
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

8-1-2006

A Study of Finite State Machine Coding Styles for
Implementation in FPGAs
Nader I. Rafla
Boise State University

Brett L. Davis
Hewlett Packard, Boise, ID

This document was originally published by IEEE in 49th IEEE International Midwest Symposium on Circuits and Systems, 2006. Copyright restrictions
may apply. DOI: 10.1109/MWSCAS.2006.382066

https://scholarworks.boisestate.edu
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical_facpubs
https://scholarworks.boisestate.edu/electrical
https://scholarworks.boisestate.edu/electrical
http://dx.doi.org/10.1109/MWSCAS.2006.382066

A Study of Finite State Machine Coding Styles for

Implementation in FPGAs

Nader I Rafla
Electrical and Computer Engineering

Boise State University
Boise, Idaho

nrafla@boisestate.edu

Abstract- Finite State Machines (FSM), are one of the more
complex structures found in almost all digital systems today.
Hardware Description Languages are used for high-level
digital system design. VHDL (VHSIC Hardware Description
Language) provides the capability of different coding styles
for FSMs. Therefore, a choice of a coding style is needed to
achieve specific performance goals and to minimize resource
utilization for implementation in a re-configurable
computing environment such as an FPGA. This paper is a
study of the tradeoffs that can be made by changing coding
styles. A comparative study on three different FSM coding
styles is shown to address their impact on performance and
resource utilization for the most commonly used encoding
methods for FPGA designs. The results show that a
particular coding style leads to a savings in resource
utilization with a significant performance improvement over
the others while the others pose a consistent performance
regardless of the resource utilization outcome.

I. INTRODUCTION
As with any programming language, regardless if it is a hardware
description language such as VHDL or software programming
language like C++, there will always be more than one way to
write code to accomplish the same task [1, 2]. Each language
provides several viable alternatives to the designer as to how to
accomplish a given task.

The challenge facing a developer is to efficiently utilize these
alternatives, while developing the code, within a constrained
environment to accomplish the task at hand. However, there are
no guidelines presented in the current literature as to how a
hardware designer should develop code in a specific way to
maximize performance or resource utilization when designing a
digital hardware system using VHDL [3]. In this paper, we
address this deficiency by evaluating three different methods of
coding a finite state machine using two different state
assignment-encoding schemes when implemented in an
FPGA[4].

A finite state machine is treated as a hardware module that may
have multiple inputs and can make decisions based on these
inputs over time. There may be multiple paths that the machine
can take based on the input values or transitions. The FSM

Brett LaVoy Davis
Hardware Design Enginner

Hewlett Packard
Boise, Idaho

brett.davis2@hp.com

outputs may depend on either the FSM state, often described as a
Moore FSM, or a combination of the FSM state and the state of
the inputs, described as a Mealy FSM. These are the only two
types that are considered here since they are suitable for FPGA
implementation.

II. CODING STYLES OF FINITE STATE MACHINES
There are three methods commonly used for coding a FSM:
Combined Single Process (CSP), State Separated Combinatorial
Outputs (SCO), and State Separated Registered Outputs (SRO)
[5]. In the mean time, there are several methods used to encode
the state registers within these FSMs. One-Hot, and Gray
encoding are the most common choices used by the HDL
designers targeting FPGAs [6]. A thorough discussion of the pros
and cons of these coding styles along with their applications can
be found in [7, 8]

A. Combined Single Process
This method uses a single process to control both the state
transitions and outputs. It is claimed to be the most common
method used for FSM design. An observed drawback to this
method for coding a FSM is that synthesis software has difficulty
identifying it as a finite state machine structure [9]. However, this
may be overcome by having the outputs inferred into a clocked
element, such as a flip-flop. Figure 1 shows a block diagram of
the implementation of this type.

Figure 1. Combined single process

B. State separated combinatorial outputs
This coding style uses two processes, but has all of the output
signals assigned in a combinatorial process, which infers that all

1-4244-0173-9/06/$20.00 ©2006 IEEE.
337

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

of the outputs are driven by combinatorial logic and are not
registered as shown in Figure 2.

Figure 2. State separated combinatorial output

C. State separated registered outputs
The third coding style also employs two processes, but it
provides a different method for registering the outputs. Each
output signal is first inferred as a combinatorial logic then
registered based upon the next state and not the current state as
shown in Figure 3.

Oupu Output F*MCombinatoria Registers Outs
Logic

FS Next State SteCombunatomal MemoryInus Logi

Figure 3. State separated registered outputs

III. STATE MACHINE ENCODING

There are many different methods available to encode the various
states of a finite state machine [7]. The preferred method is
entirely left up to the developer's preference. In our case,
consideration of the encoding method must be taken into account
because the type of encoding may have an impact on the target
FPGA device resources. Highly encoded state assignment such
as Gray encoding uses fewer flip-flops, but requires more
combinatorial logic to encode and decode the state. On the other
hand, One-Hot encoded state assignments use more flip-flops
because each state is assigned a flip-flop, but utilize fewer logic
resources, simplifying the decode process. Both of these
techniques are evaluated.

IV. DESIGN OF THE EXPERIMENT

For our purpose of characterization, a constant environment must
be maintained and limited to those parameters only affecting the
coding styles. Thus, certain parameters remain unchanged
throughout the evaluation process such as tool selection, tool
configuration, target device for implementation, FSM function,
and target device architecture.

Coding and implementation are conducted using the Xilinx tool
suite, ISE 5.2i [10], targeting the FPGA device XC2S600E [11].
In order to focus only on changes in the FSM, common
components are implemented separately and instantiated as
needed by the FSM. In addition, a common component
constraints file that defines the targeted device and other required
timing parameters are utilized.

To ensure that the three coding styles operated identically, a
common VHDL behavioral testbench was developed. The
testbench modeled all possible combinations of input variations
and monitored the outputs at all states. Modelsim XE 5.6b

simulation tool [12] is then used to verify that the functions of the
finite state machines developed remain the same for all tested
coding styles.

Based upon this methodology, conclusions about the resource
usage and performance of state machines can be drawn along
with their dependency on the coding style and state encoding.

V. CASE STUDY

The finite state machine designed for this evaluation controls a
unique serial protocol. The protocol consists of five signals,
three inputs and two outputs as shown in Figure 4. For
clarification, a signal name ending with an " I" indicates an input
and with an " 0" indicates an output. It is important to note that
during the assertion of both nCTS_I and nRTS_O, multiple data
byte sequences are possible.

Figure 4. Typical serial protocol operation

In order to introduce additional complexity into the state machine
design, an exception is added into the typical operation. This
exception provides a means by which the receiving entity can
signal the transmitting entity that data is ready to be sent but the
transmitting entity needs to initiate the transfer. Figure 5
provides an illustration of the exception and how it is handled.

073 06 0 D 3 2 Dl D

E>I

Figure 5. Serial protocol special case

A. State Machine Challenges
When creating the state machine to handle this protocol, the
following challenges were identified:

* SCLK_I is not a free-running clock; therefore, it could
not be used as the clock to move the state machine.
Accordingly, an additional system clock is used for the
whole system.

* nCTS I is a required input because it's de-assertion
initiates the start of time tl.

* nRTS_ and STS_U are the primary outputs that are
monitored.

* Since control is only required for nRTS_0 and STS_0,
there is no need to monitor CMD_I.

* The dynamic amount of the data transmitted (single byte
or multiple bytes) needs to be monitored.

* Active monitoring of the SCLK_I pulses is needed to
observe the state machine state transitions.

338

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

Management of timers tl, t2, and t3 is required to
control movement of the state machine.

Additional components, such as programmable timers, a FIFO,
specific counters, etc., necessary for the operation of the digital
system are also designed and maintained the same. They are not
discussed here since they are beyond the focus of this case study
and do not affect the state machine performance nor its
implementation.

With these challenges in mind, an appropriate state machine is
developed. One important item to note is that with a significantly
faster system clock than what the protocol is using, many states
will have a significant amount of idle time prior to transitioning
to the next state. This idle time must be managed such that no
state machine movement occurs. Figure 6 shows the state
diagram of the developed state machine used for controlling the
serial protocol mentioned above. Each state manages particular
signals in order to accurately depict the protocol management of
nRTS Oand STS 0.

Figure 6. Case study state machine

VI. RESULTS
In order to analyze the differences between coding styles, data is
collected from various reports generated by the Xilinx tools at
several stages of the process as shown in Figure 7.

* Synthesis Report: This report provides detailed
information as to how the HDL code is synthesized. It
provides coarse device utilization information such as
the number of flip-flops, LUTs, etc. utilized in the
design. It also provides a coarse estimate as to what the
theoretical maximum system clock speed the FSM can

operate at. Note that synthesizers assume unlimited
device resources and ideal routing availability.

* Map Report: This report provides accurate device
utilization information without timing estimates. This
step takes into account device architecture, slice
structure and CLB information.

Place & Route Report: Upon completion of the place and route
step, accurate timing information is provided. This step in the
development cycle has taken into account pin locations on the
device, internal routing delays, and CLB locations internal to the
device as well as the physical architecture of the device.

MAP Repo.rt
Gene rated

PAR Report
Gene rated

I F'

End

Figure 7. Xilinx tool suite process flow

A. Synthesis Utilization
Synthesis results are a key indicator of how the VHDL code is
inferred into the FPGA fabric. As indicated above, the
synthesizer assumes the best possible conditions, i.e. unlimited
routing, signal fan-out, and logic resources. With this in mind,
synthesis results are coarse compared to the actual resources used
after further processing.

Key resource usage indicators are found in the synthesis report
provided by the tools. These key indicators are total slice count,
total slice flip-flops used, and total 4-input LUTs used. Table 1
summarizes the data extracted from the synthesis reports. Figure
8 presents these four indicators as a percentage of change from
the median value of each category, allowing us to view the data
in a manner illustrating how these indicators relate to each other.

Important items concerning the synthesis results are:

* Less than +/- 4% variation from the median values of
total slices and 4-Input LUTs were evident across all
combinations of coding styles and state assignment
encoding.

* Total slice usage is driven by the total number of 4-
Input LUTs needed, rather than flip-flops.

339

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

* Fewer flip-flops were needed when the state assignment
encoding method was Gray, but in using this method the
number of LUTs needed increased.

TABLE I. SYNTHESIS UTILIZATION RESULTS

One Hot Encoding Gray Encoding

Slices 1244 1242 238 1248 1243 1247
SliceFF | 90 | 77 89 79 66 | 78

| 4 input LUT | 467 464 |451 477 |467 | 47

Figure 8. Synthesis resource utilization

B. MAP Utilization
MAP report results are similar to those found in the synthesis
report, namely total slice count, total slice flip-flops used, and
total 4-input LUTs used. Table 2 provides the data extracted
from the MAP reports and Figure 9 presents these four indicators
as a percentage of change from the median value of each
category, allowing us to view the data in a manner illustrating
how each indicator relates to each other.

Important items concerning the MAP results are:

* Less than +/- 4% variation from the median values of
Total Slices and 4-Input LUTs is evident across all
combinations of coding styles and state assignment
encoding.

* When silicon architecture is taken into consideration,
the resource numbers do change, but they also track the
synthesis numbers.

TABLE II. MAP UTILIZATION RESULTS

Oned Hot Encoding j Graiy Encoding

Figure 9. MAP resource utilization

C. Place and Route (PAR) Results
It is desired to evaluate performance based on how the logic is
inferred into the device. An additional variable, clock period, is
selected, added and varied, allowing the performance of the
system to be affected.

By setting the system clock, net CLK I, to a particular period
length as a global constraint, the PAR process attempts to ensure
that it will work at the associated frequency. In a synchronous
design, the global constraint forces the PAR algorithms to try and
route signals such that the time between the output of a FF to the
input of the next FF is equal to or less than this constraint. A
range of timing constraints was chosen such that the PAR process
would continually improve and try to route the logic better. The
constraint value varies between 8.5 ns to 30 ns.

Table 3 provides the timing results for the three coding styles
using One-Hot state machine encoding. All values are in nano-
seconds. The initial constraint of 30 ns provided a true starting
point for the range of values. With the constraint set at 30.00 ns,
the PAR process was able to produce results significantly better
than what the constraint desired. Each subsequent constraint
value was chosen to improve the previously obtained results. As
the constraint continued to get smaller, the PAR process was
pushed to improve its results until the constraint could not be
met. Figure 10 is a graphical representation of the data shown in
Table 3. All of the coding styles essentially had the same
performance. The last constraint value where all coding styles
met the constraint was 9.00 ns.

TABLE III. ONE-HOT ENCODING PAR TIM1NG

Constraint C

30.00 14.78 13.52 15.32

16.00 13.09 12.47 12.19

14.00 10.76 10.51 11.94

12.00 11.11 11.37 11.27

10.00 9.94 9.94 9.99

9.00 8.98 8.84 8.92

8.50 8.78 8.68 9.37

340

MAP Reports: Resource Utilization

20.00% -Is15.00%r
10.00% > l 4 input LUTs

U Slices

Xc0 3 X0m DFip Flops
-50.00%- x C i Style

-15.00%

Coding Style

Synthesis Reports: Resource Utilization
20.00%l

15.00% | -

| .< 5.00% l l l | 1~~~~~~E 4 input LUTs1

I 0 IE1 1 _ I I*Slices+ -5.00%l

|-10.00% 0e 0 X Flip Flops

15.C Style

-20.00%l

| ~~~~~~CodingStylel

Slices 284 282 278 286 282 287

SliceFF 80 73 83 69 62 70

4 input LUT 427 425 412 437 428 434

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

One Hot Encoding PAR timing

16.00

15.00

14.00

S 13.00

" 12.00

w 11.00

a. 10.00

9.00

8.00

-4Combined Single Process
FSM

State Separated FSM -

Combinatorial Outputs

State Separated FSM-
Registered Outputs

30.00 16.00 14.00 12.00 10.00 9.00 8.50

Requested Constraint (ns)

Figure 10. PAR timing for One-Hot encoding

Table 4 provides the timing results for the three coding styles
using Gray encoding. All values are in nanoseconds using the
same constraint as in the One-Hot encoding method.

Unlike the One-Hot encoding, there was more variance in the
results between the three coding styles. Figure 11 utilizes the
data from Table 4 to illustrate the performance for each coding
style using Gray encoding. When comparing the two results, the
State Separated Registered Outputs coding style stopped meeting
the constraint at 10.00 ns. The Combined Single Process coding
style continued meeting the constraint until it was 8.50 ns.
Hence, the Combined Single Process coding style performed
better.

TABLE IV. PAR TIMING FOR GRAY ENCODING

Constraint CSP SCO SRO

30.00 15.56 14.06 13.68

16.00 12.02 12.07 13.42

14.00 10.93 11.33 13.41

12.00 10.49 10.47 11.82

10.00 9.63 10.02 11.10

9.00 8.99 9.13 11.44

8.50 8.72 10.31 12.27

Gray Encoding PAR Timing

16.00

15.00

14.00-

., 13.00-
, 12.00

w 11.00-

a 10.00-
9.00

8.00

Combined Single Process
FSM

State Separated FSM-
Combinatorial Outputs
State Separated FSM-
Registered Outputs

30.00 16.00 14.00 12.00 10.00 9.00 8.50

Requested Constraint (ns)

Figure 11. PAR timing for Gray encoding

VII. CONCLUSIONS
Resource utilization for any HDL design implemented in FPGAs
is an important factor that can affect design performance.
Resources are divided into two groups, combinatorial, in terms of
LUTS and slice counts, and sequential in terms of flip-flops.
Analyzing the results we can conclude that the State Separated
Registered Outputs (SRO) coding style utilized fewer LUTs and
overall slices than the other two coding styles with a slight
increase in the number of flip-flips. Since it is always
recommended that FPGA outputs be registered, this increase in
flip-flop count is necessary and can be considered as a design
requirement.

Performance is subjective in nature. With regards to this study,
the determination as to which coding style performs the best is
based on how fast the system clock can operate without adverse
affects on the overall function. With this in mind, performance
variations among the coding styles were observed as follows: The
State Separated Combinatorial Outputs (SCO) implemented
using One-Hot encoding, achieved the best performance with a
system clock of 8.68 ns, as indicated in Table 3. This method is
not a recommended implementation due to the outputs being
driven by combinatorial logic. Therefore, the Combined Single
Process (CSP) implemented using Grey encoding, achieved the
best performance with a system clock of 8.72 ns, as indicated in
Table 4. This method is the recommended implementation due to
the outputs being driven by registered logic.

VIII. REFERENCES

[1] IEEE Standard VHDL Reference Manual, IEEE Standard 1076,
1987 and 2001.

[2] H. Sutter, and A. Alexanderscu, C++ Coding Standards, Addison
Wesly, 2005.

[3] P. Robinson, Tai-Chi Lee and E. Henne, Erik, "Framework for
executing VHDL code on FPGA", Proceedings of the
International Conference on Parallel and Distributed Processing
Techniques and Applications, PDPTA'04, v3, PDPTA'04, 2004, p
1296-1299.

[4] K. Kuusilinna, V.Lahtinen, and J.Saarinen, "Finite State Machine
Encoding for VHDL Synthesis," IEE Proc.-Comput. Digit. Tech,
Vol 148, No. 1, January 2001.

[5] Ben. Cohen, VHDL Coding Styles and Methodologies, Second
Edition, Kluwer Academic Publishers, Boston, MA, 1999

[6] Peter J. Ashenden, The Designer's Guide to VHDL, Second
Edition, San Francisco, CA, Morgan Kaufmann Publishers, 2001.

[7] Wen-Tsong Shiue "Novel state minimization and state assignment
in finite state machine designs", Integration, the VLSI Journal, v
38, n 4, April, 2005, p 549-570.

[8] Stephen L. Wasson, "High-Speed State Machine Design",
Integrated System Design Magazine, July 1995.

[9] Richard Sandige, "Synchronous State Machine design
methodologies with VHDL and implementations using CAD
tools", Proceedings of the IASTED International Conference on
Modeling, Simulation, and Optimization, 2003, p 29-32

[10] ISE5.2 software manual, Xilinx Inc.,
http://toolbox.xilinx.com/docsan/xilinx5/pdf/ manuals.pdf

[11] Spartan-IIE data sheet, dsO77.pdf, Xilinx inc, www.xilinx.com
[12] Modelsim XE 5.6b User's guide and software manuals, Mode

Technology,
http://www.model.com/fpga/documents/ xilinxfnd.pdfModelsim

341

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 17:40 from IEEE Xplore. Restrictions apply.

	Boise State University
	ScholarWorks
	8-1-2006

	A Study of Finite State Machine Coding Styles for Implementation in FPGAs
	Nader I. Rafla
	Brett L. Davis

	tmp.1243462720.pdf.a6k4N

