Failure Analysis of Geothermal Water System Components

Benjamin Herren
Kelci Lester
Robert Miner
Patrick Warren
Failure Analysis of Geothermal Water System Components

Benjamin Herren, Kelci Lester, Robert Miner, Patrick Warren
Boise State University – Department of Materials Science and Engineering

Background

The Boise Warm Springs Water District geothermal water system experienced isolated component failures, each of which forced a shutdown of the system and/or caused damage to homes. These failures preempted the components’ expected expirations and appeared to be corrosion-induced, motivating an investigation into this hypothesis and preventative measures.

Methods

- Electrochemical Tests
 - Potentiodynamic Behavior
 - Pitting was evident in braze material
 - Linear Potential
 - Alternative braze materials might be more effective

- Chemical Analysis
 - Photoluminescence
 - ICP-MS
 - Alternative methods for analysis

- Optical Microscopy
 - Scanning Electron Microscopy (SEM)
 - Energy-Dispersive X-Ray Spectroscopy (EDS)

- Failure Analysis
 - Electrochemical testing
 - Thermocycling
 - Metallography

Results

- Corrosion Behavior
 - Micromechanical behavior
 - Elemental composition

- Surface Analysis
 - XRF
 - EDX

Discussion

- Geothermal Water
 - Oxide
 - Sulfide
 - Copper

- Discussion
 - Microstructure
 - Corrosion mechanisms

Conclusions

- Failure Analysis
 - Pitting
 - Corrosion

Acknowledgements

Boise Warm Springs Water District, Del Eyrichson, Pete Miranda, Mike Hurley, Marion Lytle, Harold Ackler, Undergraduate Materials Lab, Boise State Center for Materials Characterization

References

[4] Sulfide

Images:

- Figure 1
- Figure 2
- Figure 3
- Figure 4
- Figure 5
- Figure 6
- Figure 7
- Figure 8
- Figure 9
- Figure 10
- Figure 11
- Figure 12
- Figure 13
- Figure 14
- Figure 15
- Figure 16
- Figure 17

Table:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Ecorr (milliVolts vs. Saturated Calomel Electrode)</th>
<th>EC (milliVolts vs. Saturated Calomel Electrode)</th>
<th>pH</th>
<th>SEM Analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bolt</td>
<td>Not Tested</td>
<td>Not Tested</td>
<td>6.5</td>
<td>-</td>
</tr>
<tr>
<td>Pipe</td>
<td>-6.85</td>
<td>-662.19</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>Heat Exchanger</td>
<td>-68.41</td>
<td>-86.95</td>
<td></td>
<td>Backscatter</td>
</tr>
</tbody>
</table>

Boise Warm Springs Water District, Del Eyrichson, Pete Miranda, Mike Hurley, Marion Lytle, Harold Ackler, Undergraduate Materials Lab, Boise State Center for Materials Characterization

Boise State University – Department of Materials Science and Engineering