman [2001] indicates that in the RF
model correlated explanatory variables can contribute to high
prediction error. A matrix giving the cross correlation
between all 65 explanatory variables was computed using
all 819 data points in the calibration data set to assess the
interdependence between explanatory variables. The RF
algorithm provides a measure of variable importance, that we
used in conjunction with the correlation between explanatory
variables to identify models with varying complexity.
[42] The RF measure of importance is determined as

follows [Liaw and Wiener, 2002; R Development Core
Team, 2007]. For each tree, the mean square error (MSE)
on the out-of-bag portion of the data is recorded. Then the
same is done after permuting each explanatory variable. The
difference between the two accuracies are then averaged
over all trees, and normalized by the standard error. The RF
model was run using all 819 data points in the calibration
data set with all 65 potential explanatory variables, and soil
depth as the response variable. Because of randomness in
the RF method the importance varies slightly each time it is
run. We therefore ran the RF model 50 times and averaged
variable importance across these runs. Explanatory varia-
bles were then ordered on the basis of their importance
measures.
[43] The number of explanatory variables in a model is a

measure of model complexity. We used the correlation
matrix, together with the RF importance values to develop
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sets of explanatory variables representing models of differ-
ing complexity by eliminating the variable of lesser impor-
tance from pairs of variables with correlation above a
designated threshold. Variables were filtered out working
sequentially from high to low correlation until no pairs with
correlation greater than the threshold remained. So if for
example the correlation between 4 explanatory variables is
as shown in Table 3 and the threshold in effect is 0.4, first
the variable pair (X1, X2) with cross correlation of 0.7
would be identified and the variable with lesser importance
from this pair eliminated. Let’s say this is variable X2, so
that X1, X3 and X4 remain. The next highest correlation
pair is (X1, X3) with correlation of 0.5. Note that the higher
correlation of 0.6 between variables X2 and X3 is not next
because variable X2 was already eliminated. Suppose that
of the pair (X1, X3) that X1 has lesser importance. It is
eliminated leaving behind variables X3 and X4. The corre-
lation between these is less than the threshold, so both
variables are retained and the model for this correlation
threshold comprises two explanatory variables, X3 and X4.
Lower thresholds result in fewer variables, so a range of
models with differing complexity were developed using
thresholds ranging from 0.15 to 0.9 in increments of 0.05.
This approach reduced the correlation between variables
selected for inclusion in a model. Models of differing
complexity were also constructed using explanatory varia-
bles directly from the variable list ordered by importance.
[44] To evaluate appropriate model complexity, we ran-

domly split our calibration sample of 819 data points into
two parts, designated as the training and validation sets as
illustrated in Figure 4. The separate testing data set of 130
points more broadly distributed in the watershed was
withheld from this process, so that it could be used for
evaluation of the final models.
[45] Both GAM and RF models were applied, using the

training data set of 614 data points to fit the models.
Prediction error was computed for both the training and
validation data set. The validation data set prediction error
provided an out of sample estimate appropriate for trading
off variance due to complexity with bias due to too few
explanatory variables [see, e.g., Hastie et al., 2001]. The
results from this analysis allowed us to select the explana-

tory variables and degree of model complexity. This was
done without and with the new topographic variables
derived in this research to evaluate the contribution of the
new variables in predicting soil depth. The new variables
are indicated with an asterisk in Table 1.
3.3.4. Testing
[46] Once the explanatory variables and models with

appropriate complexity had been selected, they were applied
using the full calibration data set as input. Both RF and
GAM models were used to predict soil depth for the entire
watershed with and without the new topographic variables.
We then compared the testing data set with the model soil
depth values at testing locations using the Nash-Sutcliffe
efficiency coefficient (NSE) [Nash and Sutcliffe, 1970]:

NSE ¼ 1�
P

SDo � SDp

� �2
P

SDo � SDmð Þ2
ð36Þ

where SDo, SDp, and SDm are observed (measured), pre-
dicted, and mean of observed (measured) soil depths re-
spectively. NSE is a normalized model performance measure
that compares the mean square error generated by a particular

Table 3. Illustrative Correlation Values

X1 X2 X3

X2 0.7
X3 0.5 0.6
X4 0.3 0.2 0.1

Figure 4. Division of data into training, validation, and
testing sets.

Figure 5. Variable importance measure of the Box-Cox
transformed explanatory variables averaged from 50 RF
model runs.
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model to the variance of the observations [Schaefli and
Gupta, 2007].
3.3.5. Comparison of Predicted and SSURGO Soil
Depths
[47] A shape file of soil depth was developed from the

SSURGO soil database as an average of the soil compo-
nents within a soil mapping unit (the spatial resolution of
SSURGO soil database). The generalization present in
SSURGO soil maps limits their applicability at a point
scale. Therefore we also aggregated the observed and
predicted soil depth values within each SSURGO soil
mapping unit and compared average observed, model pre-
dicted, and SSURGO soil depth values at this spatial scale
using NSE.

4. Results

4.1. Variable Selection and Model Complexity

[48] Figure 5 shows explanatory variables with impor-
tance values greater than or equal to 0.009, ordered on the
basis of their average importance values from 50 RF runs
with all 819 calibration data points and all 65 explanatory
variables. Figure 5 suggests that the variables sca, modcurv,
lvr and ang are the four most important explanatory
variables in predicting soil depth.
[49] Figure 6 shows the variation of mean square predic-

tion error for training and validation data sets versus model

complexity in terms of the number of input variables
including the new topographic variables. The continuous
lines in Figure 6 are from models developed using explan-
atory variables selected on the basis of RF importance only.
There is a new model for each additional input variable.
Both GAM and RF models were evaluated and Figure 6

Table 4. Groups of Explanatory Variables Created on the Basis of

the Variable Importance and the Correlation Between Explanatory

Variables

Group Number of Variables Correlation Coefficient Threshold

1 3 0.15
2 5 0.2
3 8 0.25
4 8 0.3
5 9 0.35
6 9 0.4
7 10 0.45
8 10 0.5
9 12 0.55
10 13 0.6
11 14 0.65
12 17 0.7
13 18 0.75
14 21 0.8
15 29 0.85
16 44 0.9

Figure 6. Number of input variables (model complexity) versus mean square error with explanatory
variables selected directly using importance (solid curve) and filtered by correlation (symbols) from all
candidate explanatory variables in Tables 1 and 2 (new variables included).
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reports training and validation errors separately. The sym-
bols in Figure 6 are from models developed using cross
correlation as a filter to reduce interdependence among
explanatory variables. Table 4 gives the number of variables
in each group selected in this way.
[50] In Figure 6 for both the importance selected and

correlation filtered models the training error of GAM
decreases progressively for each additional input variable,
while the validation error decreases initially and as the
model complexity continues to increase further it starts to
increase. For RF, both the training and validation errors
decrease initially and as model complexity continues to

increase they become essentially constant. This is consistent
with RF being robust against overfitting. For both GAM
and RF models the use of correlation filtered explanatory
variables resulted in lower error. While training errors are
smaller for GAM, the out of sample validation error from
the RF model is less than from the GAM model. The least
validation error for the RF model occurred with 11 corre-
lation filtered input variables. Similarly, the validation error
for GAM increases for complexity greater than 11 correla-
tion filtered variables, although validation mean square
error (MSE) at 18 and 21 input variables fluctuates slightly
below the 11 input variable MSE. Nevertheless, in our

Figure 7. Predicted soil depth versus measured soil depth
with ±2 standard error for (a) GAM and (b) RF calibration.

Figure 8. Predicted soil depth versus measured soil depth
with ±2 standard error for (a) GAM and (b) RF testing.
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judgment the point of diminishing returns has been reached
at 11 input variables for both the RF and GAM models.
Consequently we selected 11 correlation filtered explanatory
variables as representing the optimum complexity for this
data set: sca, modcurv, ang, avr, lspv, slpg, elv, sd8a, lvs,
and plncurv from Table 1 and pc1 from Table 2. Except for
pc1, which is a land cover attribute these are all topographic
attributes. The similar analysis without the new topographic
variables resulted in lowest validation error with 7 correla-

tion filtered input variables: sca, aspg, slpg, sd8a, elv, p
from Table 1 and pc2 Table 2.

4.2. Model Evaluation

[51] On the basis of the selection of 11 correlation filtered
explanatory variables above, including new topographic
variables, RF and GAM models were developed using these
variables with the full calibration set of 819 data points.
Figure 7 shows the scatterplots of GAM (Figure 7a) and RF
(Figure 7b) predicted versus the measured soil depth respec-
tively, for the calibration data. Here the results have been
transformed back into regular soil depth quantities. In
Figure 7 the diagonal (central) lines represent the 1:1 line
(predicted = observed). The two diverging dash lines, above
and below the 1:1 line, show the predicted soil depth ±2
standard errors representing 95 percent confidence intervals.
These lines diverge as a result of the Box-Cox back
transformation. Figure 8 shows similar scatterplots for the
testing data that was not used in model development.

Table 5. Comparison of NSE Values of RF and GAM Predicted

Soil Depths for out of Sample Testing Data Set

Model Testing NSE

GAM results without the new topographic variables 0.26
GAM results with the new topographic variables 0.47
RF results without the new topographic variables 0.31
RF results with the new topographic variables 0.52

Figure 9. Plots showing (a) SSURGO map unit soil depths versus measured soil depth averaged in each
map unit, (b) GAM predicted soil depth versus measured soil depth averaged in each map unit, and (c) RF
predicted soil depth versus measured soil depth averaged in each map unit.
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[52] RF and GAM models were also developed with the
full calibration set of 819 data points using the 7 correlation
filtered explanatory variables identified above that did not
include new topographic variables. Table 5 shows testing
data NSE values for GAM and RF models with (11
explanatory variables) and without (7 explanatory variables)
the new topographic variables.
[53] Examining the differences between models with and

without new topographic variables, theNSE values in Table 5
indicate that soil depth prediction using both models showed
significant improvement due to the new topographic varia-
bles. The fraction of variability explained increases from
26% to 47% for GAM and 31% to 52% for RF when the new
topographic variables are included. This represents close to a
doubling in explained variability.

4.3. SSURGO Map Unit Scale Comparisons

[54] We aggregated the GAM and RF predicted and
observed soil depths to a scale of SSURGO map units to
compare the GAM and RF model predicted soil depths with
SSURGO and observed soil depth at a consistent scale.
Figure 9 shows the scatterplots of the SSURGO (Figure 9a),
GAM (Figure 9b) and RF (Figure 9c) predicted soil depths
versus measured soil depths aggregated over the SSURGO
soil map units. Figure 9 also indicates NSE values. The
SSURGO soil depth (Figure 9a) appears unrelated to soil
depth measurements, with NSE = �3.98, even when data is
aggregated at the SSURGO map unit scale. By contrast
the GAM (Figure 9b) and RF (Figure 9c) models predict

the aggregated observed soil depths with NSE = 0.58 and
NSE = 0.61 respectively.
[55] Figure 10 compares the soil depth maps from

SSURGO, GAM and RF. The SSURGO soil depth map
divides the watershed into map units with abrupt bound-
aries. The spatial variation of soil depth with the topography
is not expressed. The GAM and RF models provide soil
depth maps at 5 m grid scale, which predict the variation of
the soil depth with the landscape. The soil depth maps from
GAM and RF predict that the ridges (convex areas) and
south facing slopes have shallower soils as compared to the
valleys (concave areas) and the north facing slopes respec-
tively. This generally agrees with observations in this area
and existing literature [Heimsath et al., 2002; Hoover and
Hursh, 1943].

5. Discussion and Conclusions

[56] Statistical models have been developed that predict
soil depth over a landscape using topographic and land
cover attributes. The variables identified as predictors
included ten topographic variables: specific catchment area
(sca), modeled curvature (modcurv), D1 flow direction
(ang), average rise to ridge (avr), longest vertical slope
position (lspv), longest vertical drop to stream (lvs), slope
(slpg), D8 slope averaged over 100 m downslope distance
(sd8a), elevation (elv), and plan curvature ( plncurv), and
one land cover variable, the first component of principal
component transformation of Landsat TM imagery. Thus,

Figure 10. Comparison of maps of soil depths (top left) from SSURGO soil database, (top right)
predicted with GAM, and (bottom) predicted with RF.
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topographic variables were found to be generally more
important than the land cover variables in predicting soil
depth for this data set.
[57] The topographic variables used included new digital

elevation model derived variables such as rise to ridge, drop
to stream, distances to ridge and stream, vertical and
horizontal slope positions, and slope position ratios. The
fraction of variability explained by both GAM and RF
predictions was increased by about 20% because of the
combined effect of the following new topographic variables
that were selected as explanatory variables: modeled cur-
vature (modcurv), D1 flow direction (ang), average rise to
ridge (avr), longest vertical slope position (lspv), and
longest vertical drop to stream (lvs).
[58] These new topographic variables represent an im-

portant contribution to the science of modeling soil depth
based on topographic information. In considering the
physical basis of these variables as predictors of soil depth,
the selection of specific catchment area (sca), modeled
(modcurv) and plan curvature (plncurv) are consistent with
literature that suggests that deeper soils occur in areas that are
concave [Heimsath et al., 2002; Hoover and Hursh, 1943].
Vertical slope position (lspv), vertical drop to stream (lvs) and
average rise to ridge (avr), quantify position on a hillslope
as predictive of soil depth. Slope variables (slpg and sd8a)
quantify relationships between soil depth and slope. The
appearance of absolute quantities, elevation (elv) and down-
slope angle (ang) as predictors, is a bit difficult to justify
physically, where we would prefer more transferable rela-
tive variables such as the slope position quantities. We
suspect that elevation is representing some slope position
effects perhaps combined with climate, while downslope
angle, which is measured counter clockwise from east dis-
criminates between north and south facing slopes, related to
local microclimate and consistent with observations of deeper
soils on north facing slopes. The land cover principal com-
ponent variable (pc1) quantifies the role played by land cover.
[59] Both GAM and RF modeled soil depths were able to

explain about 50% of the measured soil depth variability in
an out of sample test. Considering the uncontrolled uncer-
tainties due to the complex local variation of soil depth,
DEM errors and GPS reading errors, this is considered an
important improvement toward solving the need for distrib-
uted soil depth information in distributed hydroecological
modeling. A strength of this work is that the models were
developed and validated against a comprehensive data set of
measured soil depths. These models, which draw upon new
topographic information and are based on comprehensive
data, contribute to the scientific quantification of soil depth
at a refined spatial scale. This is important for spatially
distributed hydroecological models. While the soil depth
models developed have specific application to the Dry
Creek Experimental Watershed, the physical processes of
soil development in Dry Creek are representative of a broad
region with similar climate and parent material. Such data-
based approaches, while relying on statistical relationships
contribute to hydrological science involving soil depth by
bringing a measure of objectivity to the approach not
present, for example, in cited prior work that relied on
expert opinions.
[60] The root-mean-square errors (RMSE) reported in

Figure 8 and the NSE in Table 5 indicate that the RF model

is slightly better than the GAM model for predicting soil
depth at point scale in terms of these out of sample
statistical measures. However, there is some indication in
Figure 8 that the RF model underestimates the soil depth for
deep soils. For the testing data the RF model never predicts
soil deeper than about 120 cm, while soil depths up to
200 cm were observed and are predicted by the GAM
model. This discrepancy may be due to the discrete nature
of regression tree predictors that underlie the RF approach.
In choosing between whether to use a GAM or RF model,
the inability of the RF model to predict deep soils in the out
of sample test leads us to favor the GAM model for spatial
predictions of soil depth in Dry Creek Experimental Water-
shed. Both models, in our judgment provide a significant
improvement over using SSURGO data, because we found
that the soil depth extracted from the SSURGO soil data-
base was not correlated at all with the observed soil depth
when aggregated to the scale of SSURGO mapping units.
[61] The generality and transferability of this work to

other areas still remains to be tested. The fact that calibra-
tions using data from within 8 subwatersheds yielded
reasonably good predictions for the 130 testing points more
broadly distributed in the watershed gives some confidence
that this model should hold for the Boise Front. Additional
work is needed to test the approach and new explanatory
variables in other areas. Additional work is also needed to
assess the contribution from using this modeled soil depth
information in hydroecological models.
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