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Abstract  
  
• Background and aims Lomatium dissectum (Apiaceae) is a perennial, herbaceous plant of  

wide distribution in Western North America.  At the time of dispersal, L. dissectum seeds are  

dormant and have underdeveloped embryos.  The aims of this work were to determine the 

requirements for dormancy break and germination, to characterize the type of seed  

dormancy, and to determine the effect of dehydration after embryo growth on seed viability 

and secondary dormancy.   

• Methods The temperature requirements for embryo growth and germination were  

investigated under growth chamber and field conditions.  The effect of GA3 on embryo 

growth was also analyzed to determine the specific type of seed dormancy.  We tested the 

effect of dehydration on seed viability and induction of secondary dormancy in seeds where  

embryos had elongated about four fold their initial length.  Most experiments examining the  

nature of seed dormancy were conducted with seeds collected at one site in two different  

years.  To characterize the degree of variation in dormancy breaking requirements among 

seed populations, we compared the stratification requirements of seeds collected at eig 

different sites.     

• Key results Embryo growth prior to and during germination occurred at temperatures 

between 3 and 6 °C and was negligible at stratification temperatures of 0.5 and 9.1 °C. Seeds 

buried in the field and exposed to natural winter conditions showed similar trends.  

Interruption of the cold stratification period by eight weeks of dehydration decreased seed  

viability by about 30% and induced secondary dormancy in the remaining viable seeds.   

Comparison of the cold stratification requirements of different seed populations indicates that 



 3

seeds collected from moist habitats have longer cold stratification requirements that those 

from semiarid environments.  

• Conclusions Seeds of L. dissectum have deep complex morphophysiological dormancy.  

The requirements for dormancy break and germination reflect an adaptation to trigger 

germination in late winter. 

 

Key words: Apiaceae, cold stratification, Lomatium dissectum, morphophysiological  

dormancy, secondary dormancy, seed germination. 

  
 
 
INTRODUCTION 

Lomatium dissectum (Nutt.) Mathias and Constance (fernleaf biscuitroot) is a 

perennial plant within the Apiaceae family.  This species is native to Western North America, 

where it has a wide distribution and occupies habitats with dissimilar characteristics 

(Hitchcock and Cronquist, 1973).  There are two varieties of L. dissectum, L. dissectum var. 

dissectum and L. dissectum var. multifidum (Nutt.) Mathias & Constance (USDA Plants 

Database).  Lomatium dissectum var. dissectum is more common west of the Cascade 

Mountains in areas with a mesic climate and average annual precipitation of more than 1000  

mm.  In contrast, L. dissectum var. multifidum is more frequent east of the Cascade 

Mountains in semiarid habitats, where it is found at elevations ranging from 800 to 2200 m.  

Independent of variety or location, L. dissectum flowers in early spring and produces fruits 

(schizocarps) that ripen in early summer (Hitchcock and Cronquist, 1973).  At the time of 

dispersal, L. dissectum seeds (mericarps-fruits) are dormant and have underdeveloped, linear 
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embryos.  These embryos are approximately one eighth of the seed length and increase  

several-fold in length inside the seed before germination.   

The presence of underdeveloped embryos is common among Apiaceae species.  

However, the type of dormancy and the conditions that promote embryo growth and 

germination vary among species within this family.  Types of seed dormancy found within 

the Apiaceae include morphological and morphophysiological dormancy (MPD).   Seeds of  

Pastinaca sativa and Conium maculatum exhibit morphological dormancy (Baskin and 

Baskin, 1979; 1990b). In these species, favourable conditions of moisture and temperature  

lead directly to embryo growth and ultimately to germination (Baskin and Baskin, 2004).   

More often species with underdeveloped embryos have additional requirements to break  

dormancy.  These species are considered to have MPD; which is divided into eight types 

depending on the temperature requirements for dormancy break and embryo growth, and the  

ability of gibberellic acid (GA3) to overcome dormancy (Baskin and Baskin, 2004).    

At least, four types of MPD have been reported in the Apiaceae.  Seeds of 

Chaerophyllum tainturieri and C. procumbens have nondeep simple MPD (Baskin and  

Baskin, 1990a; Baskin et al., 2004).  Warm moist conditions during summer first break 

physiological dormancy, while warm moist conditions during the fall are associated with  

embryo growth and germination.  Among species that germinate during the spring, some  

such as Osmorhiza longistylis and O. claytonii have nondeep complex MPD; they require 

warm stratification followed by cold stratification to break dormancy (Baskin and Baskin, 

1984; 1991).  Other species including Osmorhiza depauperata and Chaerophyllum temulum 

have deep complex MPD; they only require cold stratification (Walck and Hidayati, 2004;  

Vandelook et al., 2007a).  In species with deep complex MPD, dormancy loss and embryo 
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growth occur during cold stratification and GA3 cannot replace the requirement for cold 

stratification (Baskin and Baskin, 2004).  Recently, non-deep simple MPD that is broken by 

cold stratification has also been reported within the Apiaceae (Vandelook et al., 2007b).  

Vandelook et al (2007b) observed that seeds of Selinum carvifolia and Angelica sylvestris 

required cold stratification to break physiological dormancy, while embryo growth and 

germination occurred under mild temperatures.  

Various environmental conditions may play a role in regulating dormancy of L. 

dissectum seeds.  Under natural conditions, these seeds are exposed to dry and warm 

environments during the summer, mild temperatures and moist conditions during the fall and  

chilling temperatures during the winter.  Seeds then germinate during the late winter or early 

spring.  The effects that the various environmental conditions have on seed dormancy are 

unclear.  The dry summer period could contribute to dormancy loss by a process known as  

dry after-ripening (Allen and Meyer, 1998; Baker et al., 2005).  In addition, the mild and  

moist conditions during the fall could be considered a form of warm stratification that may 

favour embryo growth (Baskin and Baskin, 1998).  Alternatively, summer and fall conditions 

may not affect the dormancy status of the seeds.  Under this scenario, embryo growth and  

dormancy loss would occur only during the winter.  

Nondormant seeds of some species can re-enter dormancy if environmental  

conditions are unfavourable for germination (Hilhorst, 1998; Krebreab and Murdoch, 1999).   

This type of dormancy is known as secondary dormancy and it is important in the formation  

of persistent seed banks (Baskin and Baskin, 1998).  Depending on the species, several  

factors can induce secondary dormancy, including temperature extremes, hypoxia, and water 

stress (Baskin and Baskin, 1980; Kebreab and Murdoch, 1999; Momoh et al., 2002; Baker et  
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al., 2005).  In L. dissectum, seeds may not complete their stratification requirements during 

the winter or they may experience unfavourable germination conditions in the spring.  These 

seeds, particularly those in semiarid regions, would then encounter the dry summer period.   

The fate of these seeds is unclear; dehydration may induce secondary dormancy or  

alternatively reduce seed viability.  Although few studies indicate that desiccation induces  

secondary dormancy, this effect was observed in Carica papaya and Panicum virgatum seeds  

(Wood et al., 2000; Shen et al., 2001).  Moreover, for Panicum virgatum desiccation  

reversed the effect of cold stratification on breaking dormancy.  Also, in Anemone nemorosa,  

a species with morphological dormancy, loss of desiccation tolerance occurs at late stages of 

embryo growth inside the seed (Ali et al., 2007).  Similar phenomena may occur in L. 

dissectum.    

The aims of this study were to determine the type of seed dormancy in L. dissectum,  

to analyze the temperature requirements for embryo growth and germination, and to 

investigate the effect of dehydration on the induction of secondary dormancy.  We conducted  

most of the experiments with seeds of L. dissectum var. multifidum collected at one site.  In 

addition, we investigated the cold stratification requirements of three other populations of  

var. multifidum and four populations of L. dissectum var. dissectum.  Analysis of these 

populations allowed us to gain an insight into the variation in dormancy breaking 

requirements of plants growing in different habitats (Allen and Meyer, 1998).    
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MATERIALS AND METHODS  

Seed collection and preparation  

Unless otherwise indicated, seeds (mericarps) of L. dissectum var. multifidum were  

collected near Harper, Oregon, USA (43° 33’ N, 117° 47’ W) during June 2005 and 2007.  

We collected the seeds at the point of natural dispersal, when they were dry on the plants. 

Seeds were rinsed with running water and surface sterilized by soaking them in 70% ethanol  

for 1 min and 0.5% sodium hypochlorite for 30 min.  Subsequently, we rinsed the seeds with  

deionised water and dried them to a water content of about 8%.  The dry seeds were stored in  

dark bottles at room temperature (about 21 °C) until used.  The experiments were conducted  

with seeds that were in storage from two weeks to four and half months.  For a particular 

experiment, however, the seeds were of the same age.  Preliminary experiments suggested  

that storage for up to one year does not affect seed dormancy status.  Seeds that were cold  

stratified two weeks after harvest showed a time course of embryo growth similar to that of  

seeds stored for one year (data not shown).  Prior to use, the seeds were treated with the  

fungicide Captan at approximately 0.01 g Captan g-1 of seeds.   

 

Temperature requirements for embryo growth and germination   

The effect of temperature on embryo growth and germination was analyzed in three 

separate experiments using seeds collected in 2005.  The first experiment was aimed at 

determining the effects of warm and cold stratification on embryo growth. Approximately  

two weeks after harvest, the seeds were placed on germination paper (grade 632, Hoffman  

Manufacturing Inc., Jefferson, OR) moistened with deionised water inside clear plastic boxes  

(10 x 10 x 4 cm).  We placed fifty seeds in each box, covered the boxes with lids, and  
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maintained the paper moist throughout the stratification.  The experiment consisted of a  

completely randomized 4 x 7 factorial combination of warm stratification at 20 °C 

(exposures times of 0, 2, 4, and 6 weeks) followed by cold stratification at 5 °C (exposures  

times of 0, 2, 4, 6, 8, 10, and 12 weeks).  Four boxes were prepared for each treatment  

combination.  The growth chambers provided a 12 h photoperiod with fluorescent lamps that  

supplied 35 μmol m-2 s-2 PAR.  At the end of each treatment, we excised the embryos from  

the seeds and measured their lengths through a dissecting microscope.  We only measured  

the embryo length of ungerminated seeds.  Following germination, the embryos elongated  

very rapidly.  Inclusion of those measurements would have overestimated the embryo growth  

that occurred inside the seed.  In situations where the embryos just appeared to emerge from  

the seeds, their lengths ranged between 8 and 10 mm.  

A second experiment was conducted to analyze the distribution of embryo growth 

during cold stratification.  Three months after harvest, we prepared five boxes with 100 seeds  

per box.  After 0, 2, 4, 6, 8, 10, 12, and 14 weeks of cold stratification at 4 °C, ten  

ungerminated seeds were taken from each of the five replicate boxes.  We used these seeds to  

measure the lengths of the whole embryo, the embryo axis and cotyledons, and then calculate  

the embryo axis: cotyledon ratio.     

The third experiment was aimed at determining the range of temperatures under  

which embryo growth and germination can occur.  Four months after harvest, we prepared 60  

boxes with 60 seeds per box.  Fifteen boxes were placed in each of four germination  

chambers at temperatures of 0.5 ± 1.5 (mean ± s.d.), 3.4 ± 0.4, 5.5 ± 0.2, and 9.1 ± 0.7 °C.   

Five boxes were used to measure embryo growth and ten to measure germination.  For each 

temperature and retrieval time (4, 6, 8, 10, and 12 weeks), ten ungerminated seeds were taken  
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from each of the five replicate boxes and the embryo length measured as described 

previously.  Similarly for each temperature and at weekly intervals, we counted and  

discarded germinated seeds in each of ten replicate boxes.  Germination was recorded at 

radicle emergence (~2 mm) and was monitored for a period of 30 weeks.  The cumulative 

germination time courses were used to estimate the final germination and the mean  

germination time (MGT).  The values of final germination simply represent the number of  

seeds that germinated during the 30 weeks in the growth chambers.  The mean germination 

time was estimated as MGT= ∑1
i ni.ti /N; where ni is the number of seeds that germinated  

within consecutive intervals of time, ti is the time between the beginning of the test and the  

end of a particular interval of measurement, and N is the total number of seeds that  

germinated (Hartmann and Kester, 1983). 

   

Effect of GA3 on embryo growth  

The effect of GA3 on embryo growth was investigated in seeds collected in 2007,  

which have been in storage for approximately three months.   We tested four concentrations  

of GA3 (0, 0.03, 0.3, and 3 mM) at two temperatures (4 and 12 °C) for a total of eight 

treatments.  Gibberellic acid was dissolved in deionised water and the pH adjusted to 6.5  

with 0.1-1.0 mM KOH.  Fifty seeds were placed on germination paper and 15 ml of water or 

GA3 solution were added per box.  Each treatment was replicated four times.  Embryo  

lengths of ten ungerminated seeds from each box were measured after 4, 6, 8, 10, and 12 

weeks.   

 

Desiccation tolerance and induction of secondary dormancy in cold stratified seeds  
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At the time of dispersal, L. dissectum seeds have embryos that tolerate dehydration.  

The seeds are dry at the time of dispersal and can be stored dry for prolong periods without a  

decrease in viability (data not shown).  After 8 to 10 weeks of cold stratification, the seeds  

have embryos that are several times their initial size.  The effect of dehydration on seed 

viability and dormancy status of elongated embryos was tested using the 2007 collection with 

seeds that have been in storage for two months.  We prepared ten boxes with 100 seeds per  

box.  These seeds were moistened and placed in a germination chamber at 4 °C for 10 weeks. 

Subsequently four boxes were maintained moist at 4 °C, while the seeds in the other boxes  

were dried at room temperature to a water content of about 8%.  The dried seeds were stored  

at room temperature for 8 weeks; which approximates the period that seeds may remain dry  

during the summer in semiarid areas of western Oregon and southern Idaho.  The seeds were  

then rehydrated and transferred to a germination chamber at 4 °C.  Germination was 

monitored at weekly intervals for an additional 20 weeks on six replicate boxes with 70 to  

100 seeds per replication.  In addition, we monitored the viability of the embryos prior to 

dehydration, immediately following rehydration, and at the end of the experiment in the same  

batch of seeds used to measure germination.  Viability was determined by the tetrazolium  

chloride test.  Ten ungerminated seeds were taken from each of the six replicate boxes.   

Embryos were removed from the seeds and incubated for 12 h in solutions containing 0.1%  

tetrazolium chloride in phosphate buffer saline (Hartmann and Kester, 1983).  We incubated  

the embryos in the dark at room temperature.  The development of red colour throughout the  

embryo was taken as an indication that the seeds were viable.  

  

Embryo growth and germination under field conditions  
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To analyze embryo growth and germination under natural conditions, we conducted two field  

experiments.  The first was started in November 2005 and the second in November 2007  

using seeds collected during the previous spring.  The seeds were placed in the field in 

November rather than after harvest to avoid seed molding during early fall.  Seeds were 

cleaned as described earlier and placed into nylon mesh bags.  Sixty seeds were placed into  

each bag at the bags were buried at a depth of 2-5 cm in experimental plots at the Idaho 

Botanical Garden (Boise, Idaho, USA, 43° 36’ N, 116° 13’ W).  Twenty-four bags were 

buried into one of ten plots, which were separated by plastic garden dividers.  Thermocouples  

and moisture probes (Echo 5 and Echo 20, Decagon Devices, Inc. Pullman, WA) were buried  

at the plots at a depth of 2 –7 cm.  Temperature and soil moisture was monitored at hourly 

intervals.  To relate the values of soil moisture to the water potential of the soil, we 

determined the moisture release curve of the soil as described by Kursar et al., 2005.  The  

moisture release curve was estimated from the average of five soil samples.  Once a month,  

one seed bag from each plot was collected and taken to the laboratory.  From each bag, 10 

ungerminated seeds were used to measure embryo length.  Germination that occurred in situ 

was determined by counting the number of seedlings or the number of seeds that were empty  

and had a slit at the site of radicle emergence.  This second approach was followed because  

seedlings left in the bags during late spring dried out and it was difficult to determine  

germination by counting the number of seedlings.  For the experiment started in 2005, some 

seeds were left in the field over the summer.  On June 29, July 25, and October 1, 2006, we 

collected ten bags of seeds and determined the viability of the ungerminated seeds by the  

tetrazolium chloride test as previously described.  
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Stratification requirements of different seed populations 

We collected seeds for four populations of L. dissectum var. dissectum and for four 

populations of L. dissectum var. multifidum during the spring of 2007.  Seeds of L. dissectum  

var. dissectum were collected at four sites at the Willamette Valley, Oregon, USA.  The four  

sites were: Adair 1 (44° 48’ N, 123° 14’ W; 81 m elevation), Adair 2 (44° 40’ N, 123° 13’  

W; 86 m), Buell 1 (45° 2’ N, 123° 28’ W; 117 m), and Buell 2 (45° 1’ N, 123° 24’ W; 178  

m).  Seeds of L. dissectum var. multifidum were collected at Prairie, Oregon (43° 31’ N, 115°  

58’ W; 1287 m elevation); Harper, Oregon (43° 33’ N, 117° 47’ W; 1347 m); Fairfield, Idaho  

(43° 10’ N, 114° 40’ W, 1700 m); and Moore’s Mountain, Idaho (43° 47’ N, 116° 5’ W; 

2200 m).  For each site, we prepared ten boxes with 60 seeds per box.  The boxes were 

incubated at 4 °C and germination was measured at weekly intervals for a period of 28  

weeks.  With the seeds collected at the lowest elevations, Adair 1 and Adair 2, we also tested 

germination at higher temperature.  These seeds were first placed at 4 °C for 12 weeks and  

then some seeds were kept at this temperature while others were exposed to a daily (12/12 h) 

alternating temperature regimen of 5/15 °C. 

  

Statistical analysis  

All experiments were analyzed using the MIXED procedure in SAS 9.1 (SAS 

Institute Inc., Cary, NC).  When needed, different variances were modelled into the MIXED  

procedure to allow for unequal variance between treatments (Littell et al., 1996).  For the  

experiment involving the analysis of warm and cold stratification on embryo growth, fixed  

factors in the analysis were warm and cold stratification, and the interaction of these factors.  

In the experiment to test the effect of GA3 on embryo growth, fixed factors were GA3, 
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temperature, and the interaction between GA3 and temperature.   All the other experiments 

had only one fixed factor: site for the comparison of the cold stratification requirements of 

different populations or temperature for the analysis of the effect of various temperatures on  

embryo growth and percent germination.  For the field experiment, we also compared 

changes in embryo length and percent germination over time.  In this case, time was the fixed  

factor.  The significance of pairwise differences between treatment means was evaluated at P 

< 0.05, using a Tukey-Kramer adjustment for multiple comparisons.  
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RESULTS 

Temperature requirements for embryo growth and germination  

Prior to stratification, the average embryo length was 1.35 ±0.03 mm, approximately 

15% of the seed length.  Neither warm stratification at 20 °C nor the interaction between 

warm and cold stratification had an effect on embryo growth.  In contrast, cold stratification 

at 5 °C had a significant effect on embryo length (P < 0.0001); this was not affected by prior  

warm stratification periods (Fig. 1).    

During 14 weeks of cold stratification, the embryo length increased approximately  

seven fold to 7.4 ± 0.4 mm (Fig. 2a) due to elongation of both the embryo axis and the  

cotyledons.  Elongation, however, was more rapid in the cotyledons, which lead to a decrease 

in the embryo-axis to cotyledon ratio from 0.67 ± 0.04 to 0.35 ± 0.04 during the 14 weeks of  

stratification (Fig. 2 a, b).    

 Further analysis of the effect of temperatures below 10 °C on embryo length indicated  

that small differences in temperature can markedly affect embryo growth.  After 6 weeks of  

incubation, seeds at 0.5 or 9.1 °C had embryos that were shorter than those at 3.4 and 5.5 °C 

(Fig. 3).  This difference remained after 12 weeks of stratification (Fig. 3) when seeds at 0.5 

and 9.1 °C had embryo lengths of 4.0 ±0.8 and 3.7 ±0.6 mm, respectively compared with 7.5  

mm at 3.4 or 5.5 °C.  

Continued incubation at 3.4 and 5.5 °C resulted in germination, albeit to different  

extents.  The final germination was higher at 3.4 °C (87%) than at 5.5 °C (64%) (Fig. 4). In 

addition, the MGT at 3.4 °C (13.0 weeks) was shorter than at 5.5 °C (15.5 weeks).  Thus, 

germination occurred more rapidly at 3.4 than at 5.5 °C, even though embryo elongation was  
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similar at these temperatures.  Germination at 3.4 and 5.5 °C was also higher than at 0.5 and  

9.1 °C where few seeds germinated (Fig. 4).    

  

Effect of GA3 on embryo growth at 4 and 12 °C 

Embryo growth was higher at 4 than at 12 °C and GA3 did not substitute the 

requirement for low temperatures.  At 12 °C, embryo elongation was minimal and no  

differences were observed between seeds incubated in water and those incubated in GA3  

(Fig. 5).  At 4 °C, the elongation of the embryo was similar in water and in 0.03 and 0.3 mM 

GA3, while 3 mM GA3 delayed embryo growth.  Furthermore, seeds incubated in 0 to 0.3 

mM GA3 at 4 °C had germination percentages of 45 ±5.3 and 72 ±5.2% after 10 and 12  

weeks, respectively.  Seeds incubated in 3 mM GA3 at 4 °C showed much lower germination,  

0 and 12 ± 5 % after 10 and 12 weeks, respectively.  No germination was observed in seeds 

incubated at 12 °C.  

  

Desiccation tolerance and induction of secondary dormancy in cold stratified seeds  

For seeds that were cold stratified for 10 weeks, dehydration caused a decrease in  

seed viability from 96 ± 3 to 61 ± 7 % (Fig. 6).  The seeds that survived the dehydration 

treatment did not germinate after rehydration, but began to germinate after 7 weeks of cold- 

moist conditions.  The final germination was, however, much lower than in the control seeds;  

33 ±3 and 97 ±3 % for the dried and control seeds, respectively (Fig. 6).  The lower  

germination of the dried seeds was not entirely due to a loss of viability.  Of the seeds that  

had not germinated, 29 ±9 % remained viable.  These seeds appeared to have entered a very  

deep dormancy that was not broken by 22 weeks of cold stratification.  



 16

  

Embryo growth and germination under field conditions  

For seeds buried on November 18, 2005, minimal embryo growth occurred during the 

first month in the field (Fig. 7a).  This coincided with a period when average daily soil  

temperatures largely remained between -6 and 2 °C (Fig. 7b).  The second month in the field  

was the period with the largest increase in embryo length; the embryos grew from 1.44 ±0.03  

to 4.5 ±0.4 mm (Fig. 7a).  During this time, the predominant temperatures were between 0 

and 6 °C and the soil had high moisture content, in general above 10% (-0.12 MPa; Fig. 7b).   

Growth of the embryo continued until March 2, 2006, when the average embryo length was  

6.4 ±0.2 mm.  At this time, 31 ±10 % of the seeds had germinated (Fig. 7a).  We also  

recorded germination on March 17, April 21, and June 2, 2006; the values recorded were 48  

±8, 60 ±12, and 50 ±8 %, respectively (Fig. 7a).  Although these percents were somewhat  

higher than that recorded on March 2, the differences were not statistically significant.  This 

suggests that little germination occurred during April and May.  Similarly, no increase in  

germination was observed for the seeds that were collected on June 29, July 25, and October  

1; which had germination percentages ranging from 42 to 52 %.  Of the seeds that did not  

germinate by the beginning of the summer (June 29, 2006), 81 ± 3 % were viable.  One  

month later this percent declined to 52 ±7 % and further declined to 30 ±7% by the beginning  

of the fall.    

For the second field experiment that started on November 2007, the results were  

overall similar to those described above. Embryo growth and germination occurred while the 

average daily soil temperatures were below 5°C (Fig. 8).  There were, however, some  

differences in the time course of embryo growth and germination.  In the 2007 experiment,  
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the embryos reached lengths of about 6 mm one month earlier than in the 2005 experiment.   

Similarly, germination occurred sooner in the 2007 experiment and the final germination was  

about 30% higher than in the 2005 experiment.   

 

Stratification requirements of different seed populations  

Like the seeds collected at Harper-Oregon, seeds collected at other sites germinated at 

a low temperature (~ 4 °C).  However, there were differences in the cold stratification 

requirements of the various populations.  Seeds of L. disssectum var. multifidum from the  

intermediate elevations (1287, 1347, and 1700 m) began to germinate after 8 weeks (Fig. 9).   

In contrast, seeds from Moore’s Mountain (2200 m) and seeds of L. dissectum var. dissectum  

began to germinate after 10 weeks.  The MGT for seeds of L. dissectum var. multifidum  

collected at intermediate elevations were between 10.5 and 11 weeks, which were  

significantly shorter than those of L. dissectum var. dissectum seeds (14.4 to 16 weeks).  The 

seeds collected at the highest elevation (2200 m) had an intermediate MGT of about 13  

weeks.  The longer time to germination for L. dissectum var. dissectum seeds did not appear  

to be attributed to a negative effect of cold temperatures on germination.  Seeds of L. 

dissectum var. dissectum collected at Adair 1 and Adair 2 were placed at 4 °C for 12 weeks  

and then some seeds were kept at this temperature while others were exposed to a daily  

(12/12 h) alternating temperature regimen of 5/15 °C.  The final germination of seeds 

exposed to the alternating temperatures was 55 to 60% lower than those maintained at a 

constant temperature of 4 °C.  
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DISCUSSION 

At the time of dispersal, L. dissectum seeds have underdeveloped embryos with an 

embryo to seed length ratio of about 0.15.  Before germination, the embryos elongated  

between five and seven fold over several weeks of cold stratification.  Low temperatures also  

favour germination, since we observed the highest rate of germination in seeds maintained at  

3.4 °C.  In contrast, germination was negligible for seeds incubated at 9.1 °C.   Warm  

stratification breaks dormancy in many species with morphological or MP dormancy (Baskin  

and Baskin, 2004).  This phenomenon, however, was not observed in L. dissectum.  The  

requirement for a long period of cold conditions for embryo growth and dormancy break  

indicates that L. dissectum seeds have complex MPD.  Furthermore, GA3 did not replace the  

cold stratification requirement demonstrating that the seeds had deep complex MPD (Baskin  

and Baskin, 2004).  To our knowledge, this is the first report describing the type of dormancy  

in a species in the Lomatium genus, a genus of 81 species all native to middle and western 

North America (USDA Plants Database).   

For seeds with MPD, little is known about the effect of interruptions in embryo  

growth on the dormancy status of the seeds.  Pioneer work by Stokes (1952) showed that in 

Heracleum sphondylium interruption of the cold stratification period by transferring the seed  

to room temperature does not induce secondary dormancy.  In Stokes study, however, the 

effect of dehydration on secondary dormancy was not investigated.  Various species with 

MPD germinate over several years (Hawkins et al., 2007), which suggests that they may re-

enter dormancy under unfavourable conditions.  We analysed this possibility in L. dissectum 

by drying the seeds after 10 weeks of cold stratification.  Drying either damaged the embryo  

as reflected by the decrease in seed viability or significantly extended the cold stratification  
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period required for germination.  The latter observation indicates that in some seeds  

dehydration triggered secondary dormancy, suggesting that L. dissectum seeds have the  

potential to form a persistent soil seed bank.  In addition, under field conditions a fraction of 

the seeds that did not germinate during the first spring remained viable after experiencing  

dehydration over the summer.  Thus, L. dissectum appears to have several mechanisms that  

contribute to population persistence including resprouting from their large root crowns and  

germination from seeds of various ages.    

Among species with deep complex MPD, variations exist in the time course of 

embryo growth, the effect of warm stratification on embryo growth at cold temperatures, and  

the optimum temperatures for embryo growth and germination.  For example, seeds of  

Osmorhiza aristata and Chaerophyllum temulum show a delay between the start of cold  

stratification and the initiation of embryo growth (Walck et al., 2002; Vandelook et al.,  

2007a).  These embryos do not elongate during the first two weeks of cold stratification, 

suggesting that some release of PD is needed before embryo growth.  These results contrast  

with those observed in Osmorhiza depauperata (Walck and Hidayati; 2004) and those  

reported here for L. dissectum.  In both species, significant elongation of the embryo was  

observed during the first two weeks of cold stratification.  Furthermore, L. dissectum  

embryos had the highest relative rates of embryo growth, about 30% per week, during the  

first two weeks of cold stratification.  Thus, in L. dissectum the release of PD and MD  

appears to occur simultaneously.  The possibility exists, however, that the degree of PD 

varies along the embryos.  Although elongation occurred in the embryo axis and cotyledons,  

portions of the embryo such as the shoot and root apical meristems may remain quiescent.   

These regions and in particular the root apical meristem may require long periods of cold  
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stratification before the initiation of meristematic activity.  Some support for this notion 

comes from the observation that most of the elongation of the embryo occurred toward the  

chalazal end of the seed.  In contrast, little elongation occurred between the radicle and the  

micropyle until the beginning of germination.   

In species that require cold stratification, the temperatures that break dormancy are  

most often lower than those that trigger germination (Baskin and Baskin, 1998).  Exceptions  

to this situation, however, have been reported, particularly for species with MPD.  For 

example, embryos of O. depauperata grew at 1 and 5°C, while germination only occurred at  

1 °C (Walck and Hidayati, 2004).   Lomatium dissectum showed a somewhat similar pattern.   

Embryo growth was similar at 3.4 and 5.5 °C, but germination was higher at 3.4 than at 5.5  

°C.  A possible explanation for these results is that the release from physiological dormancy  

occurs more rapidly at 3.4 than at 5.5 °C.  As mentioned above, parts of the embryo may  

remain quiescent until late stages of embryo growth.  The low temperature might accelerate  

dormancy break in these portions of the embryo resulting in earlier germination.  

Overall, the results obtained under field conditions were consistent with those from  

the growth chambers.  In the field, embryo growth and germination mainly occurred when  

the soil temperatures were below 5 °C.  A more detailed comparison of the stratification  

requirements under growth chamber and field conditions reveals, however, some differences  

(Fig. 10).  We estimated the stratification hours under field conditions from hourly  

measurements of soil temperature and assumed that stratification occurred at temperatures  

between 0 and 10 °C.  This approach most likely overestimates the stratification hours 

because temperatures close to 0 and 10 °C are not as effective in breaking dormancy as a 

temperature of about 4 °C.  Furthermore, under field conditions the seeds were exposed to  
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periods of low moisture that may limit embryo growth.  Even with this overestimation, a plot 

relating stratification hours to germination indicates that under field conditions the seeds  

required less hours of stratification than in the growth chamber (Fig. 10).  This was observed 

for both field experiments.   

 The reasons for the shorter stratification requirement in the field are unclear. Seeds in  

the growth chamber were exposed to a 12 h photoperiod while those in the field were buried.    

For some species, stratification in light is less effective in releasing dormancy that  

stratification in darkness (Steadman, 2004).  Dark stratification increases the sensitivity to  

light in species that require light to germinate (Steadman, 2004).  Lomatium dissectum, 

however, does not appear to require light to germinate.  We have observed that seeds  

germinate while buried in the soil and in a refrigerator under dark conditions.  In addition to 

light, another difference between the growth chamber and the field was the extent to which 

the seeds were exposed to fluctuations in temperature.  In some seeds, fluctuations in  

temperatures decrease the length of the cold stratification requirement to terminate dormancy  

(Ekstam et al., 1999; Battla et al., 2003).  When we tested in the growth chamber an  

alternating temperatures regimen of 5/15 °C, we did not observe, however, a decrease in 

dormancy.  On the contrary, the alternating temperature regimen significantly decreased 

germination.  Further work is needed, however, to determine whether smaller oscillations in  

temperature, particularly within the range permissive for embryo growth, reduce the cold  

stratification period.    

Differences in stratification requirements were also observed between seeds collected  

in 2005 and those in 2007.  In both the greenhouse and field experiments, the 2005 seeds  

required more hours of stratification than the 2007 seeds.  Seeds were collected from the  



 22

same population; consequently, it is unlikely that the differences were attributed to genetic 

variability among the seeds.  Also from the time of harvest to the initiation of the  

experiments, the seeds were in storage for approximately the same period suggesting that  

differences in the degree of dormancy cannot be attributed to disparity in the age of the  

seeds.  The difference in stratification requirements may reflect differences in environmental  

conditions during seed development, which can alter the degree of seed dormancy (Fenner, 

1991; Hoyle et al., 2008).  Precipitation data from weather stations within a 50 km distance 

from the collection site (Vale-OR 43º 59’ N, 117º 15 W; West Fall-OR 43º 59’ N, 117º  47’ 

W, and Owyhee Dam-OR 43º 39’ N, 117º 15’ W) indicates that at the time of seed  

development, May and June, the precipitation was higher in 2005 than in 2007, 78.2 ± 25 and 

27.2 ± 10 mm, respectively (Oregon Climate Service).  In species from various families,  

water deficits during seed development result in less dormant seeds (Steadman et al., 2004;  

Hoyle et al., 2008).  Perhaps, this phenomenon also occurs in L. dissectum.  Under this 

scenario, the seeds that developed during the spring of 2007 would require less stratification  

than those that developed during the moister spring of 2005, which would account for the  

results observed.  For L. dissectum, embryo growth largely occurs after seed dispersal.  An  

intriguing possibility is that mild water deficits during embryo growth after seed dispersal  

also reduce dormancy.  This notion requires investigation, but such phenomenon would  

explain the shorter stratification requirements of seeds in the field with respect to those in the 

growth chamber.  

Variation in stratification requirements was also observed among seeds collected at 

different sites.  Seeds of L. dissectum var. multifidum collected at intermediate elevations  

required less stratification than those of L. dissectum var. dissectum. At present, it is not clear  
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whether these differences reflect genetic differences between the populations and/or 

differences in environmental conditions during seed development.  Independent of the factors  

involved, the shorter stratification requirements for seeds from the drier sites may provide an  

ecological advantage.  Seeds of variety multifidum were from sites where the growing season  

is relatively short due to the dry summer conditions. For these seeds, the shorter stratification 

results in early germination, which extends the growth period allowing the seedlings to  

photosynthesize and accumulate reserves until the dry summer.  On the other hand, variety  

dissectum seeds were from sites where temperature and precipitation allow plant growth  

through most of the spring and summer. Under these conditions, early germination is not so  

critical for seedling survival.   

In summary, L. dissectum seeds have complex MPD; embryo growth and germination  

occurred at temperatures between 3 and 6 °C and GA3 did not replace the requirement for  

cold stratification.  We observed differences in cold stratification requirements among seeds 

collected at different sites and between seeds from one site collected in different years.  The  

latter is likely the result of differences in environmental conditions during seed development.  

In semiarid regions, seeds that do not germinate during the first year remain dehydrated for  

several weeks during the summer.  Interruption of the cold stratification period by  

dehydration decreased seed viability and induced secondary dormancy.  The negative effect 

of dehydration on seed viability suggests that under field conditions germination is mainly  

attributed to seeds produced during the previous spring.  The seeds that enter secondary  

dormancy have the potential to form a persistent seed bank, which could be important for 

species survival following marked ecosystem disturbances (Baskin and Baskin, 1998; 

Wardle, 2003).   
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FIGURE  LEGENDS 

Figure 1.  Effect of warm and cold stratification on embryo growth of Lomatium dissectum.  

Seeds were exposed to 0 (●), 2 (○), 4 (▲), or 6 (◊) weeks of warm stratification at 20  °C  

prior to cold stratification.  Arrows indicate when the seeds were transferred from warm  

stratification at 20 °C to cold stratification at 5 °C.  Mean (± s.e) of three or four replications  

with 50 embryos per replication.   

  

Figure 2.  Growth of the embryo axis and cotyledons during cold stratification of Lomatium  

dissectum seeds. (a) Length of the whole embryo, cotyledons, and embryo axis during 

stratification.  (b) Ratio of embryo axis to cotyledon length.  Mean (± s.e.) of five  

replications with ten embryos per replication.  Means not labeled with the same letter are  

significantly different (p < 0.05) based on Tukey-Kramer least square means test.  

 

Figure 3.  Embryo growth of Lomatium dissectum seeds at four cold stratification 

temperatures.  Mean (± s.e) of five replications with ten embryos per replication. Means not  

labeled with the same letter are significantly different (p < 0.05) based on Tukey-Kramer  

least square means test.  

 

Figure 4. Effect of four cold stratification temperatures on germination of Lomatium  

dissectum seeds.  Mean (± s.e) of ten replications with 60 seeds per replication. Means not 0 

labeled with the same letter are significantly different (p < 0.05) based on Tukey-Kramer  

least square means test.  
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Figure 5.  Embryo elongation in Lomatium dissectum seeds incubated at 4 °C (white 

symbols) or 12 °C (black symbols) in various concentrations of GA3.  Means (± s.e.) of four  

replications with ten embryos per replication.  For a particular week, means not labeled with  

the same letter are significantly different (p < 0.05) based on Tukey-Kramer least square  

means test.  

 

Figure 6.  Effect of dehydration on seeds exposed to cold stratification at 4 °C for 10 weeks.  

Germination of control (●) and dried (○) seeds;  viability of dried-ungerminated seeds (□)  

and viability plus germination of dried seeds (■).  Controls were maintained moist at 4 °C 

throughout the experiment.   Dried seeds were cold stratified for 10 weeks and then 

dehydrated to 8% water content and kept at room temperature for 8 weeks.  At the time 

indicate by the arrow, the dried seeds were rewatered and returned to 4 °C.  For germination,  

values represent mean ± s.e. of four or six replications with 70 to 100 seeds per replication.   

For viability of ungerminated seeds, values represent mean ± s.e. of six replications with ten  

seeds per replication.  The total viability was also estimated based on the number of 

germinated seeds plus the number of viable ungerminated seeds, values represent mean ± s.e.  

of six replications.  Means not labeled with the same letter are significantly different (p <  

0.05) based on Tukey-Kramer least square means test.   

  

Figure 7.  Embryo growth of Lomatium dissectum seeds exposed to field conditions.  a,  

Embryo length (mean ± s.e. of ten replications with five to ten embryos per replication) and 

seed germination percentages (mean ± s.e. of ten replications with 60 seeds per replication).  

Means not labeled with the same letter are significantly different (p < 0.05) based on Tukey- 
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Kramer least square means test.  b,  daily average soil temperature and soil moisture. Insert,  

relationship between soil volumetric water (θ) and soil water potential (ψm) for the soil were  

the seeds were buried.     

 

Figure 8.  Embryo growth of Lomatium dissectum seeds exposed to field conditions.  a, 

Embryo length (mean ± s.e. of ten replications with five to ten embryos per replication) and 

seed germination percentages (mean ± s.e. of ten replications with 60 seeds per replication).  

Means not labeled with the same letter are significantly different (p < 0.05) based on Tukey-

Kramer least square means test.  b,  daily average soil temperature and soil moisture.  

  

Figure 9.  Germination of Lomatium dissectum seeds collected at different sites.  Mean ± s.e.  

of five to ten replications with 60 seeds per replication.    

  

Figure 10.  Relationship between stratification hours and germination under field and growth 

chamber conditions.  (○) Field conditions 05-06; (●) growth chamber 05 seeds; (□) field  

conditions 07-08; (■) growth chamber 07 seeds.  The stratification hours under field 

conditions were estimated from hourly measurements of soil temperature assuming that  

stratification occurred at temperatures between 0 and 10 °C.  Mean ± s.e. of ten replications  

with 50 to 60 seeds per replication.    
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