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Abstract. In the event of an accidental or intentional release of chemical or biological (CB) 

agents into the atmosphere, first responders and decision makers need to rapidly locate and 

characterize the source of dispersion events using limited information from sensor networks. In 

this study the stochastic event reconstruction tool (SERT) is applied to a subset of the Fusing 

Sensor Information from Observing Networks (FUSION) Field Trial 2007 (FFT 07) database. 

The inference in SERT is based on Bayesian inference with Markov chain Monte Carlo 

(MCMC) sampling. SERT adopts a probability model that takes into account both positive and 

zero-reading sensors. In addition to the location and strength of the dispersion event, empirical 

parameters in the forward model are also estimated to establish a data-driven plume model. 
Results demonstrate the effectiveness of the Bayesian inference approach to characterize the 

source of a short range atmospheric release with uncertainty quantification.  

Keywords: Atmospheric dispersion, event reconstruction, Gaussian plume modeling 
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INTRODUCTION 

In their June 2008 report (GAO-08-180) to Congressional requesters, the 

Government Accountability Office (GAO) has found that “While the Department of 

Homeland Security (DHS) and other agencies have taken steps to improve homeland 

defense, local first responders still do not have tools to accurately identify right away 

what, when, where, and how much chemical, biological, radiological, or nuclear 

materials are released in U.S. urban areas, accidentally or by terrorists” [1]. Given 

sensor data, there is a need to develop algorithms that identify and quantify the amount 

of chemical and biological (CB) materials in an accidental or intentional release event. 

DHS has deployed the BioWatch program in several major cities in the U.S. to 

monitor the air for biothreat agents [2]. The number of sensors in urban areas is 

limited, and a reliable account of the CB dispersion event and its impact on the 

population cannot be created purely from measurements. However, these 

measurements can be used to solve an inverse problem and determine the location and 

strength of a CB agent release event.  Once the dispersion event is backtracked in time 

it can then be projected forward using high-fidelity atmospheric transport and 
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dispersion models to predict the hazard-zone for emergency response and hazard 

mitigation.  The process of using limited and uncertain information from a sensor 

network, and its fusion into CB dispersion models, is referred to as event 

reconstruction, source inversion or source term estimation (STE). The inverse problem 

under consideration is equally significant in defense operations on the battlefield, 

where estimates on the location, strength and time of CB agent release can support 

tactical decisions such as areas to avoid, protective gear usage and medical response 

[3].  

Fusing Sensor Information from Observing Networks (FUSION) Field Trial 2007 

(FFT 07) was designed to support the development of source term estimation 

algorithms and evaluate existing ones [4]. Database provides detailed meteorological 

information and trace gas concentration measurements for short range (~500 meters) 

dispersion experiments. These experiments were performed for a variety of release 

types, including single and multiple sources for continuous and puff (instantaneous) 

releases. In addition, several different sensor layouts were considered to assess the 

impact of the number of sensors needed in operational use of STE algorithms. 

Various inverse methods have been applied to the event reconstruction problem and 

they can be categorized as either deterministic or probabilistic approaches. 

Deterministic approaches include the inverted Gaussian plume model [5], variational 

finite element models for the adjoint problem [6] and genetic algorithms [7]. 

Algorithms based on the inverted Gaussian plume model are computationally cheap, 

but the model is not very accurate and these algorithms do not address the uncertainty 

in the model or in sensor data.  Alternatively, the adjoint formulation can be used to 

analyze the sensitivity of model parameters, but extension to non-linear problems 

becomes more challenging and demanding in terms of computational resources.  

Optimal solutions can be found more efficiently with genetic algorithms but 

uncertainty quantification can be more complicated with these methods.  

Probabilistic approaches involve incorporating uncertainty into the event 

reconstruction problem. Several studies have adopted the Bayesian inference approach 

for the event reconstruction problem. Johannesson et al. [8] presented dynamic 

Bayesian models using both the well established Markov chain Monte Carlo (MCMC) 

method and the sequential Monte Carlo for target tracking and atmospheric dispersion 

event reconstruction problems.  Chow et al. [9] and Neumann et al. [10] extended the 

method presented in Johannesson et al. to neighborhood scale (building-resolved) 

atmospheric dispersion events. Chow et al. used computational fluid dynamics (CFD) 

models, while Neumann et al. used computationally less intensive empirical Gaussian 

puff models. 

With high-fidelity models, the longer simulation times needed for event re-

constructions can limit their applications in emergency response operations. Marzouk 

et al. [11] reformulated the Bayesian approach to inverse problems by using 

polynomial chaos (PC) expansions to represent random variables, which then yields a 

spectral representation of the stochastic forward model. The integrals in the Bayesian 

formulation are computed via sampling from the PC expansions in a computational 

fast fashion. In their study, a simple transient diffusion problem was considered. The 

results have shown that significant gains in computational time can be obtained by 

adopting the new scheme over direct sampling. 
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Senocak et al. [12] developed a stochastic event reconstruction tool (SERT) and 

validated it against both real and synthetic experiments. SERT uses a Bayesian 

inference algorithm with MCMC sampling for source term estimation. A unique 

feature of SERT is that it enhances the forward plume model with a data-driven 

approach whereby empirical turbulence diffusion parameters are estimated as part of 

the inverse problem in addition to characterizing the dispersion event.  The practice 

leads to substantial improvement over the empirically tuned plume model, 

Furthermore, Senocak et al. incorporates zero sensors into the probability model in a 

principled fashion. In most studies zero sensors are either discarded or a negligible 

small number is assumed arbitrarily. From an operational point of view, treatment of 

zero sensors can be important because even though trace CB agents below the limit of 

detection cannot be measured reliably by the sensor, they can be harmful to the 

population.  

In the following, the event reconstruction method of Senocak et al. [12] is described 

briefly. The method is then applied to the FFT-07 database and results from two trial 

cases are presented. 

DESCRIPTION OF THE EVENT RECONSTRUCTION METHOD 

The forward modeling problem can be defined as predicting the response of a 

system using a physical theory and system parameters. In the inverse modeling 

problem, an inference is made on the values of system parameters based on 

observations of the system response [13]. Generally speaking, inverse problems can be 

formulated as follows: 

),(1
dm

 F                                                             (1)                              

where d is a vector of observations, m is a vector of forward model parameters, and 

the operator F is the forward model that governs the system response. Inverse 

problems are often ill conditioned, because small changes in d can lead to large 

changes in m. The present event reconstruction problem requires estimating the model 

parameters m (e.g. release location, emission rate, wind direction etc.) given the 

observed concentrations d from a sensor network.  

The Gaussian plume model is used to calculate Cm, the concentration or dosage 

values at each sensor. For uniform steady wind conditions, this model can be written 

as follows: 
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Model parameters include: Q-emission rate or source strength, U-mean wind speed, 

and H-height of the release.  A unique approach that is adopted in SERT is that the 

standard deviation in the horizontal crosswind and vertical directions, σy and σz 

respectively, are estimated as part of the inverse problem.  Correlations for standard 

deviations [14] are enhanced with stochastic parameters as follows: 
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where ζ1, ζ2 are the stochastic parameters estimated in the inverse solution and x is the 

distance from the source location along the wind direction. In most air pollution 

studies these parameters are defined empirically, thus the forward model with standard 

deviations found in the inversion can be referred to as a data-driven plume model. 

In SERT, a Bayesian approach was used to find the inverse.  In this approach, a 

probabilistic inference is made on the forward model parameters m, given the 

observed data d.  The goal is to find the posterior probability density of the parameters 

given the data, i.e. to calculate )|( dmp . This is computationally intensive; therefore, 

Markov Chain Monte Carlo (MCMC) sampling technique is used to estimate the 

properties of the posterior probability density by noting the following 

).()|()|( mmddm pLp                                                     (4) 

The observed data d enters the Bayesian formulation through the likelihood 

function )|( mdL  while p(m) is a prior inference on the model parameters [15].  

The likelihood function is formulated by denoting the concentration measured by 

an ideal sensor i as ξi and the concentration observed by an actual sensor by di where 

they are related by: 
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It is assumed that the given parameters m, the probability ξi is observed follows a 

lognormal distribution with density 

 
 

FIGURE 1.  Application of SERT model to FFT-07 trial-7 data with continuous dissemination of a 

tracer gas from a single source. Colored diamond markers indicate concentration measurement by 
the sensor positive and blank square markers indicate negative (zero) sensor measurements. Traces 

of three Markov chains are shown. The actual source location is located at (0,0). 

 

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at 
AIP Conference Proceedings, published by American Institute of Physics. Copyright restrictions may apply.   

DOI: 10.1063/1.3573624

elizabethwalker
Rectangle



5 

 

  ,loglog
2

1
exp

2

1
)|(

2

2 







 mi

i

i Cp 


 m                            (6) 

where σ
2
 is the variance representing cumulative measurement and dispersion model 

errors.  Based on these assumptions, the likelihood function for a single datum di can 

then be written as follows: 
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 Given sensor data di, forward model predictions Cm and prior distributions, the 

Metropolis algorithm [15,16] was used for MCMC sampling in the SERT algorithm. 

Further details on SERT can be found in Senocak et al. [12]. 

 

 

RESULTS 

Figure 1 presents the reconstruction results for Trial-7 of the FFT-07 database. 

Sensor locations are indicated by markers. The sensors were deployed as a square 

matrix. All of the zero sensors were retained in the computations, but only those 

sensors that were deemed unreliable (e.g. -999 values for measurements) by the FFT-

07 organizers were excluded from the matrix. Traces of three Markov chain relative to 

all the sensors used in the calculations are shown in Figure 1. After a short burn-in 

time, the Markov chains sample from the vicinity of the true source location. All 

Markov chains starting from different locations are able to sample from the true source 

location indicate that the event reconstruction algorithm does not depend on 

initialization of the chain. It should be noted that the Metropolis algorithm is very 

 

    
 

FIGURE 2.  Application of SERT model to FFT-07 trial-7 data with continuous dissemination of a 

tracer gas from a single source. Left: Probability map for source location. The actual source is located 

at (0,0). Right: Marginal probability distribution of emission rate. The actual emission rate is 

represented by the vertical dashed line. 
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efficient in avoiding the local peaks. Additionally, the burn-in time for MCMC chains 

are typically short.   

In Figure 2, the plot on the left shows the probability map for the source location.  

The true source location is at (0,0) and the calculated probability region for the source 

is shaded around it. The highest probability region coincides with the true source 

location meaning that the actual source location is reconstructed with proximity of less 

than 10 m. Such probabilistic results are very useful to first-responders, because in 

emergency situations first responders are interested in zones instead of coordinates of 

a point.  

In Figure 2, the plot on the right presents the calculated marginal probability 

distribution of the emission rate, where the true emission rate is indicated with a 

dashed line. The peak of the calculated distribution is reasonably close to the true 

value, however, this is difficult to estimate with the Gaussian plume model, because 

the emission rate (Q) is jointly estimated with wind speed (U) and these two quantities 

appear as a ratio in the model.  

 

 
Event reconstruction results from Trial-15 of the FFT-07 database are shown in 

Figures 3 and 4.  This particular case was specifically selected because the plume, as 

can be observed from Figure 3, is dispersed on the field. However, a visual 

examination of the sensor observations indicates a steady Gaussian plume pattern in 

 
 

FIGURE 3.  Application of SERT model to FFT-07 trial-15 data with continuous dissemination of a 

tracer gas from a single source. Colored square markers indicate concentration measurement by the 

sensor positive and blank markers indicate negative (zero) sensor measurements. The trace of the 

Markov chain is also shown. The actual source is located at (0,0). Sensor measurements of the 

dispersed plume inside the shaded area are discarded in the calculations, because the forward model 

is not a suitable plume model for such cases.   
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the data. The SERT model was not successful in reconstructing the actual release 

when dispersed sensor information was taken into account. This is not surprising 

because the Gaussian plume model, which is currently the only forward model in 

SERT, is not a suitable model for highly dispersed plumes. On the other hand, the 

non-Gaussian dispersion of the plume, as observed from Figure 3, appears to have 

taken place during a short period of time. Therefore, when the sensor observations 

enveloped by the dashed loop in Figure 3 were excluded from the data set, SERT was 

successful in reconstructing the release. The present approach is definitely ad-hoc, but 

it highlights the importance of the forward model in event reconstruction. A time-

dependent puff model with spatial varying wind field should serve as a better forward 

model to simulate the whole release in this particular case.  

Similar to Figure 2, Figure 4 presents the probability map for the source location 

and the marginal probability distribution of the emission rate. Note that those sensor 

observations that correspond to the dispersed plume were ignored. The maximum 

distance of the probability region from the true source location is approximately 10 m, 

which is a very good reconstruction for emergency response purposes. Marginal 

probability distribution of the emission rate shows a wider range of probably values 

but the maximum in the distribution is in good agreement with the actual emission 

rate.  

 

CONCLUSIONS 

The Stochastic event reconstruction tool (SERT) [12] is further tested against the 

FFT-07 trial data. Unlike previous test cases, FFT-07 trial data represents short range 

atmospheric releases. Results have indicated that the SERT model is able to 

reconstruct dispersion events that appear to be steady on average. Estimates of source 

release location, based on maximum probability region were found to be within 

 

   
 

FIGURE 4.  Application of SERT model to FFT-07 trial-15 data with continuous dissemination of a 

tracer gas from a single source. Left: Probability map for source location. The actual source location is 

located at (0,0). Right: Marginal probability distribution of emission rate. The actual emission rate is 

represented by the dashed vertical line. 
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approximately 10 m of the true locations. Results significantly benefits from the data-

driven approach [12] adopted in the Gaussian plume model. For highly dispersed 

plumes, the constant wind Gaussian plume based forward model in SERT is not a 

suitable model. However, SERT performed well when observations that detect the 

dispersed plume were ignored in an ad-hoc fashion. Future work will focus on 

incorporating additional forward models into SERT to reconstruct different release 

scenarios.    
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