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Least squares problems with inequality constraints as quadratic constraints

Jodi L. Mead∗ Rosemary A Renaut †

April 7, 2009

Abstract

Linear least squares problems with box constraints are commonly solved to find model parameters within bounds
based on physical considerations. Common algorithms include Bounded Variable Least Squares (BVLS) and the
Matlab function lsqlin. Here, the goal is to find solutions to ill-posed inverse problems that lie within box constraints.
To do this, we formulate the box constraints as quadratic constraints, and solve the corresponding unconstrained
regularized least squares problem. Using box constraints as quadratic constraints is an efficient approach because the
optimization problem has a closed form solution.

The effectiveness of the proposed algorithm is investigated through solving three benchmark problems and one
from a hydrological application. Results are compared with solutions found by lsqlin, and the quadratically con-
strained formulation is solved using the L-curve, maximum a posteriori estimation (MAP), and the χ2 regularization
method. The χ2 regularization method with quadratic constraints is the most effective method for solving least
squares problems with box constraints.

Linear least squares, Box constraints, Regularization

AMS Classification: 65F22, 93E24, 62F30

1 Introduction

The linear least squares problems discussed here are often used to incorporate observations into mathematical models.

For example, least squares formulations are often used to solve inverse problems in imaging and data assimilation

from medical and geophysical applications. In many of these applications the variables in the mathematical models

are known to lie within prescribed intervals. This leads to a bound constrained least squares problem:

min ||Ax− b||22 α ≤ x ≤ β, (1)

where x,α,β ∈ Rn, A ∈ Rm×n, and b ∈ Rm. If the matrix A has full column rank, then this problem has a unique

solution for any vector b [4]. Here we focus on the more general condition in which A need not have full column

rank.

Successful approaches to solving bound-constrained optimization problems for general linear or nonlinear objec-

tive functions can be found in [6], [13], [8], [14] and the Matlab R© function fmincon. Approaches which are specific
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USA. Tel: 208426-2432, Fax: 208-426-1354. Email: jmead@boisestate.edu
†Supported by NSF grants DMS 0513214 and DMS 0421846. Arizona State University, Department of Mathematics and Statistics, Tempe, AZ

85287-1804, USA. Tel: 480-965-3795, Fax: 480-965-4160. Email: renaut@asu.edu

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at 
Linear Algebra & its Applications, published by Elsevier. Copyright restrictions may apply.  doi:  10.1016/j.laa.2009.04.017

J. MEAD & R. RENAUT in LINEAR ALGEBRA & ITS APPLICATIONS 1



2to least squares problem are described in [3], [9] and [15] and the Matlab function lsqlin. In this work, we implement

a novel approach to solving the bound constrained least squares problem by writing the constraints in quadratic form,

and solving the corresponding unconstrained least squares problem.

Most methods for solutions of bound-constrained least squares problems of the form (1) can be catagorized as

active-set or interior point methods. In active-set methods, a sequence of equality constrained problems are solved

with efficient solution methods. The equality constrained problem involves those variables xi which belong to the

active set, i.e. those which are known to satisfy the equality constraint [17]. It is difficult to know the active set a

priori but algorithms for it include Bounded Variable Least Squares (BVLS) given in [20]. These methods can be

expensive for large-scale problems, and a popular alternative to them are interior point methods.

Interior point methods use variants of Newton’s method to solve the KKT equality conditions for (1). In addition,

the search directions are chosen so the inequalities in the KKT conditions are satisfied at each iteration. These methods

can have slow convergence, but if high-accuracy solutions are not necessary, they are a good choice for large scale

applications [17]. In this work we write the inequality constraints as quadratic constraints and solve the optimization

problem with a penalty-type method that is commonly used for equality constrained problems. This formulation is

advantageous because the unconstrained quadratic optimization problem corresponding to the constrained one has a

known unique solution.

When A is not full rank, regularized solutions are necessary for both the constrained and unconstrained problem.

A popular approach is Tikhonov regularization [21]

min ||Ax− b||22 + λ2||L(x− x0)||22, (2)

where x0 is an initial parameter estimate and L is typically chosen to yield approximations to the l th order derivative,

l = 0, 1, 2. There are different methods for choosing the regularization parameter λ; the most popular of which

include L-curve, Generalized Cross-Validation (GCV) and the Discrepancy principle [5]. In this work, we will use

a χ2 method introduced in [11] and further developed in [12]. The efficient implementation of this χ2 approach for

choosing λ compliments the solution of bound-constrained least squares problem with quadratic constraints.

The rest of the paper is organized as follows. In Section 2 we re-formulate the bound-constrained least squares

problem as an unconstrained quadratic optimization problem by writing the box constraints as quadratic constraints. In

Section 3 we give numerical results from benchmark problems [5] and from a hydrological application, and in Section

4 we give conclusions.

2 Bound-Constrained Least Squares

2.1 Quadratic Constraints

Here we introduce an approach whereby the bound constrained problem is written with n quadratic inequality con-

straints, i.e. (1) becomes

min ||Ax− b||22 (3)

subject to (xi − x̄i)2 ≤ σ2
i i = 1, . . . , n (4)
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3where x̄ = [x̄i; i = 1, . . . , n]T is the midpoint of the interval [α,β], i.e. x̄ = (β + α)/2 and σ = (β − α)/2. The

necessary and sufficient KKT conditions for a feasible point x∗ to be a solution of (3) are:

(ATA + λ∗)x∗ = λ∗x̄ + ATb (5)

(λ∗)i ≥ 0 i = 1, . . . , n (6)

(λ∗)i[σ2
i − (xi − x̄i)2] = 0 i = 1, . . . , n (7)

σ2
i − (xi − x̄i)2 ≥ 0 i = 1, . . . , n (8)

where λ∗ = diag((λ∗)i).

Reformulating the box constraints α ≤ x ≤ β as quadratic constraints (xi − x̄i)2 ≤ σ2
i , i = 1, . . . , n effectively

circumscribes an ellipsoid constraint around the original box constraint. In [18] box constraints were reformulated in

exactly the same manner, however the optimization problem was not solved with the penalty or weighted approach as

is done here, and described in the Section 2.2. Rather, in [18] parameters were found which ensure there is a convex

combination of the objective function and the constraints. This ensures the ellipsoid defined by the objective function

intersects that defined by the inequality constraints.

Tikhonov regularization can be viewed as a quadratically constrained least squared problem when the constraint

(4) replaced with ||L(x − x0)||22 ≤ δ. The advantage of viewing regularization as a constraint is that the constrained

formulation can give the problem physical meaning. In [19] they give the example in image restoration where δ

represents the energy of the target image. For a more general set of problems, the authors in [19] successfully find the

regularization parameter λ by solving the quadratically constrained least squares problem.

2.2 Penalty or Weighted Approach

We apply the penalty or weighted approach to the quadratic, inequality constrained problem (3)-(4). In this case, a

penalty term x − x̄ is added to the objective function, and multiplied by a matrix that contains the bounds of the

inequality constraints, σi. This matrix will come from the first KKT condition (5), which is the solution of the least

squares problem:

min ||Ax− b||22 + ||λ1/2
∗ (x− x̄)||22. (9)

We view the inequality constraints as a penalty term by replacing λ∗ by C = diag((σ)2i ). Since the quadratic

constraints circumscribe the box constraints, a sequence of probems for decreasing ε are solved which effectively

decreases the radius of the ellipsoid until the constraints are satisfied, i.e. solve

min ||Ax− b||22 + ||C−1/2
ε (x− x̄)||22, (10)

where Cε = εC. Starting with ε = 1, the penalty parameter ε decreases until the solution of the inequality constrained

problem (3) is identified. Since ε→ 0 solves the equality constrained problem x = x̄, these iterations are guaranteed

to converge when A is full rank.

Algorithm 1 Solve least squares problem with box constraints as quadratic constraints.
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4Initialization:x̄ = (β + α)/2, C−1
ε = diag((2/(βi − αi))2), ε = 1

Z = {j : j = 1, . . . , n}, P = NULL
count=0
Do (until all constraints are satisfied)

Solve (ATA + C−1
ε )y = AT (b−Ax̄) for y

x̃ = x̄ + y
if αj ≤ x̃j ≤ βj j ∈ P , else j ∈ Z
if Z =NULL, end
ε = 1/(1 + count/10)ε
if j ∈ Z , (C−1

ε )jj = ((εCε)−1)jj
End

This algorithm performs poorly because it over-smoothes the solution x. In particular, if the interval is small, then

σi is small, and the solution is heavily weighted towards the mean, x̄. This approach to inequality constraints is not

recommended unless prior information about the parameters, or a regularization term is included in the optimization

as described in Section 2.3.

2.3 Regularization and quadratic constraints

Algorithm 1 is not useful for well-conditioned or full rank matrices A because it over-smoothes the solution. In

addition, for rank deficient or ill-conditioned A, we may not be able to calculate the least squares solution x̃ to (10)

x̃ = x̄ + (ATA + C−1
ε )−1AT (b−Ax̄),

when ε is near 1 because (ATA + C−1
ε ) may not be invertible. Regularization methods can be used to address these

issues. The approach to inequality constraints proposed here should be used after a regularized solution is found which

does not satisfy the box constraints.

As mentioned in the Introduction, a typical way to regularize a problem is with Tikhonov regularization (2), but

any regularization method can be used to implement box constraints as quadratic constraints. Methods such as the

discrepancy principle [16], L-curve [5], χ2 regularization [11] and maximum a posteriori estimation (MAP) [1] often

weight the least squares problem with the inverse covariance matrix for the errors in the data, Cb. In addition the χ2

method and MAP estimation weight the regularization term with the inverse covariance matrix on the mean zero initial

parameter estimate, Cx, i.e. from (2) λL = C−1/2
x , in which case we solve

min
x
J (x)

where

J (x) = ||C−1/2
b (Ax− b)||22 + ||C−1/2

x (x− x0)||22.

Applying quadratic constraints to the regularized functional amounts to solving the following problem:

min
x
Jε(x) (11)

where

Jε(x) = ||C−1/2
b (Ax− b)||22 + ||C−1/2

x (x− x0)||22 + ||C−1/2
ε (x− x̄)||22.
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5This formulation has three terms in the objective function and seeks a solution which lies in an intersection of three

ellipsoids. It is possible, but not necessary, to write the regularization term and the inequality constrained term as a

single term. The solution, or minimum value of Jε(x) occurs at

x̃ε = x0 + (ATC−1
b A + C−1

x + C−1
ε )−1(ATC−1

b r + C−1
ε 4x), (12)

where4x = x̄− x0 and r = b−Ax0.

In order for the solution (12) to exist, Dx = f must have a solution where

D =

[
C−1/2
x

C−1/2
ε

]
, f =

[
C−1/2
x x0

C−1/2
ε x̄

]
,

i.e. f must be in the range of D. If there is no such solution the two ellipsoids defined by the last two terms in Jε(x)

do not intersect and we cannot find a solution that lies within the constraints for the given Cx.

Algorithm 2 given below takes as inputs Cx and Cb which result in regularized solutions that may or may not lie

within the box constraints. The output from the algorithm is x̃ε defined by (12), that satisfies the box constraints.

Algorithm 2 Solve regularized least squares problem with box constraints as quadratic constraints.

Initialization:x̄ = (β + α)/2,C−1
ε = diag((2/(βi − αi))2), ε = 1

Z = {j : j = 1, . . . , n}, P = NULL
count=0
Do (until all constraints are satisfied)

Solve (ATC−1
b A + C−1

ε + C−1
x )yε = (ATC−1

b r + C−1
ε 4x) for yε

x̃ε = x0 + yε
if αj ≤ x̃j ≤ βj j ∈ P , else j ∈ Z
if Z =NULL, end
ε = 1/(1 + count/10)ε
if j ∈ Z , (C−1

ε )jj = ((εCε)−1)jj
count = count +1

End
The iterations in Algorithm 2 reduce the penalty parameter until the constraints are satisfied. Illustrative results of the

performance of this algorithm for ill-posed problems, as compared to other standard methods, are given in Section 3.

2.4 Regularization methods

Algorithm 2 requires the weight on the initial parameter misfit Cx as an input. In this section we describe three

different methods for the calculation of it: the L-curve, χ2 regularization and maximum a posteriori estimation (MAP).

The L-curve approach finds the parameter λ in (2), for specified L. This is done by solving (2) multiple times

with various λ to get multiple solutions xλ. Once these solutions are obtained, a log-log plot of ||L(xλ − x0)||22
versus ||b − Axλ||22 will typically be in the shape of an L, and the optimal value of λ is the one at the corner. The

parameter values resulting from this choice of λ are optimal in the sense that the error in the weighted parameter

misfit and data misfit are balanced. For the purposes of Algorithm 2, the L-curve method finds λ, for specified L with

Cx = λ−2(LTL)−1, and has the potential to include random noise in the data when Cb is specified.

MAP estimation and the χ2 regularization method are two which not only assume that the data contain noise, but

so do the initial parameter estimates. The MAP estimate assumes the data b are random, independent and identically
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6distributed, and follow a normal distribution with probability density function

ρ(b) = const× exp
{
−1

2
(b−Ax)TC−1

b (b−Ax)
}
, (13)

with Ax0 the expected value of b and Cb the corresponding covariance matrix. In addition, it is assumed that the

parameter values x are also random following a normal distribution with probability density function

ρ(x) = const× exp
{
−1

2
(x− x0)TC−1

x (x− x0)
}
, (14)

with x0 the expected value of x and Cx the corresponding covariance matrix.

In order to maximize the probability that the data were in fact observed we find x where the probability density is

maximum. The maximum a posteriori estimate of the parameters occurs when the joint probability density function is

maximum [1], i.e. optimal parameter values are found by solving

min
x

{
(b−Ax)TC−1

b (b−Ax) + (x− x0)TC−1
x (x− x0)

}
. (15)

This optimal parameter estimate is found under the assumption that the data and parameters follow a normal distri-

bution and are independent and identically distributed. The χ2 regularization method is based on this idea, but the

assumptions are relaxed, see [11] [12]. Since these assumptions are typically not true, we do not expect the MAP or

χ2 estimate to give us the exact parameter values.

The estimation procedure behind the χ2 regularization method is equivalent to that for MAP estimation. However

the χ2 regularization method is an approach for finding Cx ( Cb) given Cb (Cx), while MAP estimation simply takes

them as inputs. This χ2 method is based on the fact that the minimum value of the functional J (x̃) is a random

variable which follows a χ2 distribution with m degrees of freedom [2, 11]. In particular, given values for Cb and

Cx, the difference |J(x̃) −m| is an estimate of confidence that Cb and Cx are accurate weighting matrices. Mead

[11] noted these observations, and suggested a matrix Cx can be found by requiring that J (x̃), to within a specified

(1− α) confidence interval, is a χ2 random variable with m degrees of freedom, namely such that

m−
√

2mzα/2 < rT (ACxA
T + Cb)−1r < m+

√
2mzα/2, (16)

where r = b − Ax0 and zα/2 is the relevant z-value for a χ2-distribution with m degrees of freedom. In [12] it was

shown that for accurate Cb, this χ2 approach is more efficient and gives better results than the discrepancy principle,

the L-curve and generalized cross validation (GCV) [5].

In the numerical results in Section 3, MAP is implemented only for the benchmark problems where the true, or

mean, parameter values are known. In the benchmark problems x0 is randomly generated with error covariance Cx,

just as the data are generated with error covariance Cb. The MAP estimate uses the exact value for Cx, while the χ2

method finds Cx = σ2
xI by solving (16), thus the MAP estimate is the “exact” solution for the χ2 regularized estimate

but cannot be used in practice when Cx is unknown.

Note that the L-curve is similar to the MAP and χ2 estimates when Cx = λ−2(LTL). The advantage of the MAP

and χ2 estimates is when Cx is not a constant matrix and hence the weights on the parameter misfits vary. Moreover,
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7when Cx has off diagonal elements, correlation in initial parameter estimate errors can be modeled. The disadvantage

of MAP is that a priori information is needed. On the other hand the χ2 regularization method is an approach for

finding elements of Cx, thus matrices rather than parameters may be used for regularization, but not as much a priori

information is needed as with MAP. However, in the Section 3 the χ2 methods uses Cx = σ2
xI. Future work involves

developing efficient algorithms for more dense Cx.

In Section 3 we give numerical results where the box constrained least squares problem (1) is solved by (11), i.e.

by implementing the box constraints as quadratic constraints using Algorithm 2.

3 Numerical Results

3.1 Benchmark Problems

We present a series of representative results from Algorithm 2 using benchmark cases from [5]. Algorithm 2 was

implemented with the χ2 regularization method, the L-curve and maximum a posteriori estimation (MAP), and com-

pared with results from the Matlab constrained least squares function lsqlin. In particular, system matrices A, right

hand side data b and solutions x are obtained from the following test problems: phillips, shaw, and wing. These

benchmark problems do not have physical constraints, so we set them arbitrarily as follows: phillips (0.2 < x < 0.6),

shaw (0.5 < x < 1.5), and wing (0 < x < 0.1). In all cases, the parameter estimate from Algorithm 2 is essentially

found by (12).

In all cases we generate a random matrix Θ of size m × 500, with columns Θc, c = 1 : 500, using the Matlab

function randn. Then setting bc = b + level‖b‖2Θc/‖Θc‖2, for c = 1 : 500, generates 500 copies of the right hand

vector b with normally distributed noise, dependent on the chosen level. Results are presented for level = .1. An

example of the error distribution for all cases with n = 80 is illustrated in Figure 1. Because the noise depends on the

right hand side b the actual error, as measured by the mean of ‖b − bc‖∞/‖b‖∞ over all c, varies between 0.1651

and 0.2505, and is given for each test problem in Figure 1.

The covariance Cb between the measured components is calculated directly for the entire data set B with rows

(bc)T . Because of the design, Cb is close to diagonal, Cb ≈ diag(σ2
bi

) and the noise is colored. In all experiments,

regardless of parameter selection method, the same covariance matrix Cb is used. The MAP estimate requires an

additional input of Cx, which is computed in a manner similar to Cb. The χ2 method finds Cx by solving (16) for

Cx = σ2
xI, while the parameter λ found by the L-curve is used to form Cx = λ−2I. Finally, the matrix Cε implements

the box constraints as quadratic constraints and is the same for all three regularizations methods, with

Cε = εC

= diag(σ2
i ), σi = (βi − αi)/2 xi ∈ [αi, βi].

The a priori reference solution x0 is generated using the exact known solution and noise added with level = .1

in the same way as for modifying b. The same reference solution x0 is used for all right hand side vectors bc, see

Figure 2.
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Figure 1: Illustration of the noise in the right hand side for problem (a)phillips , (b) shaw (c) wing.
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Figure 2: Illustration of the reference solution x0 for problem (a) phillips , (b) shaw (c) wing.
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10The unconstrained and constrained solutions to the phillips test problem are given in Figure 3. For the uncon-

strained solution, the L-curve gives the worst solution, while the MAP and χ2 estimates are similar. The MAP

estimate is an exact version of the χ2 regularization method because the exact covariance matrix Cx is given. The χ2

regularization method finds Cx, using the properties of a χ2 distribution, thus it requires less a priori knowledge.

The methods used in the unconstrained case were implemented with quadratic constraints in Figure 3(b). For

comparison, the Matlab function lsqlin was used to implement the box constraints in the linear least squares problem.

We see here that the lsqlin solution stays within the correct constraints, but does not retain the shape of the curve.

This is true for all test problems, also see Figures 5(b) and 7(b). Figures 4, 6 and 8 show that, for any regularization

method, the significant advantage of implementing the box constraints as quadratic constraints and solving (11) is that

we retain the shape of the curve.

The constrained and unconstrained solutions to the phillips test problem for each method are given in Figure 4. The

quadratic constraints correctly enforce the box constraints in all cases, regardless of the accuracy of the unconstrained

solutions. In fact, the poor results from the L-curve are improved with the constraints. However, this is not necessarily

true for the shaw test problem in Figure 5. Again the L-curve gives the poorest results in the unconstrained case, while

in the constrained case it does not retain the correct shape of the curve. The constrained L-curve is still preferable over

the results from lsqlin, as shown in Figure 5(b).

For all three test problems, in the constrained and unconstrained cases, Figures 4(b)(c), 6(b)(c) and 8(b)(c) each

show that the χ2 estimate gives results as good as the MAP estimate. The χ2 estimate does not require any a priori

information about the parameters, thus it is a significant improvement over the MAP estimate.

The wing test problem in Figures 7-8 has a discontinuous solution. Least squares solutions typically do poorly

in these instances because they smooth the solution. The L-curve does perform poorly, and is not improved upon by

implementing the constraints. Matlab’s lsqlin is also not able to capture the the discontinuous solution. However, both

the MAP and χ2 estimates were able to capture the discontinuity in the constrained and unconstrained cases.

3.2 Estimating data error: Example from Hydrology

In addition to the benchmark results, we present the results for a real model from hydrology. The goal is to obtain four

parameters x0 = [θr, θs, α, n] in an empirical equation developed by van Genuchten [22] which describes soil mois-

ture as a function of hydraulic pressure head. A complete description of this application is given in [12]. Hundreds

of soil moisture content and pressure head measurements are made at multiple soil pits in the Dry Creek catchment

near Boise, Idaho [10], and these are used to obtain b. We rely on the laboratory measurements for good first es-

timates of the parameters x0, and their standard deviations σxi
. It takes 2-3 weeks to obtain one set of laboratory

measurements, but this procedure is done multiple times from which we obtain standard deviation estimates and form

Cx = diag(σ2
θr
, σ2
θs
, σ2
α, σ

2
n). These standard deviations account for measurement technique or error. However, mea-

surements on this core may not accurately reflect soils in entire watershed region. We will show results from two soil

pits: NU10 15 and SU5 15. They represent pits upstream from a weir 10 and 5 meters, respectively, both 15 meters

from the surface.
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Figure 3: Phillips (a) unconstrained and (b) constrained solutions
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Figure 4: Phillips test problem of (a) L-curve , (b) maximum a posteriori estimation (c) regularized χ2 method.
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Figure 5: Shaw (a) unconstrained and (b) constrained solutions
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Figure 6: Shaw test problem of (a) L-curve , (b) maximum a posteriori estimation (c) regularized χ2 method.
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Figure 7: Wing (a) unconstrained and (b) constrained solutions
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Figure 8: Wing test problem of (a) L-curve , (b) maximum a posteriori esitmation (c) regularized χ2 method.
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17These parameters depend on the soil type: sand, silt, clay, loam and combinations of them. Extensive studies have

been done to determine the parameter values based on soil type. These values can be found in [23]. In particular, lower

and upper bounds have been given for each soil type, thus each parameter is assumed to lie within prescribed intervals.

The second column of Table 1 gives parameter ranges (or constraints) in the form of soil class averages found in [23].

These ranges are used to form Cε.

This is a severely overdetermined problem, and we used constrained least squares (1) to find the best parameters

x. The matrix A is given by van Genuchten’s equation, while the data b are the field measurements described above.

The box constraints in Table 1 were implemented as quadratic constraints with the penalty approach, and are used to

form Cε.

Since initial parameter estimates x0 and covariance Cx is found by repeated measurements in the laboratory, the

χ2 method is used to find the standard deviation σb on field measurements b, and form Cb = σ2
b I. In other words,

the regularization parameter or initial parameter misfit weight is taken from laboratory measurements while the data

weight is obtained by the χ2 method.

Table 1 gives parameter values for both pits, in both the constrained and unconstrained cases. For both pits, the

only unconstrained parameter that did not fit into the appropriate range is θs. The constrained parameters did fit into

the ranges given by [23]. However, after further investigation, we began to question the validity of these ranges. The

parameter θs represents soil moisture when the ground is nearly saturated. In the semi-arid environment of the Dry

Creek Watershed, the soil does not typically come near saturation. The fact that Algorithm 2 correctly implemented

the constraints showed us that that the soil class averages, with a minimum value of θs = 0.3010, do not reflect the

soils found in this region. A more realistic minimum would be θs = 0.2.

NU10 15 SU5 15
Parameter Ranges Unconstrained Constrained Unconstrained Constrained
log10 α [−2.86,−0.9060] −1.6109 −0.9567 −2.0109 −1.0978
log10 n [0.004, 0.6820] 0.1732 0.2182 0.5239 0.1182
θs [0.3010, 0.5680] 0.2271 0.3522 0.2222 0.3409
θr [−0.0150, 0.2310] −0.0080 0.0493 0.1032 −0.0109

Table 1: Hydrological Parameters

Figure 9 shows the constrained and unconstrained results with θ representing soil moisture on the horizontal axis,

and ψ representing pressure head on the vertical. The van Genuchten equation is typically plotted in this manner, and

the curve is called the soil moisture retention curve. Near saturation, i.e. for |ψ| near 0, the soil moisture falls below

0.25 further indicating the the soil class averages found in [23] are not appropriate for this region and should not be

used as constraints.

4 Conclusions

In this paper we introduced an implementation of box constraints as quadratic constraints for linear least squares

problems. Because the original least squares problems may be ill-conditioned, the quadratic constraints are added to
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Figure 9: Unconstrained and constrained soil moisture retention curves for (a) SD5 15 and (b) NU10 15 .
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19the objective function of the regularized problem. Thus there is a unique solution to the problem for any choice of ε

used in the iteration to the solution of the box-constrained problem. The quadratic constraints circumscribe an ellipsoid

around the box constraints, and the radius of the ellipsoid is iteratively reduced until the constraints are satisfied.

The quadratic constraint approach was used with regularization via the L-curve, maximum a posteriori estimation

(MAP) and the χ2 method [11], [12]. Constrained results were compared to those found by the Matlab function lsqlin.

Results from lsqlin stayed within the constraints, but did not maintain the correct shape of the parameter solution

curve. The L-curve gave the poorest unconstrained results, which were sometimes improved upon by implementing

constraints. The MAP and χ2 estimates gave the best results but the MAP estimate requires a priori information about

the parameters which is typically not available. Thus the method of choice for constrained least squares problems is

χ2 regularization method with box constraints implemented as quadratic constraints. This approach was also used to

solve a problem in Hydrology.

The quadratic constraint approach can be implemented with any regularized least squares method with box con-

straints. It is simple to implement and is preferred over the Matlab function lsqlin because the constrained solution

keeps the shape of the unconstrained solution, while the lsqlin solution merely stays at the bounds of the constraints.
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