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Abstract. We discuss the solution of numerically ill-posed overdetermined systems of equa-
tions using Tikhonov a-priori-based regularization. When the noise distribution on the mea-
sured data is available to appropriately weight the fidelity term, and the regularization is as-
sumed to be weighted by inverse covariance information on the model parameters, the under-
lying cost functional becomes a random variable that follows a χ 2 distribution. The regulariza-
tion parameter can then be found so that the optimal cost functional has this property. Under
this premise a scalar Newton root-finding algorithm for obtaining the regularization parameter
is presented. The algorithm, which uses the singular value decomposition of the system matrix
is found to be very efficient for parameter estimation, requiring on average about 10 Newton
steps. Additionally, the theory and algorithm apply for Generalized Tikhonov regularization
using the generalized singular value decomposition. The performance of the Newton algorithm
is contrasted with standard techniques, including the L-curve, generalized cross validation and
unbiased predictive risk estimation. This χ2-curve Newton method of parameter estimation is
seen to be robust and cost effective in comparison to other methods, when white or colored
noise information on the measured data is incorporated.
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1. Introduction

We discuss the solution of numerically ill-posed, potentially overdetermined, systems of
equations Ax = b, A ∈ Rm×n, b ∈ Rm, x ∈ Rn, m ≥ n. Such problems arise
in many practical areas including image deblurring, for which the matrix A represents the
deconvolution operator, or the solution of Volterra integral equations. Extensive background
information on these problems and their solution is available in standard references such as
Hansen [8], Vogel [23] and the recent text of Hansen, Nagy, and O’Leary [9]. Because of the
ill-conditioning of the matrix A, solutions cannot be found by straightforward solution of the
least squares data-fit problem

x̂ls = argmin {‖Ax − b‖2}. (1)

Instead, relevant methods include projection-based techniques, which seek to project the noise
out of the system and lead to solutions of reduced problems, [17], and algorithms in which
a regularization term is introduced. Both directions introduce complications, not least of
which are stopping criteria for the projection iterations in the first case and in the second case
finding a suitable regularization parameter which trades-off a regularization term relative to
the data-fitting or fidelity term (1). Here we focus on efficient and robust determination of the
regularization parameter.

The most general formulation considered here is the regularized weighted least squares
problem with a two norm regularization term:

x̂rls = argmin J(x) = argmin{‖Ax − b‖2
Wb

+ ‖D(x − x0)‖2
Wx

}, (2)

where the weighted norm is ‖y‖2
W = yT Wy, for general vector y and weighting matrix

W . Vector x0 is a given reference vector of a priori information for the unknown model
parameters x and the matrix D is typically chosen to yield approximations to the l th order
derivative, l = 0, 1, 2, e.g. Chapter 1, [8]. In this case, except for l = 0 when D = In, the
matrixD ∈ R(n−l)×n is necessarily not of full rank, but the invertibility condition

N (A) ∩N (D) &= 0, (3)

is assumed, where here N (A) is the null space of matrix A. If information on the noise
structure of the measurements b is available, then Wb is taken to be the inverse of Cb, the
error covariance matrix for b. For example, for colored noise the covariance is given by
Cb = diag(σ2

bi
), where σ2

bi
is the variance in the ith component of b, or for white noise

Cb = σ2Im, where σ2 is the common variance in the components of b. MatrixWx is generally
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replaced by λ2In, where λ is an unknown regularization parameter; its determination using
statistical properties of the functional J(x̂rls) is the focus of this paper.

The outline of the paper is as follows. In Section 2 we present the theoretical background
and development of our approach for obtaining the regularization parameter, based on existing
results of [18] and [1]. The main new theorem, which characterizes the cost functional of (2)
for arbitraryD, is presented in Section 3 and leads to the design of a Newton-based algorithm
for estimating the regularization parameter. This algorithm, which as presented here, uses the
gneralized singular value decomposition (GSVD) [3, 5], is also contrasted with other standard
methods, including the L-curve, generalized cross validation (GCV) and unbiased predictive
risk estimator (UPRE), [7, 23] in Section 4. Numerical results for both simulated data and a
real data example from hydrology are presented in Section 5. Although our main focus here
is on findingWx, given a reliable estimate ofWb, we also briefly discuss the reverse situation,
findingWb givenWx, in Sections 2.2 and 3.1. Indeed, the real data example from hydrology
is posed in this alternative framework. Algorithmic details are reserved for the Appendix.
Future work and conclusions are discussed in Section 6.

2. Theoretical Background

It is well-established, stated as Rao’s First Fundamental Theorem of Least Squares, 1973
(page 189 [18]), that, assuming that the matrix A has rank r, the cost functional J(x̂ls) for
the unregularized case (1), with weightingWb = σ−2

b Im, is a random variable which follows
a χ2 distribution with m − r degrees of freedom, when the white noise εi in bi has common
covariance σ2

bIm. Apparently less well-known is the extension of this result for the regularized
problem (2) with matrix D = In. Specifically, when Wb and Wx are inverse covariance
matrices on the mean zero errors in data b and initial parameter estimates x0, respectively, the
functional J(x̂rls) in (2) is a random variable which follows a χ2 distributionwithm degrees of
freedom [1, 15]. A further extension for generalD and a detailed proof are given in Section 3.
These results extend the observation that x̂rls is the maximum-likelihood estimate, e.g. [23, 8].

Mead [15] suggested capitalizing on the χ2 distribution of the optimal functional to find
an appropriate regularization matrix Wx. In particular, when statistical information on ε is
available Wx may be chosen in order that J(x̂rls(Wx)) as closely as possible follows a χ2

distribution with meanm:

m −
√

2mzα/2 < J(x̂rls(Wx)) < m +
√

2mzα/2. (4)

Here it is assumed that m is large, in which case the χ2 distribution with m degrees of
freedom can be approximated by the normal distribution with meanm and variance 2m. Thus
zα/2 is the relevant z-value for for a standard normal distribution, and α defines the (1 − α)

confidence interval that J is a χ2 random variable with m degrees of freedom. For example,
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when m = 100 the 95% confidence interval states that J(x̂rls(Wx)) must lie in the interval
[72.28, 127.72].

To utilize this result withD = I , after a little algebra and usingCx = W−1
x , it was shown

in [15]

x̂rls(Wx) = x0 + CxA
T (ACxA

T + Cb)−1r, and (5)

J(x̂rls(Wx)) = rT (ACxA
T + Cb)−1r, (6)

where r = b − Ax0. Therefore, assuming Cx is symmetric positive definite (SPD), so that
its Cholesky factorization LxLT

x† exists, where Lx is lower triangular and invertible, Mead
solved the problem of finding Lx, and hence Cx, through a nonlinear minimization.

Algorithm 1 ([15]) Given confidence interval parameter α, initial residual r = b−Ax0 and
estimate of the data covariance Cb, find Lx which solves the nonlinear optimization.

Minimize ‖LxLT
x‖2

F

Subject to m −
√

2mzα/2 < rT (ALxLT
xAT + Cb)−1r < m +

√
2mzα/2

ALxLT
xAT + Cb well-conditioned.

Moreover, given estimates of Wb and Wx satisfying (4) for small α, the posterior
probability density for x, G(x), is a Gaussian probability density such that

G(x) = B exp(−1

2
(x − x̂rls)

T W̃x(x − x̂rls)), (7)

where W̃x is the inverse posterior covariance probability density, and B is a constant. In this
case, it can be shown that

W̃x = AT WbA + Wx, C̃x = (AT WbA + Wx)
−1 (8)

[21]. This identification of the posterior covariance is then useful in assigning uncertainty
bars to the posterior values of x̂rls, particularly when W̃x is diagonal, [15]. While Mead [15]
illustrated the use of Algorithm 1, and the associated posterior information (8), practically
some refinements are needed to make the approach computationally feasible. Here we focus
on the single variable caseWx = λ2In = σ−2

x In.

2.1. Single Variable Case

The singular value decomposition (SVD) facilitates the derivation of the algorithm for a
single regularization parameter, λ. Assuming that Cb is SPD then its Choleski factorization
Cb = LbLT

b exists, where Lb is invertible, and we use the SVD of L−1
b A.

† Note that throughout the paper we deliberately make use of the Cholesky factorization in all algebraic
manipulations and simplifications with the covariance matrices, in keeping with practical numerical
implementations.
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Lemma 2.1 Let UΣV T be the singular value decomposition (SVD) of L−1
b A, [5], with

singular values σ1 ≥ σ2 ≥ . . . ≥ σr, where r ≤ min{m, n} is the rank of matrix A. Then
with Cx = LxLT

x (6) is replaced by

m −
√

2mzα/2 < sT P−1s < m +
√

2mzα/2, s = UT L−1
b r, (9)

P = ΣV T LxL
T
xVΣT + Im, (10)

and the posterior covariance matrix is given by

C̃x = Lx(L
T
xVΣTΣV T Lx + In)−1LT

x . (11)

Proof. The following algebraic manipulations are standard, see for example [23].

ALxL
T
xAT + LbLT

b = Lb(L−1
b ALxL

T
xAT (LT

b)−1 + Im)LT
b

= Lb(UΣV T LxL
T
xV ΣT UT + UUT )LT

b and

rT (ALxL
T
xAT + LbLT

b)−1r = rT (UT LT
b)−1(ΣV T LxL

T
xV ΣT + Im)−1(LbU)−1r

= sT (ΣV T LxL
T
xV ΣT + Im)−1s.

The result for the covariance matrix follows similarly.
To be consistent with our use ofWx as an inverse covariance matrix, we now specifically

set Cx = σ2
xIn, equivalently throughout we now use σx = 1/λ. Then the matrix P in (10)

simplifies and (9) becomes

m−
√

2mzα/2 < sT diag(
1

σ2
i σ2

x + 1
)s < m+

√
2mzα/2, σi = 0, i > r.(12)

This suggests that σx can be found by a single-variable root-finding Newton method to solve

F (σx) = sT diag(
1

1 + σ2
xσ

2
i

)s − m = 0, (13)

within some tolerance related to the confidence interval parameter α. Indeed, it is evident
from (12) that F (σx) is only required to lie in the interval [−

√
2mzα/2,

√
2mzα/2], and

this can be used to determine the tolerance for the Newton method. Specifically, setting
m̃ = m − ∑m

i=r+1 s2
i and introducing the vector

s̃i =
si

σ2
xσ

2
i + 1

i = 1 . . . r, and 0 i > r, (14)

so as to reduce computation, we immediately obtain

F (σx) = sT s̃− m̃ and (15)

F ′(σx) = − 2σx‖t‖2
2, ti = σis̃i. (16)

Illustrative examples for F , for one of the simulated data sets used in Section 5, are shown in
Figure 1. We see that if F has a positive root, then it is unique:

Lemma 2.2 Any positive root of (13) is unique.
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(b)
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[!, F] = [0.012, 0.0008]

Curve F(!) for one case with Noise .128, with iterated values, colored noise

(c)

Figure 1. Illustration of χ2 curve for problem phillips, for one case with noise level .128,
(a) no noise assumption madeCb = Im, (b) white noise and (c) colored noise. In each case the
x−axis is the value of σx on a logarithmic scale and the y−axis is the value of the functional
F (σx) as given by (16).
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Proof. From (16) and (13) it is immediate that F (σ) is continuous, even and monotonically
decreasing on [0,∞). There are just three possibilities; (i) F is asymptotically greater than
zero for all σ > 0, (ii) F (0) < 0 and no root exists, or there exists a unique positive root.

The cases for which F (σx) &= 0 are informative. Case (i), when F (0) > 0 and
limσx→∞ F ′ >

√
2mzα/2, effectively suggests that the number of degrees of freedom is

exceeded for large σ. But this corresponds to small regularization parameter λ meaning that
the system does not require regularization and this case is thus not of practical interest. But
in case (ii) with F (0) = ‖s‖2 − m < −

√
2mzα/2, the monotonicity of F assures that no

solution of (13) exists, see Figure 1(a). Effectively, in this case the lack of a solution within a
reasonable interval means that J(x̂rls) does not follow the properties of a χ2 distribution with
m degrees of freedom; the number of degrees of freedomm is too large for the given data, and
weighting matrix Wb was not correctly approximated. For example, the case in Figure 1(a)
uses an unweighted fidelity term,Wb = Im, corresponding to a situation where no statistical
information is included and the statistical properties do not apply. Therefore, in determining
whether a positive unique root exists, it suffices to test the value of F for both 0 and a large σ
to determine whether one of the first two situations occurs.

Equipped with these observations a Newton algorithm in which we first bracket the root
can be implemented. Then, the standard Newton update given by

σnew
x = σx +

1

2σx‖t‖2
2

(sT s̃ − m̃). (17)

will lead to this unique positive root. The algorithm is extended for the case of general
operator D replacing the identity in Section 3.1, and algorithmic details, including a line
search, are presented in the Appendix.

At convergence the update and covariance matrix are immediately given by

x̂rls = x0 + V t̃, t̃ = σ2
xt and (18)

C̃x = σ2
x(V diag(

1

σ2
xσ

2
i + 1

, In−r)V
T ). (19)

Moreover, as noted before, at convergence (or termination of the algorithm) |F (σx)| = τ , for
some tolerance τ =

√
2mzα/2. Equivalently,F 2 = 2mz2

α/2 and the confidence interval (1−α)

can be calculated. The larger the value of τ , the larger the (1 − α) confidence interval and
the greater the chance that any random choice of σx will allow J(x̂) to fall in the appropriate
interval. Equivalently, if τ is large, we have less confidence that σx is a good estimate of the
standard deviation of the error in x0.

2.2. Estimating the data error

The problem of parameter estimation can be posed with respectCx known andCb to be found.
The analysis is equivalent and thus not given. Hence supposeCx, possibly dense, is given and
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Cb = σ2
bIm is to be found. Then we have that

m −
√

2mzα/2 < rT (UΣΣT UT + LbLT
b)−1r < m +

√
2mzα/2, (20)

where now UΣV T is the SVD of ALx. When Lb = σbIm, let

F (σb) = sT diag(
1

σ2
i + σ2

b)
)s − m, s = UT r, (21)

where σi are the singular values of the matrix ALx, σi = 0, i > r. Then σb can be found by
applying a similar Newton’s iteration to find the root of F = 0, see the Appendix.

3. Extension to Generalized Tikhonov Regularization

We now return to (2) for the case of general operator D and obtain a result on the degrees
of freedom in the functional through use of a decomposition which extends the SVD to
a common factorization when one has a pair of matrices, the generalized singular value
decomposition (GSVD), eg Chapter 2 [8], Chapter 8 [5] and research papers, [3, 6, 7].

Lemma 3.1 [5] Assume the invertibility condition (3) and m ≥ n ≥ p = n − l. There exist
unitary matrices U ∈ Rm×m, V ∈ Rp×p, and a nonsingular matrix X ∈ Rn×n such that

A = UΥ̃XT , D = V M̃XT , (22)

where

Υ̃ =





Υ 0

0 In−p

0 0



 , Υ = diag(υ1, . . . ,υ p) ∈ Rp×p,

M̃ =
[

M, 0p×(n−p)

]
, M = diag(µ1, . . . , µp) ∈ Rp×p,

and such that
0 ≤ υ1 ≤ . . . ≤ υp ≤ 1, 1 ≥ µ1 ≥ . . . ≥ µp > 0,

υ2
i + µ2

i = 1, i = 1, . . . p.
(23)

Theorem 3.1 Suppose Cb = W−1
b is the SPD covariance matrix on the mean zero normally-

distributed data error, εi and CD is the rank deficient symmetric positive semi-definite
covariance matrix for the model errors ζi = (x̂rls−x0)i, withWD = DT WxD its conditional
inverse, where Wx is SPD, satisfying the Moore-Penrose conditions WDCDWD = WD and
CDWDCD = CD, and that the invertibility condition (3) holds. Then for largem the minimum
value of the functional J is a random variable which follows a χ2 distribution withm−n+ p

degrees of freedom.

Proof. The solution of (2) with general operator D is given by the solution of the normal
equations

x̂rls = x0 + (AT WbA + DT WxD)−1AT Wbr (24)

= x0 + R(Wx)W
1/2
b r, where

R(Wx) = (AT WbA + DT WxD)−1AT W 1/2
b , r = b − Ax0. (25)
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The minimum value of J(x) in (2) is

J(x̂rls) = rT (ARW 1/2
b − Im)T Wb(ARW 1/2

b − Im)r +

rT (DRW 1/2
b )T Wx(DRW 1/2

b )r

= rT W 1/2
b (Im − W 1/2

b AR(Wx))W
1/2
b r

= rT W 1/2
b (Im − A(Wx))W

1/2
b r, (26)

where here A(Wx) = W 1/2
b AR(Wx) is the influence matrix [23]. Using the GSVD for the

matrix pair [Ã, D̃], Ã = W 1/2
b A and D̃ = W 1/2

x D, to simplify matrix A(Wx) it can be seen
that

Im − A(Wx) = Im − UΥ̃Υ̃T UT = U(Im − Υ̃Υ̃T )UT .

Therefore

J(x̂rls) = rT W 1/2
b U(Im − Υ̃Υ̃T )UT W 1/2

b r

=
p∑

i=1

µ2
i s

2
i +

m∑

i=n+1

s2
i , s = UT W 1/2

b r,

=
p∑

i=1

k2
i +

m∑

i=n+1

k2
i , k = QUT W 1/2

b r,

where

Q =





M 0 0
0 In−p 0

0 0 Im−n



 .

It remains to determine whether the components are independently normally distributed
variables with mean 0 and variance 1, i.e. whether k is a standard normal vector, which
then implies that J is a random variable following a χ2 distribution, [18].

By the assumptions on the data and model errors εi and ζi and standard results on the
distribution of linear combinations of random variables, the components of b = Ax are
normally distributed random variables and b has mean Ax0 and covariance Cb + ACDAT .
Therefore the residual r = b − Ax0, where x0 is constant, is a random variable with mean
0 and covariance Cb + ACDAT . Further, W 1/2

b r has mean 0 and covariance Im + ÃCDÃT .
Now, using the GSVD, we can write CD = (XT )−1diag(M−2, 0n−p)X−1, and thus

Im + ÃCDÃT = U(Im + Υ̃diag(M−2, 0n−p)Υ̃
T )UT

= U





M−2 0 0

0 In−p 0

0 0 Im−n



 UT = UQ−2UT .

Hence k has mean 0 and variance QUT (Im + ÃCDÃT )UQ = Im. Equivalently, J is a sum of
m − n + p squared independent standard normal random variables ki. The result follows.

When matrixD is full rank and all other assumptions remain it is clear that this proof also
provides a complete proof that J(x̂rls) is a χ2 random variable with m degrees of freedom.
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Again the optimal weighting matrix Wx for the generalized Tikhonov regularization should
satisfy, as in (4), with r̃ = W 1/2

b r,

m− n + p−
√

2(m − n + p)zα/2 < r̃T (Im −A(Wx))r̃ < m− n + p +
√

2(m − n + p)zα/2.

Assuming that Wx has been found such that confidence in the hypotheses of Theorem 3.1 is
high, the posterior probability density for x, is given by (7) with

W̃x = AT WbA + DT WxD, C̃x = (AT WbA + DT WxD)−1. (27)

Moreover, the development of an appropriate root finding algorithm in the single variable case
follows as before, see the Appendix.

3.1. Single Variable Case

Using the GSVD now for the pair [Ã, D], it is immediate that

J(x̂rls) = r̃T (Im − ÃC̃xÃ
T )r̃, C̃x = (AT WbA + σ−2

x DT D)−1

= sT





Ip −Υ2(Υ2 + σ−2
x M2)−1 0 0

0 0 0
0 0 Im−n



 s, s = U r̃

=
p∑

i=1

(1 − υ2
i

υ2
i + σ−2

x µ2
i

)s2
i +

m∑

i=n+1

s2
i ,

=
p∑

i=1

(
1

σ2
xγ

2
i + 1

)s2
i +

m∑

i=n+1

s2
i , γi =

υi

µi
. (28)

As in Section 2.1, some algebra can be applied to reduce the computation for the calculation
of F and F ′. Define m̃ = m− n + p−∑p

i=1 s2
i δγi0 −

∑m
i=n+1 s2

i , where δγi,0 is the Kronecker
delta, which is zero unless γi = 0, and let s̃ be the vector of lengthm with zero entries except
s̃i = si/(γ2

i σ
2
x + 1), i = 1, . . . , p, for γi &= 0, and let ti = s̃iγi. Then

F (σx) = sT s̃ − m̃, F ′(σx) = −2σx‖t‖2
2, (29)

and Lemma 2.2 still applies. Moreover, the Newton update (17) and the algorithms are the
same but with σi replaced everywhere by γi in the appropriate definitions of the variables, see
the Appendix. Additionally,

x̂rls = x0 + (XT )−1t̃, t̃i = { σ
2
xti/µi i = 1 . . . p

si i = p + 1 . . . n.
(30)

C̃x = ((XT )−1diag(
σ2

σ2ν2
i + µ2

i

, In−p)X
−1). (31)

As for the SVD case, the situation in which information on the weighting of the operator
Wx is known and Cb is to be estimated can also be considered. Note, also, that when D

is nonsingular and square, the GSVD of the matrix pair [A, D], corresponds to the SVD of
matrix AD−1, with the singular values now ordered in the opposite direction. If either A or
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D is ill-conditioned the calculation of AD−1 can be unstable, leading to contamination of the
results, and hence the algorithm should be, in general, implemented using the GSVD.

4. Other Parameter Estimation Techniques: L-curve, GCV and UPRE

The Newton update (17) for finding the regularization parameter based on root finding for
the χ2-curve provides an alternative approach to standard techniques such as the L-curve,
GCV and UPRE, which are also based on the use of the GSVD, for estimating the single
variable regularization parameter. These methods are well-described in a number of research
monographs and therefore no derivation is provided here. For example, see Chapter 7 [8] for
a discusion on the L-curve and GCV which are implemented in the toolbox [7], Chapter 7
in [23] where GCV, L-curve and UPRE are discussed and the more recent text of [9] in
which GCV, L-curve and discrepancy principle are again presented with some implementation
details provided. We thus quote results from these texts, using notation in keeping with that
used for the χ2 method. Moreover, in the following formulae the weighted right hand side b̃

is replaced by the relevant weighted residual r̃ when x0 &= 0. In terms of the GSVD and using
the notation of Section 3.1, the GCV function to be minimized is given by

C(σ) =
‖b̃− Ãx(σ)‖2

2

[trace(Im − A(Wx))]2
, Wx = σ−2In

=

∑m
i=n+1 s2

i +
∑p

i=1(δγi0s
2
i + s̃2

i )

(m − n + (
∑p

i=1
1

γ2
i σ2+1))

2
, (32)

[7]. The UPRE seeks to minimize the expected value of the predictive risk by finding the
minimum of the UPRE function

U(σ) = ‖b̃− Ãx(σ)‖2
2 + 2 trace(A(Wx)) − m

= (
m∑

i=n+1

s2
i +

p∑

i=1

(δγi0s
2
i + s̃2

i )) + 2(n −
p∑

i=1

1

γ2
i σ2 + 1

) − m, (33)

where note that the variance of the model error is explicitly included within the weighted
residual, [23]. In contrast, the L-curve approach seeks to find the corner point of the plot, on
log-log scale, of ‖Dx(σ)‖ against ‖Ãx(σ) − b̃‖. The advantages and disadvantages of these
approaches are well noted in the literature. The L-curve does not yield optimal results for the
weighted case Cb &= I , while the GCV and UPRE functions may be nearly flat for the optimal
choice of σ, and/or have multiple minima, which thus leads to difficulty in finding the optimal
argument, [7, 9]. See for example, Figure 7.2, p. 104 [23] which shows a relatively flat GCV
curve, similar to what we also observed with some of our own experiments using GCV.

Another well-known method, which assumes white noise in the data, is the discrepancy
principle. It is implemented by a Newton method, [23], and finds the variance σ2

x such that
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the regularized residual satisfies

σ2
b =

1

m
‖b− Ax(σ)‖2

2. (34)

Consistent with our notation this becomes the requirement that
p∑

i=1

(
1

γ2
i σ2 + 1

)2s2
i +

m∑

i=n+1

s2
i = m, (35)

similar to (28), but note that the weight in the first sum is squared in this case. Because this
method tends to lead to solutions which are over smoothed, [23], we do not use this method
in the comparisons presented in the following section.

In each of these cases, the algorithms rely on multiple calculations of the regularization
parameter. In particular, even though the GCV and UPRE functionals (32, 33) could be
directly minimized, the optimal value is typically found by first evaluating the functional
for a range of parameter values, on logarithmic scale. Then, after isolating a potential region
for a minimum, this minimum is found within that range of parameter values. For small-
scale problems, as considered in this paper, the parameter search is made more efficient by
employing the GSVD (resp. SVD) for evaluating the relevant functions (32, 33), or for the
data required for the L-curve. Effectively, in each case the GSVD is used to find solutions for
at least 100 different choices of the parameter value, [7]. This contrasts with the presented
Newton method described in Sections 2.1, 3.1, which, as will be demonstrated in Section 5,
converges with very few function evaluations. Hence while the cost of the proposed algorithm,
as presented here, is dominated by that for obtaining the GSVD (resp. SVD), this cost is the
same as that for initializing the other standard methods for parameter estimation, while in
contrast the optimal parameter is found with minimal additional cost.

5. Experiments

For validation of the algorithm against other standard approaches we present a series of
representative results using benchmark cases, phillips, shaw, ilaplace and heat
from the Regularization Tool Box [7]. In addition, we present the results for a real model from
hydrology. These experiments contrast the results presented in [15], in which Algorithm 1 was
used with more general choices for the weighting matrixWx.

5.1. Benchmark Problems: Experimental Design

System matrices A, right hand side data b and solutions x are obtained for a specific
benchmark problem from the Regularization Tool Box [7]. In all cases we generate a
random matrix Θ of size m × 500, with columns Θc, c = 1 : 500, using the Matlab R©[13]
function randn which generates variables from a standard normal distribution. Then setting
bc = b + level‖b‖2Θc/‖Θc‖2, for c = 1 : 500, generates 500 copies of the right hand vector
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Figure 2. Illustration of the noise in the right hand side for problem phillips, for the three
noise levels used in the presented experiments. The graphs show in each case b plotted against
its index on the x−axis.

b with normally distributed noise, dependent on the chosen level. Results are presented for
level = .005, .05, and .1. An example of the error distribution for one case of phillips with
n = 64 is illustrated in Figure 2. Because the noise depends on the right hand side b the
actual errors, as measured by the mean of ‖b − bc‖∞/‖b‖∞ over all c, are .006, .064 and
.128, respectively.

To obtain the weighting matrix Wb, the resulting covariance Cb between the measured
components is calculated directly for the entire data set B with rows (bc)T . Because of the
design, Cb is close to diagonal, Cb ≈ diag(σ2

bi
) and the noise is colored, see for example

Figure 3, again for the same three noise distributions. For experiments assuming a white noise
distribution the common variance σ2

b is taken as the average of the σ2
bi
. In all experiments,

regardless of parameter selection method, the same covariance matrix is used.
The a priori reference solution x0 is generated using the exact known solution and noise

added with level = .1 in the same way as for modifying b. The same reference solution x0,
see Figure 4, is used for all right hand side vectors bc, and for all algorithms, L-curve, GCV,
UPRE and χ2.

5.2. Benchmark Problems: Results

For all the tables the regularization for shaw uses the identity, while for the other problems the
first derivative operator is used. The column cb indicates white or colored noise assumption
for matrixCb, cb = 2, 3, resp. In the implementation of the Newton method to find the optimal
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Figure 3. Illustration of the variance distribution of the noise in the right hand side for problem
phillips, for the three noise levels used in the presented experiments. This is a plot of the
variance σ2

bi
against index i on the x−axis for each noise level.
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Figure 4. The reference solution x0 (crosses) used for problem phillips, as compared to
the exact solution (solid line), in each case for the component of the vector against its index.

σ, the algorithm first proceeds by seeking to bracket the root. After this the Newton algorithm
is implemented with a line search that maintains the current update of σ within the current
bracket, which is updated each step. Therefore the number of actual calculated σ involved
includes the bracketing step and the number of Newton steps. The number K reported is
the total number of calculated σ in the Newton algorithm, including the bracketing step, see
the Appendix. The error is the relative error in the solution ‖x − x̂rls‖2/‖x‖2 and weighted
predictive risk is ‖Ã(x̂rls − x)‖2/m. Average and standard deviation in values (K, σ, error
and risk) are calculated over 500 trials. The noise given is the average mean error resulting
from using level = .005, .05 and .1 as noted above and is problem dependent, see Table 1.
In all the experiments the algorithm is iterated to tolerance |F | < .014, which corresponds
to high confidence α = .9999 that the resulting σ generates a functional which follows a χ2

distribution withm + p − n degrees of freedom.
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The data provided in Table 1 illustrate the robustness of the convergence of the Newton
algorithm across noise levels and problem. The average number of required iterations is less
than 10 in all cases, and the standard deviation is always less than 4.5.

shaw phillips ilaplace heat
noise K noise K noise K noise K

0.008 9.0(2.0) 0.006 9.1(2.2) 0.003 7.2(1.1) 0.008 8.9(1.9)

0.084 5.6(1.1) 0.064 7.8(2.3) 0.034 9.1(4.3) 0.077 8.1(2.8)

0.166 5.2(1.1) 0.128 8.2(3.4) 0.069 7.9(4.1) 0.156 9.2(3.9)

0.008 9.0(1.9) 0.006 9.1(2.2) 0.003 7.1(1.2) 0.008 9.0(1.8)

0.084 5.6(1.1) 0.064 7.7(2.2) 0.034 9.4(4.4) 0.077 8.1(2.7)

0.166 5.2(1.0) 0.128 8.1(3.4) 0.069 8.5(4.4) 0.156 9.3(4.0)

Table 1. Convergence characteristics of the Newton algorithm for the χ 2-curve n = 64 over
500 runs. Problem shaw uses the identity operator, and the other problems the first derivative
operator. The first three rows are for white noise and the last three for colored noise. The data
forK are the mean and variance, in parentheses.

Tables 2-4 contrast the performance of the L-curve, GCV, UPRE and χ2-curve algorithms
with respect to the relative error, risk, and regularization parameter, resp, for problems shaw,
phillips and ilaplace, with noise for level = .1. With respect to the predictive risk
and the relative error, the results of the χ2-curve are comparable to those with the UPRE
statistical method. On the other hand, GCV, which is also statistically-based, is less robust,
generally yielding larger error and risk, roughly comparable to results obtained with the L-
curve. The results for the calculation of the regularization parameter show that the L-curve
and GCV underestimate the regularization required, as compared to the UPRE and χ2. It
can also be seen that the UPRE estimates of σx may be tighter than those achieved with the
χ2-curve. We can interpret this in terms of the steepness, or lack of steepness, of the χ2

curve near its root. If the curve is very steep near the root, we would expect to obtain a very
tight interval on the choice of σx, ie for a small change in the number of degrees of freedom,
equivalently of the width of the confidence interval, the change in σx is small. In contrast,
if results for the χ2 curve are not tight across many trials, we can deduce that the general
character of that problem leads to a curve which is not steep, and hence the solution is very
dependent on the actual confidence interval imposed on the number of degrees of freedom in
the solution. In such cases, we would need to make a much more severe tolerance in order
to obtain less variance in the obtained values of σx. ie. tighter results would be obtained by
specifying a smaller tolerance. On the other hand, one cannot claim that any given method
is totally ideal for picking a perfect regularization parameter. There will generally be a range
of acceptable values for σx, and its actual order of magnitude is much more significant for
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generating reasonable results, than the specific obtained value. Indeed, there is always a
trade-off between imposing tighter intervals and the computational cost.

Problem cb noise L-Curve GCV UPRE Chi
shaw 2 0.166 0.1211(0.0266) 0.4370(0.2934) 0.1070(0.0593) 0.1019(0.0235)

shaw 3 0.166 0.1204(0.0262) 0.4347(0.2919) 0.1066(0.0579) 0.1021(0.0202)

phillips 2 0.128 0.1490(0.1191) 0.1686(0.2018) 0.1186(0.0884) 0.1004(0.0010)

phillips 3 0.128 0.1467(0.1099) 0.1930(0.2370) 0.1164(0.0810) 0.1006(0.0014)

ilaplace 2 0.069 0.3791(0.2186) 0.2985(0.2464) 0.1421(0.1068) 0.1473(0.1122)

ilaplace 3 0.069 0.3996(0.2374) 0.2729(0.2357) 0.1463(0.1178) 0.1572(0.1364)

Table 2. Mean and Standard Deviation of Error with n = 64 over 500 runs

Problem cb noise L-Curve GCV UPRE Chi
shaw 2 0.166 0.0357(0.0088) 0.0344(0.0127) 0.0161(0.0082) 0.0120(0.0036)

shaw 3 0.166 0.0354(0.0089) 0.0342(0.0126) 0.0162(0.0081) 0.0125(0.0038)

phillips 2 0.128 0.0379(0.0106) 0.0268(0.0115) 0.0298(0.0112) 0.0225(0.0063)

phillips 3 0.128 0.0379(0.0107) 0.0283(0.0128) 0.0297(0.0111) 0.0229(0.0064)

ilaplace 2 0.069 0.0367(0.0081) 0.0244(0.0137) 0.0194(0.0103) 0.0169(0.0071)

ilaplace 3 0.069 0.0373(0.0086) 0.0217(0.0124) 0.0198(0.0105) 0.0172(0.0079)

Table 3. Mean and Standard Deviation of Risk with n = 64 over 500 runs

Problem cb noise L-Curve GCV UPRE Chi
shaw 2 0.166 0.6097(0.3993) 6.1070(5.4358) 0.1219(0.4446) 0.1683(0.6863)

shaw 3 0.166 0.6043(0.3989) 6.6179(8.7190) 0.1181(0.4235) 0.1720(0.3755)

phillips 2 0.128 0.0902(0.1958) 0.0810(0.1922) 0.0283(0.0880) 0.0061(0.0089)

phillips 3 0.128 0.0860(0.1801) 0.1132(0.2589) 0.0260(0.0799) 0.0065(0.0116)

ilaplace 2 0.069 0.1354(0.1478) 0.5316(1.5602) 0.0207(0.0315) 0.0421(0.1018)

ilaplace 3 0.069 0.1682(0.2452) 0.2969(1.0878) 0.0218(0.0338) 0.0456(0.1421)

Table 4. Mean and Standard Deviation of Sigma with n = 64 over 500 runs

5.3. Estimating data error: Example from Hydrology

In this section we use the χ2-curve method to estimate soil hydraulic propertiesa, and note
that in this application it used to find the weight σb on field measurements b, as described in
Section 2.2. The initial parameter estimatesx0 and their respective covarianceCx = diag(σ2

xi
)

are based on laboratory measurements, and specified a priori. In this example, the parameter
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estimates obtained by the χ2-curve method optimally combine field and laboratory data, and
give an estimate of field measurement error, i.e. σb.

In nature, the coupling of terrestrial and atmospheric systems happens through soil
moisture. Water must pass through soil on its way to groundwater and streams, and soil
moisture feeds back to the atmosphere via evapotranspiration. Consequently, methods to
quantify the movement of water through unsaturated soils are essential at all hydrologic
scales. Traditionally, soil moisture movement is simulated using Richards’ [19] equation
for unsaturated flow:

∂θ

∂t
= ∇ · (K∇h) +

∂K

∂z
. (36)

θ is the volumetric moisture content, h pressure head, and K(h) hydraulic conductivity.
Solution of Richards’ equation requires reliable inputs for θ(h) andK(h). These relationships
are collectively referred to as soil-moisture characteristic curves, and they are typically highly
nonlinear functions. These curves are commonly parameterized using the van Genuchten [22]
and Mualem [16] relationships:

θ(h) = θr +
(θs − θr)

(1 + |αh|n)m h < 0 (37)

K(h) = Ksθ
l
e

(
1 − (1 − θ1/m

e )m
)2

h < 0

θe =
θ(h) − θr
θs − θr

.

These equations contain seven independent parameters: θr and θs are the residual and
saturated water contents (both with units cm3cm−3), respectively, α (cm−1), n and m

(commonly set = 1 − 1/n) are unit-less empirical fitting parameters, Ks is the saturated
hydraulic conductivity (cm/sec) and l is the pore connectivity parameter (-). (Note that the
variables used in this application, K, n, m, α, r, s, are common notation for the parameters
in the model, and do not represent the number of iterations, size of the problem, confidence
interval etc. as in previous sections.) We focus on parameter estimates for θ(h) to be used in
Richards’ equation.

Field studies and laboratory measurements of soil moisture content and pressure head
in the Dry Creek catchment near Boise, Idaho are used to obtain θ(h) estimates. This
watershed is typical of small watersheds in the Idaho Batholith and hydrologic studies have
been conducted there since 1998 under grants from the NASA Land Surface Hydrology
program and the USDA National Research Initiative, [14]. Detailed hill slope and small-
catchment studies have been ongoing in two locations at low and intermediate elevations.
Measurements used here to test the χ2-curve method are from the intermediate elevation small
catchment which drains 0.02 km2. The north facing slope is currently instrumented with a
weather station, two soil pits recording temperature and moisture content at four depths, and
four additional soil pits recording moisture content and pressure head with TDR/tensiometer
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Figure 5. Soil water retention curves, θ(h), observed in the field, and in the laboratory. The
laboratory curve gives initial parameter estimates, while field measurements are the “data”, b.

pairs. We will show soil water retention curves from one of these pits.
Laboratory measurements were made on undisturbed samples (approximately 54 mm in

diameter and 30 mm long) taken from the field soil pits at the same depths, but up to 50
cm away from the location of the in-situ measurements so as to not influence subsequent
measurements. These samples were subjected to multi-step outflow tests in the Laboratory
[4]. The curves that fit the laboratory data do not necessarily reflect what is observed in the
field, see Figure 5. The goal is to obtain parameter estimates x which contain soil moisture
and pressure head information from both laboratory and field measurements, within their
uncertainty ranges. We rely on the laboratory measurements for good first estimates of the
parameters x0 = [θr, θs,α, n, m] and their standard deviations σxi . It takes 2-3 weeks to obtain
one set of laboratory measurements, but this procedure is done multiple times from which we
obtain standard deviation estimates and formCx = diag(σ2

θr
, σ2

θs
, σ2

α, σ2
n, σ

2
m). These standard

deviations account for measurement technique or error. however, measurements on this core
may not accurately reflect soils in entire watershed region.

In order to include what is observed in the field, the initial parameter estimates from the
laboratory, x0, are updated with measurements collected in-situ. However, we also cannot
entirely rely on the in-situ data because it contains error due to incomplete saturation, spatial
variability, measurement technique and error. This means we must also specify a data error
weight Cb a priori. It is not possible to obtain repeated measurements of field data, and get
uncertainty estimates as was done with laboratory cores. We instead estimate Cb by using
the χ2-curve method. This requires a linear model, and we use the following technique to

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online at 
 Inverse Problems, published by Institute of Physics. Copyright restrictions may apply.  doi:  10.1088/0266-5611/25/2/025002

18



0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

Soil Moisture Measurements
from the Field and the Lab

#(h) 

| h
 |

Field Measurements
Laboratory Curve

Figure 6. The curve resulting from the value of x̂ found by the χ2-curve method optimally
combines field and laboratory measurements, within their standard deviation ranges.

simulate the nonlinear behavior of (37). Let

θ(h,x) ≈ θ(h,x0) +
∂θ

∂x

∣∣∣∣∣
x=x0

(x − x0) (38)

= A(h,x0)x + q(h,x0), (39)

where

A(h,x0) =

[
∂θ(h,x0)

∂θr

∂θ(h,x0)

∂θs

∂θ(h,x0)

∂α

∂θ(h,x0)

∂n

∂θ(h,x0)

∂m

]

,

and

q(h,x0) = θ(h,x0) − A(h,x0)x0.

Then bi = θ(hi,x)−q(hi,x0) has dimension equal to the number of measurementsN , while
A has dimension N × 5. An optimal x̂ is found by the χ2-curve method, x0 is updated with
it, and (39) is iterated. The results are shown in Figure 6 where we plot the initial estimate
x0 and field measurements with their standard deviations, along with the final curve found by
iterating the χ2-curve method. The final estimate x̂ converged in three iterations on the linear
model (39) . The standard deviation for x0 was specified a prioriwhile the standard deviation
for the data was calculated with the χ2-curve method, and is estimated to be 0.02775. We
note that the large standard deviation on x0 observed in the laboratory, resulted in optimal
estimates x̂ which more closely resemble what was observed in the field. The value of the χ2

variable in this example exactly matched the number of data: 694.
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6. Conclusions

A cost effective and robust algorithm for finding the regularization parameter for the solution
of regularized least squares problems has been presented, when a priori information on either
model or data error is available. The algorithm offers a significant advantage as compared
to other statistically-based approaches because it determines the unique root, when the root
exists, of a nonlinear monotonic decreasing scalar function. Consistent with the quadratic
convergence properties of Newton’s method, the algorithm converges very quickly, in, on
average, no more than ten steps. Compared with the UPRE or GCV approaches this offers a
considerable cost advantage, and avoids the problem with the multiple minima of the GCV
and UPRE. In accord with the comparison of statistically-based methods discussed in [23],
we conclude that a statistically-based method should be used whenever such information
is available. While we have not yet compared with new work described in [20] which is
statistically-based but appears to be more computationally demanding, our results suggest
that our new Newton χ2-curve method is competitive. These positive results are encouraging
for the extension of the method, as suggested in [15], for a more general covariance structure
of the data error. This will be the subject of future research. Moreover, we note that the theory
presented here is only valid as given when x0 is the appropriate expected mean of the model
parameters. Correspondingly the results presented were only for the case in which an estimate
of x0 is provided. The extension and validation of the method when x0 is not available is also
a subject of future research.
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Appendix

The χ2-curve method uses a basic Newton iteration with an initial bracketing step and a line
search to maintain the new value of σ within the given bracket. The generic algorithm in
all cases is the same, and just depends on the functional for calculating F (σ), dependent on
either the SVD (14-16) or GSVD (29) as appropriate, and whether the goal is to find σb or σx.
Given the optimal σ solution x̂ can be obtained using (18) or (30).
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Algorithm 2 (Find σ which is a root of F (σ)) Given functionals for evaluation of F (σ) and
step(σ) = F (σ)/(σF ′(σ)), tolerance τ , maximum number of steps Kmax, initial residual
r = b−Ax0, and the degrees of freedomm−n+ p. Set σ = 1, k = 1, α0 = 1, and calculate
F (σ).

Bracket the root:
Find σmin > 0 and σmax < 106 such that F (σmin) > 0 > F (σmax)

Use Logarithmic search on σ and increment k for each F (σ).
Stop if no bracket exists.
Newton updates with line search:
While F (σ) > τ & k < Kmax Do

Set α = α0. Evaluate step(σ)

Until σnew within bracket Do σnew = σ(1 + α step), α = α/2.
Set σ = σnew, k = k + 1, update F (σ)

As previously noted in Sections 2.2, 3.1 the algorithms can be modified to handle the
case that Cx is given and Cb is to be found. For the case whenD = I we use from (21)

F (σ) = s̃T s− m, s̃i =
si

σ2
i + σ2

, σi = 0, i > r

F ′(σ) = − 2σ‖s̃‖2

x̂ = x0 + LxV t, ti =
σi

σ2 + σ2
i

and

C̃x = σ2LxV diag(
1

σ2
i + σ2

)V T LT
x .

Otherwise, for the GSVD case the equivalent results are obtained with s = U T r, γi = 0, i > p,
and m̃ = m − n + p.

F (σ) = sT s̃− m̃ s̃i =
si

σ2 + γ2
i

, i = 1 . . .m,γ i &= 0, s̃i = 0, otherwise,

F ′(σ) = − 2σ‖s̃‖2

ti =
γis̃i

µi
, i = 1 . . . p, ti = si, i = p + 1 . . . n, and ti = 0 otherwise

x̂ = x0 + (XT )−1t,

C̃x = σ2(XT )−1(diag(
1

ν2
i + σ2µ2

i

), In−p)X
−1.
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