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Regressive functions on pairs

Andrés Eduardo Caicedo1

Mathematics/Geosciences building, Department of Mathematics, Boise State University
1910 University Drive, Boise, ID 83725-1555

Abstract

We compute an explicit upper bound for the regressive Ramsey numbers by a combina-
torial argument, the corresponding function being of Ackermannian growth. For this, we
look at the more general problem of bounding g(n,m), the least l such that any regres-
sive function f : [m, l][2] → N admits a min-homogeneous set of size n. Analysis of this
function also leads to the simplest known proof that the regressive Ramsey numbers have
rate of growth at least Ackermannian. Together, these results give a purely combinatorial
proof that, for each m, g(·,m) has rate of growth precisely Ackermannian, considerably
improve the previously known bounds on the size of regressive Ramsey numbers, and
provide the right rate of growth of the levels of g. For small numbers we also find bounds
on their value under g improving the ones provided by our general argument.

Key words: Kanamori-McAloon theorem, regressive Ramsey numbers, Ackermann’s
function.
2000 MSC: 05D10, 03D20.

1. Introduction

Throughout this paper, N = {0, 1, . . . }. For 1 ≤ n, k ≤ m, let m → (n)k
reg be the

following assertion:

Whenever f : [1,m][k] → [0,m − k] is regressive, there is H ∈ [1,m][n] min-
homogeneous for f .

Similarly, for X ⊆ N infinite, let X → (N)k
reg mean that for every regressive f :

X [k] → N there is H ⊆ X infinite and min-homogeneous for f . Here,

• X [k] is the collection of k-sized subsets of X.

• f : X [k] → N is regressive iff f(s) < min(s) whenever s ∈ X [k] and min(s) > 0
(where min(s) is the least element of s).
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• For such an f , H ⊆ X is min-homogeneous for f iff 0 /∈ H and, whenever s, t ∈ H [k]

and min(s) = min(t), then f(s) = f(t).

• [n,m] = {n, n+ 1, . . . ,m}. Similarly for other interval notation.

The following is the main result of Kanamori-McAloon [5]:

Theorem 1.1. 1. For any k, n ∈ N, there is m such that m→ (n)k
reg.

2. Item 1 is not a theorem of Peano Arithmetic PA.

In fact, in Kanamori-McAloon [5] a level-by-level correspondence is established be-
tween the values of k and the amount of induction required to prove the existence of the
function that to n assigns the least m as in Theorem 1.1.1; see Carlucci-Lee-Weiermann
[2] for more on this.

In this paper, I only deal with k = 2 although, in Section 3, I present a short proof
of Theorem 1.1.1. In Section 4, I show that

g(n) = least l such that l→ (n)2reg

is provably total in PA. In fact, I provide an explicit (recursive) upper bound for g(n),
thus showing by purely elementary means that its rate of growth is at most Ackerman-
nian.

To state the result, let g(n,m) be the least l such that for any regressive

f : [m, l][2] → [0, l − 2],

there is a min-homogeneous set for f of size n. (From now on, all mentions of g refer to
this two-variable function.) Clearly g(n,m) ≤ g(n,m+ 1), g(2,m) = m+ 1 and, by the
pigeonhole principle, g(3,m) = 2m+ 1.

Let G(n,m) be the least l such that for any regressive f : [m, l][2] → [0, l − 2], there
is a min-homogeneous set for f of size n whose minimum element is m. It may not be
immediate that G is well-defined, but this is addressed by Remark 3.3 and the proof of
Theorem 4.1.

We have G(2,m) = g(2,m), G(3,m) = g(3,m), G(n + 1, 1) = g(n + 1, 1) = g(n, 2)
and, in general, g(n,m) ≤ G(n,m). Finally, set g0(n,m) = m and gk+1(n,m) =
g(n, gk(n,m)). We then have:

Theorem 1.2. 1. G(4,m) = 2m(m+ 2)− 1.
2. Let α−1 = 0 and, for 0 ≤ i < m, let di = gi(4,m+ 1) and

αi = (αi−1 +m+ 3 + i)(2di − 1).

Then g(5,m) ≤ (2m+ 1) +
∑m−1

i=0 αi.
3. For all n, there is a constant cn such that G(n,m) < An−1(cnm) for almost all m.

Here, An = A(n, ·) where A is Ackermann’s function, see Section 2. Theorem 1.2.2
is proven by adapting the argument of Blanchard [1, Lemma 3.1] (that bounds g(5, 2))
to the more general problem of bounding g(5,m). In Kojman-Shelah [7], explicit lower
bounds for g are computed, showing that g is at least of Ackermannian growth (our
notion of “Ackermannian growth” is more restrictive than that of Kojman-Shelah [7] or
Kojman-Lee-Omri-Weiermann [6], and is discussed in Section 2). In Section 5, I find
lower bounds for G(n,m) and g(n,m) in terms of iterates of g(n− 1, ·), and conclude:

2
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Theorem 1.3. g(n,m) ≥ An−1(m− 1) for all n ≥ 2.

The proof of Theorem 1.3 is simpler and shorter than the proofs of lower bounds in
Kojman-Shelah [7] and Kojman et al. [6], and increases these bounds significantly. Thus
the results of Sections 4 and 5 combine to give a very accessible and purely combinatorial
proof of the result obtained in Kanamori-McAloon [5] by model theoretic methods, that
g is not provably total in Primitive Recursive Arithmetic PRA, but is “just shy” of it; in
fact, the argument gives that, for each m, the function g(·,m) has Ackermannian rate of
growth. These results also establish the rate of growth of the function g(n, ·) as being
precisely that of the (n−1)st level of the Ackermann hierarchy of fast growing functions.

In the literature, the values of g (more precisely, the values of g(·, 2)) are referred to
as “regressive Ramsey numbers.” In Section 6, I improve the upper bound for g(4,m)
and show:

Theorem 1.4. g(4, 3) = 37.

I also improve the upper bound for g(4, 4) provided by the general argument of Section
6. The figures so obtained improve the previously known bounds for small regressive
Ramsey numbers obtained in Blanchard [1] and Kojman et al. [6].

I occasionally abuse notation by writing f(t1, t2) for f(t) where t1 < t2 and t =
{t1, t2}.

2. Preliminaries on Ackermannian functions

In this section I collect several standard results about Ackermannian growth; notice
that the notion I use is more restrictive than the version used in Kojman-Shelah [7]
or Kojman et al. [6], where a function is called Ackermannian simply if it eventually
dominates each primitive recursive function.

Definition 2.1. Given functions g, h : N → N, say that h eventually dominates g, in
symbols g <∗ h, iff g(m) < h(m) for all but finitely many values of m.

Definition 2.2. Ackermann’s function A : N×N→ N is defined by double recursion as
follows:

• A(0,m) = m+ 1.

• A(n, 0) = A(n− 1, 1) for n > 0.

• A(n,m) = A(n− 1, A(n,m− 1)) for n,m > 0.

Let Ack(n) = A(n, n) and An = A(n, ·). Sometimes, in the literature, it is Ack that
is referred to as Ackermann’s function. This is the standard example of a recursive but
not primitive recursive function. The version presented above is due to Rafael Robinson
and Rózsa Péter, see Robinson [8]. Notice that A1(m) = m + 2, A2(m) = 2m + 3, A3

has exponential rate of growth and A4 grows like a tower of exponentials.

Definition 2.3. Let f0(m) = m + 1 and fn+1(m) = fm
n (m) where the superindex

indicates that fn is iterated m times. Continue this hierarchy by letting fω(m) = fm(m)
and fω+1(m) = fm

ω (m).
3
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Notice that what in Kojman et al. [6] is called Ackermann’s function is the map
A′(n,m) = fn−1(m).

Definition 2.4. A function f : N→ N is (precisely) of Ackermannian growth if and only
if there are constants c, C > 0 such that for all but finitely many m, fω(cm) ≤ f(m) ≤
fω(Cm).

Similarly, say that a function’s rate of growth is like that of the nth level of the
Ackermann hierarchy if there are constants c, C > 0 such that for all but finitely many
m, An(cm) ≤ f(m) ≤ An(Cm).

(Compare with Graham-Rothschild-Spencer [4, Section 2.7], where the relevant notion
is called Ackermannic.)

The following two lemmas are standard and collect together several folklore results;
see for example Graham-Rothschild-Spencer [4] and Cori-Lascar [3].

Lemma 2.5. 1. For all n, An < An+1 and fn <∗ fn+1. In fact, for any C > 0 and
almost all m, An(Cm) < An+1(m) for n > 0, and fn(Cm) < fn+1(m) for all n.

2. For all n > 0, An+1 <∗ fn and fn(m) < An+1(cm) for some constant c = cn and
all m.

3. fω and Ack are of Ackermannian growth.

More precise quantitative versions of the above are possible, but Lemma 2.5 as stated
suffices for our purposes.

Lemma 2.6. 1. If f is of Ackermannian growth, it eventually dominates each prim-
itive recursive function. In particular, it eventually dominates each fn.

2. If f is of Ackermannian growth then it is eventually dominated by fω+1.
3. There is a function f that eventually dominates each fn and is eventually dominated

by fω+1 but is not of Ackermannian growth.
4. If g, h are strictly increasing primitive recursive functions and f is of Ackermannian

growth, then so is g ◦ f ◦ h.

3. Regressive functions

I start by proving the infinite version of Theorem 1.1.1. This is also done in Kanamori-
McAloon [5], but the argument to follow is easier (in Kanamori-McAloon [5] this is
accomplished using the Erdős-Rado canonization theorem). The proof of Theorem 1.2
in Section 4 was obtained by trying to produce a finitary and effective version of this
argument for k = 2.

Lemma 3.1. If X ⊆ N is infinite, then for any k, X → (N)k
reg.

Proof. Let f : X [k] → N be regressive. Without loss, k > 1. Define a decreasing sequence
of infinite subsets of X, X \{0} = H0 ⊃ H1 ⊃ H2 ⊃ . . . such that, letting mn = minHn,
then (mn)n≥0 is strictly increasing, as follows: Given Hn, let

ϕ : (Hn \ {mn})[k−1] → [0,mn − 1]

be the function ϕ(s) = f({mn} ∪ s). By Ramsey’s theorem, there is Hn+1 infinite and
homogeneous for ϕ.

Then {mn :n ∈ N } is min-homogeneous for f .
4
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Theorem 1.1.1 follows now from a standard compactness argument:

Corollary 3.2. ∀n∀k ∃l (l→ (n)k
reg).

Proof. Fix n and k counterexamples to the corollary. For each m ≥ n, k, it follows that
there are regressive functions f : [1,m][k] → [0,m − k] without min-homogeneous sets
of size n. Consider the collection T of all these functions, ordered by extension: Given
f1, f2 ∈ T , f1 : [1,m1][k] → [0,m1 − k], f2 : [1,m2][k] → [0,m2 − k], set f1 < f2 iff
m1 < m2, and f2 � [1,m1][k] = f1. Then (T , <) is an infinite finitely branching tree so,
by König’s lemma, it has an infinite branch. The functions along this branch fit together
into a regressive function f : N[k] → N which contradicts Lemma 3.1 since it does not
even admit min-homogeneous sets of size n.

Remark 3.3. Notice that using this argument one can easily show that G(n,m) is well
defined. Our argument next section will also show this.

4. An Ackermannian upper bound for G

Here I prove Theorem 1.2.3; the argument resembles the “color focusing” technique
from Ramsey theory.

Theorem 4.1. For each fixed m, G(n,m) is bounded by a function of Ackermannian
growth. In particular, so is g(n, 2) ≤ G(n, 2).

Proof. I find an upper bound for the function G(n, ·) by induction on n. In order to do
this, I introduce numbers si = s(i, n,m) for all n ≥ 4, m ≥ 2, and 1 ≤ i ≤ m, and argue
that G(n,m) ≤ s(m,n,m).

Fix n ≥ 4. The numbers si are computed in terms of the function G(n − 1, ·). Fix
m, which we may assume is at least 2.

Define s(1, n,m), . . . , s(m,n,m) and t0, t1, . . . , tm−1 recursively as follows.

• Let t0 = m+ 1.

• Let s1 = g(n− 1, t0) and, for 1 ≤ i < m, let si+1 = G(n− 1, ti).

• For 1 ≤ j ≤ m, let Bn,m
j = Bj =

⋃j
i=1[ti−1, si], and denote by

∏
Bj the Cartesian

product
∏

i∈Bj
[0, i− 1].

• For 1 ≤ j < m, let tj = (j + 1)× |
∏
Bj |.

We claim that G(n,m) ≤ s(m,n,m). To see this, suppose a regressive function
f : [m, sm][2] → [0, sm − 2] is given.

Fix j, 1 < j ≤ m. Suppose f(m, ·) � Bj takes at most j values. (This holds trivially
for j = m.) We claim that either there is a min-homogeneous set for f of size n contained
in {m} ∪ Bj whose minimum element is m, or else f(m, ·) � Bj−1 takes at most j − 1
values.

Consider the regressive function

ψ : [tj−1, sj ][2] → [0, sj − 2]

5
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given by

ψ(u) =
{
f(u) if u1 > tj−1,
〈 f(l, u2) : l ∈ {m} ∪Bj−1 〉 if u1 = tj−1,

where 〈. . .〉 is a bijection from the Cartesian product Cj ×
∏
Bj−1 onto [0, tj−1), where

Cj ⊂ [0,m− 1] has size j and contains the possible values that f(m, ·) � Bj can take.
Then (by definition of sj) there is a set {a1, . . . , an−2} ⊆ [tj−1 + 1, sj ] that is min-

homogeneous for f and such that for all k ∈ {m} ∪ Bj−1, {k, a1, . . . , an−2} is also
min-homogeneous for f . Let f(m, a1) = c. If f(m, k) = c for any k ∈ Bj−1, then
{m, k, a1, . . . , an−2} is the min-homogeneous set we are looking for. Otherwise, f(m, ·) �
Bj−1 takes at most j − 1 values, as claimed.

There is therefore no loss in assuming that f(m, ·) � B1 is constant. But then, by
definition of s1, there is {a1, . . . , an−1} ⊆ B1 min-homogeneous for f . Then {m} ∪
{a1, . . . , an−1} is also min-homogeneous, and we are done.

Define a function H(n,m) as follows: H(n, ·) = G(n, ·) for n ≤ 4 (see also Fact 5.3
below); in the argument above, let s′i be the function resulting from replacing G(n− 1, ·)
with H(n−1, ·) in the definition of si, and let H(n,m) = s′(m,n,m), so clearly G ≤ H. It
is easy to see, using standard arguments (or consider the proof of Theorem 1.2.3 below)
that n 7→ H(n,m) (for any fixed m) is of Ackermannian growth. This completes the
proof.

Remark 4.2. Since the argument above only requires f to be defined on

({m} ∪Bn,m
m )[2],

it follows (by “translation”) that g(n,m) ≤ m+ |Bn,m
m |.

That G(4,m) = 2m(m+ 2)− 1 is shown in Fact 5.3, and the upper bound on g(5, ·)
is shown in Theorem 7.1. Using this (all I need is that G(4,m) has exponential rate of
growth) and the argument of Theorem 4.1, Theorem 1.2.3 follows easily:

Proof. Use the notation of the proof above, and argue by induction on n ≥ 5 since the
result is clear for n ≤ 4 from the explicit formulas for G(n, ·). Notice the easy estimate
l! < 2l(l−1)/2 and the obvious inequality s(i + 1, n,m) = si+1 ≤ G(n − 1, si!) for i < m.
From this and Fact 5.3 we have that for n = 5 there is a constant c5 such that si is
bounded by a tower of two’s of length c5i applied at m,

si ≤ 22
. . .

2m

.

In fact any c5 slightly larger than 3 suffices (with room to spare). This proves the result
for n = 5; for n > 5 use Lemma 2.5 and proceed by a straightforward induction to show
that cn−1 = n− 1 suffices (and therefore for each m, g(·,m) has rate of growth precisely
Ackermannian).

Question 4.3. Can the value of the constants cn be significantly improved? This seems
to require a more careful analysis than the one above, perhaps combined with fine detail
considerations, as in the proof of Theorem 7.1.

6
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5. Lower bounds for g and G

Here I prove Theorem 1.3.

Theorem 5.1. 1. G(n+ 1,m) ≥ gm(n,m+ 1).
2. g(n + 1,m + 1) ≥ g(n, g(n + 1,m) + 1). In particular, for n ≥ 2 and m ≥ 1,
g(n,m) ≥ An−1(m − 1), the inequality being strict for n > 2 and, for example,
g(4,m) > 2m+2 for m > 1.

Proof. I exhibit a regressive function f : [m, gm(n,m + 1) − 1][2] → N without min-
homogeneous sets of size n+1 whose minimum element is m. Start by choosing regressive
functions

Fk : [gk(n,m+ 1), gk+1(n,m+ 1)− 1][2] → N

without min-homogeneous sets of size n, for k < m; this is possible by definition of
g(n, ·). Now set, for m < a ≤ gm(n,m+ 1)− 1,

f(m, a) = k ⇐⇒ gk(n,m+ 1) ≤ a < gk+1(n,m+ 1),

and, for such a, and b ∈ (a, gk+1(n,m+ 1)− 1],

f(a, b) = Fk(a, b).

Define f(a, b) for other values of a and b arbitrarily (below a). This function works, for
if min(H) > m and {m} ∪H is min-homogeneous for f , then H is completely contained
in some interval [gk(n,m + 1), gk+1(n,m + 1)) for some k < m, but then H is min-
homogeneous for Fk, so |H| < n.

I now prove item 2. Let Fm : [m, g(n+ 1,m))[2] → N be a regressive function without
min-homogeneous sets of size n+ 1, and let

hm : [g(n+ 1,m) + 1, g(n, g(n+ 1,m) + 1))[2] → N

be a regressive function without min-homogeneous sets of size n. Define

Fm+1 : [m+ 1, g(n, g(n+ 1,m) + 1))[2] → N

by

Fm+1(a, b) =

 Fm(a− 1, b− 1) if b ≤ g(n+ 1,m),
a− 1 if a ≤ g(n+ 1,m) < b,
hm(a, b) if g(n+ 1,m) < a.

Then Fm+1 is regressive. If H is min-homogeneous for Fm+1 and |H| ≥ 2, let a = min(H)
and b = min(H \ {a}). If b ≤ g(n+ 1,m) then Fm+1(a, b) = Fm(a− 1, b− 1) < a− 1 so
H ⊆ [m+ 1, g(n+ 1,m)] and {h− 1 :h ∈ H} is min-homogeneous for Fm, so |H| ≤ n.

If g(n + 1,m) < b then H \ {a} is min-homogeneous for hm, so |H \ {a}| < n and
|H| < n+ 1 in this case as well.

Remark 5.2. Notice that for n = 3, the argument of Theorem 5.1.1 describes (up to
trivial renamings) all the examples of regressive functions f : [m, gm(3,m+1)−1][2] → N

7
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not admitting min-homogeneous sets of size 4 with minimum element m. It is easy now
to give an example of a regressive f : [2, 14][2] → N witnessing 14 6→ (5)2reg:

f(i, j) =



j − i− 1 (mod i) if i ≥ 6,

0 if
i = 2 and j ≤ 6,
i ∈ [3, 5] and j = i+ 1,

1 if
i = 2 and 7 ≤ j,
i = 3 and j ∈ {5, 7, 8},
i ∈ {4, 5} and j = i+ 1,

2 if
i = 3 and j ∈ {6} ∪ [9, 14],
i = 4 and j = 7,
i = 5 and 8 ≤ j,

3 if i = 4 and 8 ≤ j.

I leave to the reader the easy verification that this example works; in Theorem 6.1.2,
I analyze a more difficult example witnessing g(4, 3) ≥ 37. See Blanchard [1] for an
analysis of a different example also witnessing g(4, 2) ≥ 15; the function I have presented
is closer in spirit to the other constructions in this paper.

Now I prove Theorem 1.2.1:

Fact 5.3. G(4,m) = 2m(m+ 2)− 1.

Proof. Notice that 2m(m+ 2)− 1 = gm(3,m+ 1) ≤ G(4,m) by Theorem 5.1.1. Suppose
f : [m, 2m(m+ 2)− 1][2] → N is regressive. A straightforward induction on k ≤ m shows
that either f(m, ·) � [m + 1, 2k(m + 1) + 2k − 1] takes at least k + 1 values, or else f
admits a min-homogeneous set A ∈ [m, 2k(m + 1) + 2k − 1][4] with m ∈ A (see also the
proof of Theorem 6.1.1 for a more detailed presentation of a similar approach). When
k = m, this shows that G(4,m) ≤ 2m(m+ 2)− 1.

Remark 5.4. Thus, g(4, 2) = G(4, 2) = 15. In the next section, I improve the upper
bound for g(4,m), m > 2.

Corollary 5.5. g(5, 2) > 218.

This significantly improves the bound g(5, 2) ≥ 195 claimed in Blanchard [1].

Proof. g(5, 2) ≥ g(4, g(5, 1) + 1) = g(4, 16) > 218.

Remark 5.6. In fact, by Theorem 6.1.2, g(4, 3) = 37, so g(4,m) ≥ 5×2m−3 for m ≥ 3,
and g(5, 2) ≥ 5× 216 − 3.

Theorem 5.1.2 also improves significantly the bound g(81, 2) > f51(22274
) obtained in

Kojman et al. [6, Claim 2.32] (here, f51 is as in Section 2; to see that the new bound is
an improvement, a slightly more precise version of Lemma 2.5 is necessary).

8
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6. Bounds for g(4, ·)

From Section 5 it follows that g(4,m) ≤ 2m(m + 2) − 1. Here I improve this bound
and prove Theorem 1.4.

Theorem 6.1. 1. For m ≥ 2, g(4,m) ≤ 2m(m+ 2)− 2m−1 + 1.
2. g(4, 3) = 37.
3. g(4, 4) ≤ 85.

Proof. I have already shown that g(4, 2) = 15. Assume m ≥ 3, let

n = 2m(m+ 2)− 2m−1 + 1,

and suppose a regressive f : [m,n][2] → N is given. I need to argue that there is
H ∈ [m,n][4] min-homogeneous for f . For i < m, let ai = min{j : f(m, j) = i} and
Ci = {j > ai : f(m, j) = i}. One may assume that, as long as the ai are defined, they
occur in order, so m+ 1 = a0 < a1 < · · ·

If f(m+ 1, a) = f(m+ 1, b) for a 6= b in C0, then H = {m,m+ 1, a, b} is as required.
Assume now that f(m+ 1, ·) � C0 is injective and, in particular, |C0| ≤ m+ 1.

For i ∈ C0 let Bi = {j > i : f(m+1, j) = f(m+1, i)}. I claim that for all k ∈ [1,m−2],
either ak ≤ 2k(m+ 2)− 2k−1− 1, or else there is an H as required and either of the form
{m, ai, a, b} for some i < k and some a, b ∈ Ci, or of the form {m + 1, i, a, b} for some
i ∈ C0 and some a, b ∈ Bi.

The proof is by induction on k. Fix a least counterexample. Then

at ≤ 2t(m+ 2)− 2t−1 − 1

for all t ∈ [1, k) and 1 ≤ k < m − 1. Then ak ≤ 2k(m + 2) − 2k−1. Otherwise, for
some i < k, |Ci| > ai. If ak = 2k(m + 2) − 2k−1, then at = 2t(m + 2) − 2t−1 − 1 for
all t ∈ [1, k) (or else, again, some Ci for i < k has size larger than ai). Also, there is
some j ∈ (2m + 1, ak) in C0. But then |Bi| > i for some i ∈ C0, and the claim follows:
Otherwise,

∑
i∈C0

|Bi| ≤
∑

i∈[m+2,2m+1]∪{j}

i ≤
2m+1∑

i=m+2

i + 2k(m+ 2)− 2k−1 − 1

=
3
2
m(m+ 1) + 2k(m+ 2)− 2k−1 − 1

< n− 2(m+ 1) = |[2m+ 2, n] \ {j}|

because (3 + 2m)(2m − 2k) ≥ 3(3 + 2m)2m−2 > 3m2 + 7m for m ≥ 3.
It follows that one may assume am−1 ≤ 2m−1(m + 2) − 2m−2, but then, since n ≥

2am−1 + 1, some Ci must have size larger than ai, and the proof is complete.

Now I show that g(4, 3) = 37. The upper bound follows from the argument above. To
see that g(4, 3) ≥ 37, I exhibit a regressive f : [3, 36][2] → N without min-homogeneous
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sets of size 4. Consider the function f shown below: For 3 ≤ i < j ≤ 36, set

f(i, j) =



j − i− 1 (mod i) if

i ≥ 16,
8 ≤ i ≤ 15 and j ≤ 16,
12 ≤ i ≤ 15 and j ≤ 19,
4 ≤ i ≤ 6 and j ≤ 7,
i = 6 and j ≤ 11,

0 if

i = 3 and (j ≤ 7 or j = 17),
i = 5 and 8 ≤ j ≤ 11,
i = 6 and 12 ≤ j ≤ 16,
i = 7 and j ≤ 12,

1 if

i = 3 and 8 ≤ j ≤ 16,
i = 4 and 8 ≤ j ≤ 11,
i = 5 and 12 ≤ j ≤ 16,
i = 6 and j = 18,
i = 7 and j = 13,

2 if

i = 3 and 18 ≤ j,
i = 4 and j ∈ [12, 19] \ {17},
i = 5 and j = 17,
i = 6 and j = 19,
i = 7 and j = 14,
i = 15 and 21 ≤ j,

3 if

i = 4 and (j = 17 or 20 ≤ j),
i = 5 and 18 ≤ j,
i = 7 and j = 15,
i = 11 and 17 ≤ j ≤ 20,
i = 14 and 20 ≤ j,

4 if

i = 7 and j = 16,
i = 10 and 17 ≤ j ≤ 20,
i = 11 and 21 ≤ j,
i = 13 and 20 ≤ j,
i = 15 and j = 20,

5 if

i = 6 and (j = 17 or 20 ≤ j),
i = 7 and (j = 17 or j = 19),
i = 9 and 17 ≤ j ≤ 20,
i = 10 and 21 ≤ j,
i = 12 and 20 ≤ j,

6 if
i = 7 and (j = 18 or 20 ≤ j),
i = 8 and 17 ≤ j ≤ 20,
i = 9 and 21 ≤ j,

7 if i = 8 and 21 ≤ j.

To help understand the example somewhat, notice that the argument above shows
that one must have a1 = 8 and a2 = 18, f(i, ·) must be injective for i ≥ 18 and similarly
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f(i, ·) � Ci must be injective for i ∈ [4, 7] and Ci = {j > i : f(3, j) = f(3, 4)}, or
i ∈ [8, 16] ∩ {j : f(3, j) = f(3, 8)} and Ci = [i + 1, 17] ∩ {j : f(3, j) = f(3, 8)}. If f is
any function satisfying these conditions, a < b < c < d, and A = {a, b, c, d} is min-
homogeneous for f , then a > 3 and b < 18.

The function f displayed above satisfies the conditions just described. Let A as above
be a putative min-homogeneous set. Then a < 16 since otherwise f(a, ·) does not take
any value more than twice.

In fact, a < 12, since 12 ≤ a ≤ 15 would imply (for the same reason) that b ≥ 18.
If 8 ≤ a ≤ 11, then b ≥ 15. Since f(i, ·) � Di is injective for i ∈ {15} ∪ [17, 20] and
Di = (i, 20], or i = 16 and Di = [21, 36], this is not possible.

If a = 7 then b /∈ [8, 12] as f(i, ·) � (i, 12] is injective for i ∈ [8, 12]. This forces b ≥ 18.
If a = 6 then b /∈ {7} ∪ [12, 16] as f(b, ·) � [max(b + 1, 12), 16] is then injective. This

forces b = 17 but f(17, ·) � [20, 36] is injective, so this cannot be the case.
The analysis above already rules out a = 5 since f(6, ·) � [8, 11] is injective. Since

f(7, ·) � [12, 16] ∪ {18, 19} is also injective, it also rules out a = 4, completing the
argument.

Finally, I argue that g(4, 4) ≤ 85. Let a regressive f : [4, 85][2] → N be given. Use
notation as before. Then one can assume (from the argument for item 1) that a1 ≤ 10.
If a1 = 10, since 6 + 7 + 8 + 9 = 30, one can assume that there is b ≤ 40 such that
f(5, b) = 4 (while f(5, j) = j − 6 for j ∈ [6, 9]). But then there is a min-homogeneous
set for f of size 4 with minimum element 5 and maximum at most 81.

If a1 ≤ 9 then a2 ≤ 21. If a2 = 21 then one can assume f(5, j) = j − 6 for
j ∈ [6, 8] and there are b1, b2 with f(5, b1) = 3, f(5, b2) = 4, b1 ≤ 19 and b2 ≤ 20. Since
6 + 7 + 8 + 19 + 20 = 60, there is again a min-homogeneous set of size 4 in this case. If
a2 ≤ 20, then a3 ≤ 42 and |Ai| > ai for some i < 4. This shows g(4, 4) ≤ 85.

7. Bounds for g(5, ·)

In this section I briefly sketch how to adapt the proof of Blanchard [1, Lemma 3.1]
to prove the more general statement below, which concludes the proof of Theorem 1.2.
The bound for g(5, 2) is smaller than the one in Blanchard [1] because I take advantage
of the fact that g(4, 3) = 37, as established in Theorem 6.1.2.

Theorem 7.1. Let m be given. For i < m, set di = gi(4,m + 1). Let α−1 = 0 and
αi = (αi−1 +m+ 3 + i)(2di − 1) for 0 ≤ i < m. Then

g(5,m) ≤ (2m+ 1) +
m−1∑
i=0

αi.

In particular, g(5, 2) ≤ 41× 237 − 1.

Proof. Let n be the purported upper bound displayed above and consider a regressive
function f : [m,n][2] → N. For i < m, let

Bi = {x ∈ [m+ 1, n] : f(m,x) = i}

and, if Bi 6= ∅, set ai = min(Bi). Without loss, a0 = m + 1 < a1 < . . . Clearly, we
may assume that ai ≤ gi(4,m + 1) = di for all those i < m for which ai is defined. In

11

This is an author-produced, peer-reviewed version of this article.  The final, definitive version of this document can be found online 
at European Journal of Combinatorics, published by Elsevier. Copyright restrictions may apply doi: 10.1016/j.ejc.2009.07.010

A. CAICEDO in EUROPEAN JOURNAL OF COMBINATORICS (2009)



particular, since n is sufficiently large, we may assume that the ai are defined for all
i < m.

Consider Bij = {x ∈ [ai + 1, n] : f(m,x) = i, f(ai, x) = j} for i < m and j < ai and,
if Bij 6= ∅, set aij = min(Bij). Let D = {Bij :Bij 6= ∅} and q = |D|, so q ≤

∑m−1
i=0 di.

Let {Cs : s < q} be the enumeration of D such that, setting cs = min(Cs), then the
sequence (cs : s < q) is strictly increasing.

Notice that ai /∈ Cl for any i, l, and ai < aij for all i, j such that aij is defined. For
i < m, define ki as the least k < q such that ai < ck. Then

ki ≤
i−1∑
j=0

ai ≤
i−1∑
j=0

di.

I now proceed to find an upper bound ls on the size of Cs beyond which one is
guaranteed to find a min-homogeneous set of size 5. The value of n displayed above is
obtained by first observing that

[m,n] = {m} ∪ {ai : i < m} ∪
q−1⋃
s=0

Cs,

so n−m+ 1 = m+ 1 +
∑q−1

s=0 |Cs|, and then setting n ≥ 2m+
∑

s ls + 1.
To find ls, notice that

[m, cs] ⊆ {m} ∪ {ai : ai < cs} ∪
s−1⋃
0

Cj ∪ {cs},

so cs −m+ 1 ≤ 2 + (i+ 1) +
∑s−1

0 |Cj |, where s ∈ [ki−1, ki), or

cs ≤ m+ 1 + (i+ 1) +
s−1∑
0

|Cj |.

Let C ′s = Cs \ {cs}. If

|C ′s| ≥ (m+ 2) + (i+ 1) +
s−1∑
0

|Cj |,

then f(cs, ·) � C ′s is not injective, so there are d < e in C ′s such that f(cs, d) = f(cs, e)
and {m, aj , cs, d, e} is min-homogeneous, where j ≤ i is chosen so that Cs = Bjk for
some k.

This gives the upper bound ls ≤ (m + i + 3) +
∑s−1

0 lj so, by a straightforward
induction,

• ls ≤ 2s(m+ 3) for s < d0,

• ls ≤ 2s−d0((m+ 3)(2d0 − 1) + (m+ 4)) for d0 ≤ s < d0 + d1,

• and, in general, for i < m, and
∑i−1

j=0 dj ≤ s <
∑i

j=0 dj , we have

ls ≤ 2s−di−1((. . . ((m+3)(2d0−1)+(m+4))(2d1−1)+ . . . )(2di−1−1)+(m+3+ i)).
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These upper bounds give the value of n that I started with, and the claimed inequality
g(5,m) ≤ n follows. In the case m = 2, it implies

g(5, 2) ≤ (2× 2 + 1) + (2 + 3)(22+1 − 1) + (5(23 − 1) + 6)(2g(4,3) − 1)
= 40 + 41(237 − 1) = 41× 237 − 1.

This completes the proof.

I conclude with some questions:

Question 7.2. Is G(n+ 1,m) > gm(n,m+ 1) for n > 4?

Question 7.3. Is 2m(m+ 1) ≤ g(4,m) for all m?

The proofs of Theorems 6.1 and 7.1 suggest that to fully understand g requires to
solve the following question:

For any n,m and regressive f : [m, g(n,m)][2] → N, set

kf = min{min(H) :H ∈ [m, g(n,m)][n] is min-homogeneous for f},

and let
k(n,m) = max{kf : f : [m, g(n,m)][2] → N is regressive}.

Question 7.4. What is the rate of growth of the function k(n,m)?
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