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High-precision U-Pb zircon age calibration of the global
Carboniferous time scale and Milankovitch band cyclicity
in the Donets Basin, eastern Ukraine
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Department of Geosciences, Boise State University, Boise, Idaho 83725, USA (markschmitz@boisestate.edu)

Vladislav I. Poletaev
Department of Paleontology and Stratigraphy, Institute of Geological Science, Ukrainian Academy of Sciences,
55 Gonchar Street, Kiev 252601, Ukraine

[1] High-precision ID-TIMS U-Pb zircon ages for 12 interstratified tuffs and tonsteins are used to
radiometrically calibrate the detailed lithostratigraphic, cyclostratigraphic, and biostratigraphic framework
of the Carboniferous Donets Basin of eastern Europe. Chemical abrasion of zircons, use of the
internationally calibrated EARTHTIME mixed U-Pb isotope dilution tracer, and improved mass
spectrometry guided by detailed error analysis have resulted in an age resolution of <0.05%, or �100
ka, for these Carboniferous volcanics. This precision allows the resolution of time in the Milankovitch
band and confirms the long-standing hypothesis that individual high-frequency Pennsylvanian cyclothems
and bundles of cyclothems into fourth-order sequences are the eustatic response to orbital eccentricity
(�100 and 400 ka) forcing. Tuning of the fourth-order sequences in the Donets Basin to the long-period
eccentricity cycle results in a continuous age model for the Middle to Late Pennsylvanian (Moscovian-
Kasimovian-Ghzelian) strata of the basin and their record of biological and climatic changes through the
latter portion of the late Paleozoic Ice Age. Detailed fusulinid and conodont zonations allow the export of
this age model to sections throughout Euramerica. Additional ages for Mississippian strata provide among
the first robust radiometric calibration points within this subperiod and result in variable lowering of the
base ages of its constituent stages compared to recent global time scale compilations.
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1. Introduction

[2] The Donets Basin of eastern Europe contains
one of the most complete global Carboniferous
sedimentary successions, with few gaps in its depo-
sitional record [Aisenverg et al., 1975; Davydov,
1990; Fohrer et al., 2007]. These marine to paralic
strata of the Donets Basin host over 250–300 lime-
stones and about 250 coal horizons [Aisenverg et al.,
1963, 1971; Levenshtein, 1963] and thus contain
exceptionally well-established marine invertebrate
and terrestrial floral biostratigraphic records, which
are important standards for global marine and
continental correlation. Many of the faunal indexes
now considered for the Carboniferous time scale
(i.e., foraminifera Eoparastaffella simplex for the
base of the Visean [Vdovenko, 1954], Protriticites
pseudomontiparus [Putrja, 1948] and Obsoletes
obsoletus [Schellwien, 1908] for the traditional base
of the Kasimovian, and Rauserites rossicus for the
base of the Gzhelian [Davydov et al., 2008;
Schellwien, 1908]; and conodonts Declinagnatho-
dus donetzianus for the base of the Moscovian and
Idiognathodus sagittalis for the recently considered
higher base of the Kasimovian [Kozitskaya et al.,
1978; Nemyrovska et al., 1999]) were originally
recognized and described from the Donets Basin.
The paleogeography of the Donets Basin lends
particular importance to these records, in that they
provide a linchpin for pan-Euramerican continen-
tal-marine biostratigraphic correlation. Moreover,
deposition in this paralic setting appears to have
kept pace with rapid basin subsidence, such that
Donets Basin strata were eustatically responsive
and exceptionally cyclic [Zhemchuzhnikov and
Yablokov, 1956]. The basin has been recently rein-
terpreted in terms of modern sequence stratigraphy
[Briand et al., 1998; Izart et al., 1996; Izart et al.,
2003], leading to a proposed hierarchy of fourth-
order and higher-frequency cycles.

[3] The detailed lithostratigraphy and biostratigra-
phy of the Donets Basin, combined with an abun-
dance of interstratified volcanic layers provide a
unique opportunity for precise radiometric calibra-
tion of the basin’s cyclostratigraphic and chrono-
stratigraphic framework. Volcanic horizons,
including limestone-hosted altered K-bentonites
and coal-hosted tonsteins, have been recognized
in the Donets Basin successions for over 50 years
[Chernov’yants, 1992]. However, prior attempts at
40Ar/39Ar dating of tonsteins [Hess et al., 1999]
produced problematic results, suggesting apparent
discrepancies of 5–6 Ma between traditionally
correlated faunas of the Donets Basin, western

Europe, and the Appalachian Basin of North
America. Recent advances in U-Pb zircon geochro-
nology utilizing the isotope dilution thermal ioni-
zation mass spectrometry (ID-TIMS) method can
now provide radiometric age constraints for late
Paleozoic samples exceeding 0.05% age resolution
[Ramezani et al., 2007]. We collected samples of
coal tonstein and altered volcanic ash from
throughout the Carboniferous succession of the
Donets Basin with the goal of using high-precision
U-Pb zircon geochronology to refine its chrono-
stratigraphic framework, test for Milankovitch
band orbital controls on cyclic sedimentation, and
calibrate biostratigraphic zonations integral to the
construction of a high-resolution global time scale.

2. Geologic and Stratigraphic Context

2.1. Geologic Setting

[4] The Donets Basin is the southeastern segment
of the Dniepr–Donets Depression (Figure 1), a
Late Devonian rift structure located on the southern
rampart of the eastern European craton [Stovba and
Stephenson, 1999]. The Donets Basin plunges
beneath Upper Cretaceous sediments to the south-
east, gradually giving way to the Karpinsky Swell,
which borders the Pre-Caspian syneclise in the
north and east, and the Scythian Platform to the
south. Sediment thicknesses (comprising Silurian-
Devonian prerift and synrift and Carboniferous–
Palaeogene postrift successions) increase from
about 2 km in the central and westernmost
Dniepr–Donets Depression to about 22 km in the
Donets Basin [Chekunov, 1994; Stovba et al.,
1996]. The Donets Basin is generally considered
to have been profoundly uplifted during the Early
Permian in response to the buildup of stresses
emanating from the Hercynian-Caucasus-Uralian
orogens [Milanovsky, 1992] or to the activity of
an asthenospheric mantle diapir [Chekunov, 1994;
Gavrish, 1989]. The folded and exposed portion of
the Donets Basin is often termed the ‘‘Open
Donbass,’’ while the major portion of the basin
covered by Cretaceous and younger sediments is
referred to as the ‘‘Covered Donbass’’; together
they form the so-called ‘‘Greater Donbass.’’

2.2. Biostratigraphic Zonation

[5] Paleontological and biostratigraphic studies in
the Donets Basin were always a priority of overall
geological exploration in the basin. All major fossil
groups have been studied and many are thoroughly
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described. Brachiopods have been studied since the
19th century as they were widely used until the
1950s for intrabasinal correlation; a local brachio-
pod zonation has been proposed for Carboniferous
strata of the Donets Basin [Kagarmanov and
Donakova, 1990; Vdovenko et al., 1990]. Ammo-
noids are another group of classical fossils that are
rare in the Donets Basin, but well studied [Aizenverg
et al., 1979; Popov, 1979]. They are best used for
characterizing the Serpukhovian-Bashkirian por-
tions of the succession, and to a lesser degree the
Moscovian and mid-Visean, providing effective
correlation with classical ammonoid successions in
Great Britain and Germany.

[6] Foraminifers were the primary chronostrati-
graphic tool for subdivision and correlation of
Carboniferous strata within the entire Dnieper-
Donets trough as well as with other regions includ-
ing the Russian Platform and Urals, western
Europe, and central Asia [Brazhnikova et al.,
1967; Davydov, 1990; Kireeva, 1951; Vdovenko,
2001]. Overall, 38 foraminiferal zones (Figure 2)
are established for the entire Carboniferous with an
average duration of 1.5–2.0 Ma (but sometimes up
to 6 Ma). Foraminifers provided direct correlation

of the Donets Basin succession with type sections
of the Mississippian in Belgium [Cozar et al.,
2008; Devuyst et al., 2003; Devuyst and Kalvoda,
2007; Poty et al., 2006; Vdovenko, 2001] and
Pennsylvanian type sections in the Moscow Basin
and Urals [Aizenverg et al., 1983].

[7] Conodonts are locally abundant in the Carbon-
iferous of the Donets Basin, but have been studied
only since the late 1970s [Kozitskaya et al., 1978].
Study has focused in the Bashkirian, Moscovian
and lower Kasimovian portions of the successions
[Fohreret al., 2007;Nemyrovska, 1999;Nemyrovska
et al., 1999]. Conodonts provide reasonable corre-
lation in the Mississippian and Late Pennsylvanian,
and an excellent zonation and correlation for early
Middle Pennsylvanian (Figure 2), although they are
quite provincial in the middle Moscovian [Goreva
and Alekseev, 2007].

[8] Other abundant and well studied fossils in the
Carboniferous of the Donets Basin (corals, trilo-
bites, bivalves, bryozoans, ostracods, plants and
miospores) are used only for local and regional
correlation and paleoecological interpretations.
Among them plants and miospores recovered in

Figure 1. Location map of the Donets Basin including major tectonic elements and sampling sites, modified from
Aisenverg et al. [1975].
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the Donets Basin are important for correlation of
marine sequences with entirely continental Middle-
Late Pennsylvanian and Permian deposits in west-
ern Europe and the Appalachian Basin in North
America [Fisunenko, 2000; Inosova et al., 1976;
Shchegolev, 1975; Shchegolev and Kozitskaya,
1984].

2.3. Stratigraphic Nomenclature

[9] The Donets Basin as a major coal basin in
Ukraine has been explored and studied since the
18th century. Its territory is mapped in great detail
(mostly at 1:25000 scale, with major coal produc-
tion areas at 1:5000 scale on an instrumental basis)
with many sections measured and several thousand
wells drilled and studied from different perspectives
[Rotai, 1975]. The late Paleozoic succession can be
conveniently divided into three parts. The lower
part is an approximate analog to the Dinantian of
western Europe (latest Devonian-Tournaisian to
Visean) and consists of shallow shelf to midramp
carbonates formed in a subplatform setting. The
middle and the thickest part of the succession
(Serpukhovian through early Gzhelian) consists of
paralic, cyclic intercalations of siliciclastics (97%
of succession) and thin layers of shallow limestone
(2% of succession) usually less then 1 m thick, but
sometimes up to 5–10 m thick. Coals represent
about 1% of this middle succession and average
0.3–0.5 m in thickness, but are sometimes up to
2 m thick. The upper part of the succession
comprises late Gzhelian-Asselian continental silici-
clastic red beds with a very few and thin marine
incursions; this upper portion of the succession is
not considered further here.

[10] Early workers [Lebedev, 1924; Lutugin and
Stepanov, 1913; Tschernyshev and Lutugin, 1897]
divided the entire succession into a series of For-
mations named with digital indexes and/or Latin
letters. The traditional Russian and then USSR
tripartite system for Carboniferous subdivisions is
used in the Donets Basin. The lower ‘‘Dinantian’’
portion of the succession, totaling nearly 500 m of
limestone, is named as the Mokrovolnovakhskaya
Series with the index C1

1 (A), and includes ten
formations. These formations possess a parallel
biostratigraphic zone indexing of the form C1

t a
through C1

t d, and C1
va through C1

vf.

[11] The middle cyclic succession is divided into
15 formations [C1

2 (B), C1
3 (C) etc.], each with

specific names (i.e., Isaevskaya, Araukaritovaya,
etc.). The beginning of each formation usually
starts with a thick limestone representing the be-

ginning of a major transgressive cycle. Within each
formation the number of limestone bands varies
from four (C2

4 (I) Formation) to forty (C1
4 (D)

Formation). The number of limestone bands in
each formation and their thickness changes lateral-
ly because of the transgressive-regressive character
of cycles [Aisenverg et al., 1975]. Specifically, the
number of limestone bands and their thickness
increases eastward toward the deepest part of the
Donets Basin and the Precaspian Basin. These
marine bands are designated by capital letters with
subscript and superscript numerals (Figure 2).
Major limestones within each formation that can
be traced throughout the basin are integered with a
subscript numeral from oldest to youngest; minor
limestones between these major bands are labeled
with the major subscript and an additional super-
script signifying its order between major bands.
For example, D5

7 signifies the seventh minor lime-
stone between the fifth and sixth major limestone
bands, from the base of the C1

4 (D) formation. A
similar nomenclature was proposed for the coal
seams, with a lowercase letter and additional sub-
script and superscript numbers such as h5

1, i.e., the
same system of divisions of major and minor coals.
The majority of coals appear beneath limestones,
indicating the beginning of transgression.

[12] It is generally accepted that most of the major
limestones and coals extended laterally throughout
the basin and form a comprehensive stratigraphic
framework. Lutugin and Stepanov [1913] proposed
to use both limestone and coals as lateral marker
beds, i.e., as isochronous horizons, for mapping.
‘‘Lutugin’s’’ system is still widely used in theDonets
Basin as a chronostratigraphic tool in mapping and
correlation. However, Davydov [1992] reported that
the same limestone can change its apparent biochro-
nology laterally, at least up to one biostratigraphic
zone and therefore it cannot be excluded that at least
some limestones are slightly diachronous through-
out the basin, although some of the authors of this
paper (VIP) do not support this idea.

2.4. Lithostratigraphy

[13] Given the importance of the stratigraphic
positioning and reproducibility of the high-precision
radiometric ages reported in this paper, the lithos-
tratigraphic and biostratigraphic architecture of the
Donets Basin is described in the auxiliary material.1

That discussion provides a detailed stratigraphic
context whose description has hitherto been pre-

1Auxiliary materials are available in the HTML. doi:10.1029/
2009GC002736.
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dominantly restricted to Russian and Ukrainian
languages literature. In that discussion we further
highlight the biostratigraphic correlations of the
Donets Basin strata with their equivalents in the
Russian Platform andwestern Europe and in order to
illuminate how our new radiometric ages may be
exported outside of theDonets Basin to constrain the
global time scale (Figure 2).

3. Carboniferous Global
Chronostratigraphy

[14] The conodont species Siphonodella praesul-
cata and S. sulcata are two indexes that designate
the base of the Carboniferous (Tournaisian Stage)
in the global scale [Davydov et al., 2004]. The base
of the Tournasian Stage in the Donets Basin is
therefore located between: the late Devonian Por-
firitovaya Formation with foraminifera Quasiendo-
thyra ex gr. communis (Rauser), Q. ex gr.
kobeitusana (Rauser), Q. ex gr. konensis (Lebe-
deva), Cribrosphaeroides sp., Paracaligelloides
tlorennensis Conil et Lys, Tournayella sp., Septa-
tournayella sp., Septaglomospiranella sp., Septab-
runsiina sp., and the index conodont Siphonodella
praesulcata Sandberg; and the early Tournaisian
Bazalievskaya Formation, which contains forami-
nifera Bisphaera malevkensis Birina, Septaglomo-
spiranella spp. and Earlandia minima Birina, and
conodonts Siphonodella aff. sulcata (Huddle),
S. semichatovae Kononova and Lipnjagov, Patrog-
nathus andersoni Klapper. An unconformity at the
base of Basalievskaya Formation [Poletaev, 1981;
Poletaev et al., 1991] is most probably insignificant.

[15] The base of the global Visean Stage was
recently defined at the base of bed 85 of the
Pengchong section in Guangxi, south China by
the first appearance of the foraminifera Eoparastaf-
fella simplex in the lineage Eoparastaffella ovalis–
Eoparastaffella simplex [Devuyst et al., 2003]. Both
species were originally described from the Donets
Basin [Vdovenko, 1954] along with other latest
Tournaisian and early Visean foraminifera. The first
appearance datum (FAD) of Eoparastaffella sim-
plex in the Donets Basin and consequently the base
of the global Visean Stage therefore appears at the
base of the Skelevatskaya Formation, or biostrati-
graphic zone C1

vb [Vdovenko, 2001].

[16] The base of the Serpukhovian Stage in the
global time scale is not yet officially established,
however the conodont species Lochrea ziegleri has
been proposed as an index [Nemirovskaya et al.,

1994; Skompski et al., 1995]. The occurrence of
this species is reported in late Visean Brigantian
Stage in north England, in the gamma Goniatites or
Emsitites shaelkensis goniatite zone of the Rhei-
nisches Schiefergebirge of Germany, in the south
of the Brousset Valley (Cretes de Soques, Tour-
mont) of France, in the middle to late Venevian
Horizon in Moscow Basin [Skompski et al., 1995],
from the late Visean in the Cantabrian Mountains
in Spain [Belka and Lehmann, 1998]; together with
ammonoids Lusitanoceras and Donbarites falca-
toides mirousei Kullmann (middle Brigantian, late
Visean) in the Pyrenees Occidentales [Kullmann et
al., 2008], and in the late Visean Hypergoniatites-
Ferganoceras ammonoid zone of the Dombar Hills
of the southern Urals [Nikolaeva et al., 2009;
Kulagina et al., 2006]. Therefore, the proposed
boundary is located in the middle to upper part of
the Brigantian stage of western Europe and in the
middle Venevian Horizon of the Moscow Basin
[Davydov et al., 2004]. The analogs of the Vene-
vian Horizon in the Donets Basin are two biostrati-
graphic foraminiferal zones: the upper part of the
Betpakodiscus compressus zone (B4–B5 lime-
stones) and the Euxinita efremovi zone (B5–B12

limestones). The proposed base of the global
Serpukhovian Stage in Donets Basin could be
conventionally placed somewhere around the B9

limestone (uppermost C1
vg1 biostrat. zone). How-

ever, it cannot be excluded that the boundary might
be placed as low as the B5 or B1 limestone because
of the occurrence of Janischevskina and Cimma-
cammina in the top of the Donetskaya Formation
[Vdovenko, 2001]. Both taxa are considered to be
diagnostic for the late Brigantian in western Europe
[Poty et al., 2006; Somerville, 2008] from which
Lochrea ziegleri is reported (see above).

[17] The Mid-Carboniferous boundary or the base
of the global Bashkirian Stage in the Donets Basin
can be placed very precisely. The Kalmius section
has an excellent fossil record of the Serpukhovian-
Bashkirian transition [Aizenverg et al., 1983] and
has been proposed as a candidate GSSP for the
boundary [Nemirovskaya et al., 1990]. Exception-
ally well-studied conodonts and foraminifera both
precisely indicate the position of the boundary. The
FAD of the conodont index for the mid-Carbonif-
erous boundary, Declinognathodus noduliferus, is
in the D5

8 upper limestone [Nemyrovska, 1999], at
the base of the C1

nd2 or C1
sg biostratigraphic zone.

Foraminifera Plectostaffella bogdanovkensis Reit-
linger and Millerella umbilicata Kireeva appear
slightly below, in the D5

7 limestone [Aizenverg et
al., 1983].
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[18] The base of the Moscovian Stage in the
Moscow Basin has been recently redefined on the
basis of foraminifers Aljutovella aljutovica
(Rauser) and Schubertella pauciseptata Rauser
[Makhlina et al., 2001] at the base of the marine
Aljutovo Formation, slightly above the traditional
position [Rauser-Chernousova and Reitlinger,
1954]. Foraminiferal workers place the base of
Moscovian in the Donets Basin either at the I2
limestone [Grozdilova, 1966], at the K1 limestone
[Kireeva, 1951], or up to the K3 limestone where
Aljutovella aljutovica (Rauser) was first reported
[Aisenverg et al., 1963]. Our recent study shows
the transitional character of foraminiferal evolution
within the I2 to K3 limestone sequences with the
appearance of fusulinids of the Aljutovella aljutov-
ica (Rauser) group as low as the I2 limestone
[Khodjanyazova and Davydov, 2008]. The cono-
dont species Declinognathodus donetzianus desig-
nated from Donets Basin [Nemyrovska, 1999] has
been proposed as an index of the base of the global
Moscovian Stage. The FAD of this species in
Donets Basin is at the K1 limestone and thus
closely coincides with the traditional lower bound-
ary of the Moscovian Stage in the Moscow Basin
[Pazukhin et al., 2006]. Conodont Diplognathodus
ellesmerensis Bender, recently proposed as another
potential index for the base of the global Mosco-
vian Stage [Wang et al., 2007], appears in the
Donets Basin at the K3 limestone [Nemyrovska et
al., 1999]. The Bashkirian-Moscovian boundary is
provisionally placed at the K1 limestone in accor-
dance with its historical position in the type area of
the Moscow Basin.

[19] The biostratigraphic marker for the traditional
base of the Kasimovian Stage in the Moscow Basin
is the base of the fusulinid zone Protritictes pseu-
domontiparus-Obsoletus obsoletes [Ivanova and
Khvorova, 1955; Kabanov et al., 2006; Rauser-
Chernousova and Reitlinger, 1954]. Both forami-
niferal indexes of this zone were originally de-
scribed from the Donets Basin [Putrja, 1948;
Schellwien, 1908], however the range of the first
species in the Donets Basin is debated. In our
current investigation it has been found in the N3

and N5 limestones [Khodjanyazova and Davydov,
2008]. The second species occurs in the Donets
Basin in the N5

1 and O1 limestones [Davydov,
1992]. Similarly, the index of the traditional lower
Kasimovian conodont zone Streptognathodus sub-
excelsus Alekseev andGoreva [Alekseev andGoreva,
2006] has been found in the Moscow Basin in the
lithological unit ‘‘sharsha’’ in the lower part of

Suvorovskaya Formation, and in the N3 limestone
of the Donets Basin [Nemyrovska, 1999].

[20] This traditional base of the Kasimovian Stage
has not been accepted by the Subcommission on
Carboniferous Stratigraphy Working Group to es-
tablish the global Moscovian-Kasimovian bound-
ary. The currently proposed index for the boundary
is the conodont species Idiognathodus sagittalis
Kozitskaya [Villa and the Task Group, 2008]. This
species has been described from the O1 limestone
in the Donets Basin [Kozitskaya et al., 1978] and
from the upper Neverovo Formation in the middle
Kasimovian of the Moscow Basin [Alekseev and
Goreva, 2006]. This level is slightly above the
FAD of the fusulinid genus Montiparus in the
Moscow Basin [Davydov, 1997]. The newly pro-
posed boundary therefore occurs approximately in
the Middle Kasimovian in the traditional sense
[Ivanova and Khvorova, 1955].

[21] Historically, the base of the Gzhelian Stage
has been defined in the Moscow Basin at the base
of the Rusavkino Formation [Nikitin, 1890] by the
first appearance of fusulinid species Rauserites
rossicus (Schellwien) and R. stuckenbergi (Rauser)
[Rauser-Chernousova, 1941; Rozovskaya, 1950].
Rauserites rossicus was originally described from
two areas, from the upper Rusavkino Formation
near Gzhel village and from an unspecified lime-
stone from the upper part of the Avilovskaya
Formation [Schellwien, 1908]. The specimens from
the upper Rusavkino Formation have been desig-
nated as a new subspecies Rauserites rossicus
gzhelicus (Bensh) [Isakova and Ueno, 2007], and
similar forms from the Donets Basin as the sub-
species Rauserites rossicus rossicus (Schellwien)
[Davydov et al., 2008]. The base of the Gzhelian
Stage exposed near Gzhel village, however, coin-
cides with an unconformity [Makhlina et al.,
1979]. In the type location near the Gzhel village
only R. rossicus gzhelicus (Bensh) and R. stuck-
enbergi have been recovered from the upper
Rusavkino Fm. [Davydov et al., 2008]. In the
Donets Basin fusulinids of the Rauserites rossicus
group have been reported from the O4

1 and O4
2, O5,

O6
1and O7 limestones [Davydov, 1992]. Further

study of the fusulinids from O4
1 O4

2, O5 and O6
1

limestones have led to their designation as new and
more primitive representatives than Rauserites
rossicus. Species Rauserites rossicus rossicus
(Schellwien) has been found only in the O7 lime-
stone [Davydov et al., 2008; Isakova and Ueno,
2007].
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[22] The conodont species Streptognathodus simu-
lator [Ellison, 1941] has been proposed as the
index to define the base of the global Gzhelian
Stage [Chernykh et al., 2006; Heckel et al., 2008].
This species was originally described from the
Heebner Shale Member of the Oread limestone
[Ellison, 1941] in the midcontinent of North Amer-
ica, and has been widely used as a marker for the
boundary in the Moscow Basin [Barskov and
Alekseyev, 1975] and in the Urals [Chernykh and
Reshetkova, 1987; Chernykh, 2002; Davydov
and Popov, 1991]. Barrick et al. [2004, 2008] have
proposed a taxonomic revision at the generic level
to Idiognathodus simulator, although this change is
not universally recognized [Chernykh, 2005], nor
is its ancestry definitively established. We have
retained the original generic name of Ellison
[1941], although the concept of St. simulator (in
a strict sense) is restricted to the forms that are
close to the species holotype [Barrick et al., 2008;
Chernykh, 2005]. St. simulator in the Moscow
Basin occurs in the upper Rusavkino Formation,
while in the Donets Basin this species has been
found in the O6 limestone [Goreva and Alekseev,
2007].

[23] The Carboniferous-Permian boundary (base of
the Asselian Stage) in the exposed Donets Basin
resides within the Kartamyshskaya Formation. In
the subsurface Predonets Trough the first Asselian
fusulinids are found at the correlative analog of the
Q7 ‘‘grey zone’’ of the exposed Donets Basin
[Davydov et al., 1992]. Palynological [Inosova et
al., 1976] and paleomagnetic data [Davydov, 1986]
also suggest the position of the Carboniferous-
Permian boundary at the Q7 ‘‘grey zone.’’

4. U-Pb Geochronology

[24] At least 37 volcanic ash beds (among them 25
coal tonsteins) have been reported in the Donets
Basin [Chernov’yants, 1992]. Tonstein (German
for ‘‘clay stone’’) is a widely used term for a
volcanic ash bed within a coal seam; tonsteins
are widely used for correlation in the coal basins
of eastern and western Europe [Burger et al.,
1997]. Tonsteins have been reported from Donets
Basin coals since extensive coal production in the
19th century, and possess the local term ‘‘seriki’’
(meaning grayish rock within the coal), but their
volcanic origin was recognized much later when
they were used for correlation of specific coals
within the basin [Zaritskiy, 1977]. The oldest
tonsteins are reported from the Samarskaya [C1

3

(C)] Formation in the subsurface of the western

Donets Basin [Savchuk, 1957], while the youngest
tonsteins are reported from the N2 limestone. We
collected 40 volcanic ash samples from sections,
localities, and shafts, but only 12 produced datable
zircon crystal populations. These samples range
from the C1

t bupper to the C3a (n1 coal) biostrati-
graphic zones. Four samples came from surface
localities and eight samples are tonsteins collected
from productive coals in commercial shafts (Table 1
and Figure 1). All samples collected from surface
localities are completely altered to bentonite.

4.1. Methods

[25] Zircon was subjected to a modified version of
the chemical abrasion method of Mattinson [2005],
reflecting a preference to prepare and analyze
carefully selected single crystals. Zircon separates
were placed in a muffle furnace at 900�C for 60 h in
quartz beakers. Single annealed grains were select-
ed and transferred to 3 ml Teflon PFA beakers with
ultrapure H2O and then loaded into 300 ml Teflon
PFA microcapsules. Fifteen microcapsules were
placed in a large-capacity Parr vessel, and the
crystals partially dissolved in 120 ml of 29 M HF
for 10–12 h at 180�C. The contents of each
microcapsule were returned to 3 ml Teflon PFA
beakers, the HF removed and the residual grains
rinsed in ultrapure H2O, immersed in 3.5 M HNO3,
ultrasonically cleaned for an hour, and fluxed on a
hotplate at 80�C for an hour. The HNO3 was
removed and the grains were rinsed several times
with ultrapure H2O before being reloaded into the
same 300 ml Teflon PFA microcapsules (them-
selves rinsed and fluxed in 6 M HCl during crystal
sonication and washing) and spiked with the
EARTHTIME mixed 205Pb-233U-235U tracer solu-
tion (ET535). The grains were dissolved in Parr
vessels in 120 ml of 29 M HF with a trace of 3.5 M
HNO3 at 220�C for 48 h, dried to salts, and then
redissolved in 6 M HCl in Parr vessels at 180�C
overnight. U and Pb were separated from the zircon
matrix using an HCl-based anion exchange chro-
matographic procedure [Krogh, 1973], eluted to-
gether and dried with 2 ml of 0.05 N H3PO4.

[26] Pb and U were loaded on a single outgassed
Re filament in 2 ml of a silica gel/phosphoric acid
mixture [Gerstenberger and Haase, 1997], and U
and Pb isotopic measurements made on a GV
Isoprobe-T multicollector thermal ionization mass
spectrometer equipped with an ion-counting Daly
detector. Pb isotopes were measured by peak
jumping all isotopes on the Daly detector for 100
to 150 cycles, and corrected for 0.22 ± 0.04%/
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a.m.u. (atomic mass unit) mass fractionation. Tran-
sitory isobaric interferences due to high–molecular
weight organics, particularly on 204Pb and 207Pb,
disappeared within approximately 30 cycles, while
ionization efficiency averaged 104 cps/pg of each
Pb isotope. Linearity (to �1.4 � 106 cps) and the
associated dead time correction of the Daly detec-
tor were monitored by repeated analyses of
NBS982, and have been constant since installation.
Uranium was analyzed as UO2

+ ions in static
Faraday mode on 1011 ohm resistors for 150 to
200 cycles, and corrected for isobaric interference
of 233U18O16O on 235U16O16O with an 18O/16O of
0.00205. Ionization efficiency averaged 20 mV/ng
of each U isotope. U mass fractionation was
corrected using the known 233U/235U ratio of the
ET535 tracer solution.

[27] U-Pb dates and uncertainties were calculated
using the algorithms of Schmitz and Schoene
[2007], 235U/205Pb = 100.206 and 233U/235U =
0.9946 for the ET535 spike [Condon et al.,
2007], and the U decay constants of Jaffey et al.
[1971]. 206Pb/238U ratios and dates were corrected
for initial 230Th disequilibrium using a Th/U[magma]

of 3, resulting in a systematic increase in the
206Pb/238U dates of �90 kyr. All common Pb in
analyses was attributed to laboratory blank and
subtracted based on the measured laboratory Pb
isotopic composition and associated uncertainty. U
blanks were <0.1 pg, and small compared to
sample amounts. Over the course of the experi-
ment, isotopic analyses of the TEMORA zircon
standard [Black et al., 2003] yielded a weighted
mean 206Pb/238U age of 417.43 ± 0.06 (n = 11,
MSWD = 0.8; Figure 3).

4.2. Results

[28] Concordant U-Pb dates were obtained from
106 of 110 analyzed zircon grains from the 12
dated samples (Table 2 and Figure 4). Ages of the
samples (Table 1) are interpreted from the weighted
means of the 206Pb/238U dates, based on 5–10 grains
per sample that are equivalent in age, calculated
using Isoplot 3.0 [Ludwig, 2003]. Grains that are
older than those used in the calculations (n = 8) are
interpreted as inherited antecrysts, and grains that
are younger (n = 12) are thought to have suffered
severe Pb loss not completely mitigated by chemical
abrasion. Errors on individual analyses are based
upon nonsystematic analytical uncertainties, includ-
ing counting statistics, spike subtraction, and blank
Pb subtraction. Similarly nonsystematic errors on
weighted mean dates are reported as internal 2s for
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the nine samples with probability of fit of >0.05 on
the weighted mean date. For the three samples with
probability of fit <0.05, errors are at the 95%
confidence interval, which is the internal 2s error
expanded by the square root of the MSWD and the
Student’s T multiplier of n – 1 degrees of freedom.
These error estimates should be considered when
comparing our 206Pb/238U dates with those from
other laboratories that used the same EARTHTIME
spike or a spike that was cross calibrated using
EARTHTIME gravimetric standards. When com-
paring our dates with those derived from other decay
schemes (e.g., 40Ar/39Ar, 187Re-187Os), the uncer-
tainties in the tracer calibration and 238U decay
constant should be added to the internal error in
quadrature. This total error ranges from ±0.36 Myr
for the youngest sample to ±0.42 Myr for the oldest
sample.

[29] Eight analyzed grains from sample 5-2002
yielded a weighted mean 206Pb/238U date of
357.26 ± 0.08 Ma (MSWD = 0.7). Six of the eight
analyzed grains from sample 3-2002 yielded a
weighted mean date of 345.17 ± 0.07 Ma
(MSWD = 1.2). Two other grains are younger.
Six of the seven analyzed grains from sample
C1vc yielded a weighted mean date of 345.00 ±
0.08 Ma (MSWD = 0.9). One other grain is
younger. Seven of the eight analyzed grains from
sample C1ve2 yielded a weighted mean date of
342.01 ± 0.10 Ma (MSWD = 1.9). One other grain
is younger. Eight of the 10 analyzed grains from
sample c11 coal yielded a weighted mean date of
328.14 ± 0.11 Ma (MSWD = 2.6). Two other
grains are slightly younger.

[30] Seven of the nine analyzed grains from sample
k3 coal yielded a weighted mean 206Pb/238U date
of 314.40 ± 0.06 Ma (MSWD = 1.5). Two other
grains are older. Eight analyzed grains from sample
k7 coal yielded a weighted mean date of 313.16 ±
0.08 Ma (MSWD = 0.6). Five of the 11 analyzed
grains from sample l1 coal yielded a weighted
mean date of 312.23 ± 0.09 Ma (MSWD = 1.7).
One other grain is older and five others are youn-
ger. Six of the 10 analyzed grains from sample
l3(b) coal yielded a weighted mean date of
312.18 ± 0.07 Ma (MSWD = 0.2). Four other
grains are older. Six of the seven analyzed grains
from sample l3(a) coal yielded a weighted mean
date of 312.01 ± 0.08 Ma (MSWD = 1.4). One
other grain is slightly older. Ten of the 11 analyzed
grains from sample m3 coal yielded a weighted
mean date of 310.55 ± 0.10 Ma (MSWD = 2.2).
One other grain is older. Nine of the 12 analyzed
grains from sample n1 coal yielded a weighted
mean date of 307.26 ± 0.11 Ma (MSWD = 3.8).
Three other grains are slightly younger.

5. Discussion

5.1. Frequency Patterns of Cyclothemic
Sedimentation

[31] Since Wanless and Shepard [1936] first pro-
posed that cyclothemic sedimentary packages in
the midcontinent of North America resulted from
marine transgressions and regressions across the
shelf driven by glacioeustatic fluctuations, numer-
ous studies have argued the merits of Milankovitch

Figure 3. Concordia diagram and ranked 206Pb/238U age plot for chemically abraded zircon single grain analyses of
the TEMORA natural zircon standard.
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Table 2 (Sample). U-Pb Isotopic Data [The full Table 2 is available in the HTML version of this article]

Graina Th/Ub

206Pb*c

(� 10–13 mol)
mol %
206Pb*c

Pb*/
Pbcc

Pbcc

(pg)

206Pb/
204Pbd

Radiogenic Isotopic Ratios

208Pb/
206Pbe

207Pb/
206Pbe

%
Errorf

207Pb/
235Ue

%
Errorf

206Pb/
238Ue

%
Errorf

n1 Coal
z1 0.445 2.3123 99.69% 96 0.60 5958 0.141 0.052547 0.104 0.353379 0.135 0.048775 0.051
z2 0.421 2.7308 99.71% 101 0.66 6307 0.133 0.052577 0.089 0.353304 0.121 0.048737 0.047
z3 0.467 2.3059 99.68% 95 0.60 5857 0.148 0.052581 0.093 0.352847 0.125 0.048669 0.048
z4 0.423 2.7728 99.78% 133 0.51 8361 0.134 0.052504 0.076 0.353500 0.111 0.048831 0.050
z5 0.419 2.2417 99.66% 88 0.62 5548 0.132 0.052529 0.106 0.352781 0.137 0.048709 0.050
z6 0.393 2.2391 99.68% 92 0.59 5822 0.124 0.052499 0.098 0.353375 0.130 0.048818 0.051
z7 0.421 2.9845 99.79% 139 0.52 8735 0.133 0.052486 0.077 0.353059 0.112 0.048787 0.050
z8 0.443 1.4164 99.35% 46 0.76 2878 0.140 0.052456 0.176 0.352997 0.204 0.048806 0.053
z9 0.417 2.5827 99.63% 80 0.79 5016 0.132 0.052464 0.108 0.353149 0.139 0.048819 0.049
z10 0.508 1.5607 99.55% 67 0.58 4114 0.161 0.052452 0.138 0.353200 0.166 0.048838 0.052
z11 0.449 2.2164 99.72% 108 0.50 6747 0.142 0.052527 0.084 0.353728 0.117 0.048841 0.048
z12 0.388 2.1318 99.49% 57 0.90 3623 0.122 0.052460 0.177 0.353289 0.200 0.048843 0.056

m3 Coal
z1 0.473 1.2310 99.39% 49 0.62 3054 0.149 0.052528 0.169 0.357563 0.198 0.049369 0.054
z2 0.772 0.9099 99.49% 63 0.39 3632 0.244 0.052638 0.163 0.357944 0.194 0.049319 0.061
z3 0.569 0.8638 99.34% 47 0.47 2839 0.180 0.052466 0.198 0.357176 0.232 0.049374 0.071
z4 0.597 1.7040 99.21% 39 1.12 2349 0.189 0.052576 0.419 0.357974 0.429 0.049381 0.098
z5 0.723 1.3036 99.25% 43 0.81 2488 0.229 0.052623 0.200 0.357835 0.235 0.049318 0.073
z7 0.530 1.5848 99.50% 61 0.65 3730 0.167 0.052530 0.206 0.357368 0.226 0.049341 0.065
z8 0.575 0.8294 99.40% 51 0.41 3086 0.182 0.052698 0.140 0.358780 0.184 0.049378 0.065
z10 0.670 0.4357 98.53% 21 0.53 1266 0.211 0.053151 0.409 0.392705 0.455 0.053586 0.123
z11 0.475 0.7702 98.97% 29 0.66 1807 0.150 0.052611 0.286 0.357850 0.322 0.049332 0.070
z12 0.518 1.7218 99.42% 53 0.82 3232 0.164 0.052628 0.159 0.358079 0.188 0.049347 0.055
z13 0.448 1.7148 99.32% 43 0.97 2719 0.141 0.052493 0.188 0.357360 0.218 0.049374 0.058

l3(a) Coal
z1 0.816 0.9797 99.62% 87 0.30 4950 0.258 0.052710 0.120 0.360422 0.160 0.049593 0.075
z2 0.779 1.2037 99.59% 79 0.41 4506 0.246 0.052592 0.124 0.359520 0.158 0.049579 0.061
z4 0.598 3.2498 99.74% 121 0.69 7260 0.189 0.052625 0.066 0.360016 0.107 0.049617 0.051
z5 0.615 2.0242 99.61% 80 0.65 4766 0.194 0.052556 0.114 0.360614 0.145 0.049765 0.054
z8 0.709 0.8590 98.89% 29 0.79 1681 0.224 0.052515 0.277 0.358981 0.312 0.049578 0.059
z9 1.031 0.7023 98.72% 27 0.75 1454 0.327 0.052752 0.373 0.360783 0.406 0.049602 0.084
z11 0.757 2.3855 99.64% 90 0.71 5182 0.239 0.052658 0.107 0.359942 0.142 0.049575 0.061

l3(b) Coal
z1 0.594 2.7913 99.73% 113 0.63 6787 0.188 0.052611 0.094 0.359870 0.125 0.049610 0.049
z3 0.354 1.1140 99.44% 52 0.51 3338 0.113 0.053424 0.161 0.375059 0.189 0.050917 0.048
z4 0.580 2.8870 99.78% 139 0.53 8359 0.183 0.052623 0.124 0.360000 0.147 0.049616 0.054
z5 0.744 2.1387 99.73% 118 0.48 6811 0.235 0.052532 0.082 0.359394 0.120 0.049619 0.056
z6 0.799 0.7426 98.92% 30 0.66 1730 0.252 0.052676 0.299 0.366532 0.339 0.050466 0.092
z7 0.500 1.7489 99.65% 86 0.51 5263 0.158 0.052689 0.150 0.360494 0.172 0.049622 0.057
z8 1.135 1.1406 99.48% 67 0.49 3552 0.359 0.052686 0.145 0.360458 0.179 0.049621 0.064
z9 1.093 1.5625 99.54% 75 0.60 4015 0.345 0.052590 0.135 0.359823 0.165 0.049623 0.053
z11 0.439 1.4138 99.56% 68 0.51 4239 0.139 0.052670 0.123 0.362944 0.155 0.049977 0.054
z12 0.877 0.9080 99.12% 37 0.66 2107 0.277 0.052663 0.331 0.360838 0.352 0.049694 0.082

a
Labels z1, z2, etc., are for analyses composed of single zircon grains or fragments. Labels in bold denote analyses used in the weighted mean

date calculations. Zircon was annealed and chemically abraded [Mattinson, 2005].
b
Model Th/U ratio calculated from radiogenic 208Pb/206Pb ratio and 207Pb/235U date.

c
Pb* and Pbc are radiogenic and common Pb, respectively; mol % 206Pb* is with respect to radiogenic and blank Pb.

d
Measured ratio corrected for spike and fractionation only. Fractionation correction is 0.22 ± 0.02 (1-sigma) %/amu (atomic mass unit) for

single-collector Daly analyses, based on analysis of NBS-981 and NBS-982.
e
Corrected for fractionation, spike, common Pb, and initial disequilibrium in 230Th/238U. Common Pb is assigned to procedural blank with

composition of 206Pb/204Pb = 18.60 ± 0.80%, 207Pb/204Pb = 15.69 ± 0.32%, and 208Pb/204Pb = 38.51 ± 0.74% (1-sigma); 206Pb/238U and
207Pb/206Pb ratios corrected for initial disequilibrium in 230Th/238U using Th/U [magma] = 3.

f
Errors are 2-sigma, propagated using algorithms of Schmitz and Schoene [2007].
g
Calculations based on the decay constants of Jaffey et al. [1971]; 206Pb/238U and 207Pb/206Pb dates corrected for initial disequilibrium in

230Th/238U using Th/U [magma] = 3.
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orbital modulation of cyclic sedimentary deposi-
tion in the late Paleozoic [Algeo and Wilkinson,
1988;Boardman andHeckel, 1989;Dickinson et al.,
1994;Heckel, 1986;Klein andWillard, 1989;Klein,
1990; Soreghan andDickinson, 1994; Soreghan and
Giles, 1999]. A demonstration ofMilankovitch band
orbital forcing in the late Paleozoic record not only
has significant implications for our understanding
the growth and demise of the Gondwanan ice
sheet and modeling of concomitant climate change
[Birgenheier et al., 2009; Montanez et al., 2007;
Poulsen et al., 2007], but also holds considerable
promise as a high-resolution chronometric ruler
for calibrating and testing global biostratigraphic
and sequence stratigraphic correlations [Haq and
Schutter, 2008;Heckel et al., 2007; Ross and Ross,
1988].

[32] Unfortunately, due to a paucity of radiometric
age constraints for the Carboniferous, early argu-
ments for and against orbitally driven sedimentary

cyclicity relied upon a priori assumptions of the
duration or rate of sedimentation combined with
cycle counting in a given stratigraphic sequence
[Algeo and Wilkinson, 1988]. As the assumed
durations of various regional stages of the Carbon-
iferous have substantively changed [Hess and
Lippolt, 1986; Hess et al., 1999], so the robustness
of estimated cycle frequencies has been compro-
mised [Heckel, 1986, 1994; Klein, 1990]. More
recently, application of U-Pb geochronology to
pedogenic carbonates [Rasbury et al., 1998] has
provided direct dating within Pennsylvanian to
Early Permian cyclic sediments of New Mexico
and west Texas. The resulting cycle period estimate
of 143 ± 64 ka for these North American cyclo-
thems was among the first to highlight likely short-
period eccentricity forcing of late Paleozoic sedi-
mentary cycles, similar to glacioeustatic cycles of
the Pleistocene. Nonetheless, this estimate required
correlation of relatively low precision (±2–3 Ma)

Figure 4. Ranked 206Pb/238U age plots for all single zircon analyses from Donets Basin tuffs.
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ages between two different basins, and counting of
cycles in sections from the Sacramento Mountains
that have [Rasbury et al., 1998, p. 404] ‘‘. . . more
of a nonmarine influence and are less likely to be
complete.’’

[33] Innovations in ID-TIMS U-Pb zircon analysis
[Condon et al., 2007; Mattinson, 2005; Mundil et
al., 2004; Schmitz and Schoene, 2007] have lead to
the acquisition of precise and accurate ages for
Permo-Carboniferous volcanic ash beds with reso-
lution (±�100 ka) within the Milankovitch band.
Gastaldo et al. [2009] report two ID-TIMS U-Pb
zircon ages for Serpukhovian tonsteins within the
Upper Silesian Basin of eastern Europe. A tonstein
in the Ludmila coal (328.84 ± 0.16 Ma) within the
middle Petřkovice Member of the Ostrava Forma-
tion in the Upper Silesian Basin, and a tonstein in
the Karel coal of the Hrušov Member (328.01 ±
0.08 Ma) are separated by eleven clearly defined
marine transgressive-regressive cycles analogous

to (although apparently older than) the classical
Pennsylvanian cyclothems of the Appalachian ba-
sin. The resulting cycle duration estimate of 83 ±
24 ka overlaps at the 95% confidence interval with
the short-period (�100 ka) eccentricity cycle
among potential orbital forcing mechanisms. These
results from widely different basins and different
Carboniferous stages provide significant support
for orbital eccentricity forcing of climate in the late
Paleozoic Ice Age. Our new radiometric ages in the
Donets Basin similarly allow for the direct dating
and calculation of the periodicity of Pennsylvanian
cycles.

[34] In order to calibrate the cyclicity of the Donets
Basin, we draw upon the work of Izart et al. [1996,
2002, 2003, 2006] who interpreted the Serpukho-
vian through Gzhelian successions of the Donets
Basin in terms of sequence stratigraphy, and pro-
posed a hierarchy of high-frequency, fourth-, third-
and second-order sequences. Figures 5–7 repro-

Figure 5. East-west transgressive-regressive cycles and stratal correlations in the C2
6 (L) Almaznaya Formation with

position of dated samples (after Izart et al. [1996], copyright 1996, with permission from Elsevier). The transgressive
nature of the coals is obvious, as are minor unconformities at sequence boundaries; nonetheless, radiometric dating
demonstrates that proposed correlations across the basin are robust at a resolution of �100 ka.
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Figure 6. Lithostratigraphy and sequence stratigraphy through the Moscovian succession of the central exposed
Donets Basin (modified from Izart et al. [1996, Figure 3]), with positions of six radiometric ages obtained in our
study. Projection of stratal architecture onto a time linear scale constrained by ash bed ages reveals the consistent
�400 ka tempo of the fourth-order sequences of Izart et al. [1996]. Only a few high-frequency cycles in the
lowermost Moscovian must be reinterpreted as fourth-order major transgressions to maintain consistency with the
model. Tuning of these fourth-order sequences to the long eccentricity cycle allows calibration of the biostratigraphic
record at a resolution of �100 ka.
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Figure 7. Lithostratigraphy and sequence stratigraphy through the Kasimovian-Gzhelian succession of the central
exposed Donets Basin (modified from Izart et al. [2006, Figure 12]). The long eccentricity cycle tuning of fourth-
order sequences derived for the Moscovian succession is extrapolated upward to the Carboniferous-Permian
boundary constrained at 298.7 Ma [Ramezani et al., 2007] in the Usolka parastratotype section of the Urals. High-
frequency and fourth-order sequences of the Kasimovian and early Gzhelian are well developed, lending more
confidence to the cyclostratigraphic calibration. Although cyclicity becomes more ambiguous in the increasingly
continental upper Gzhelian succession, only modest reinterpretation of Izart et al.’s [2006] fourth-order sequences as
higher-frequency cycles is necessary to align the base of the Asselian in the Donets Basin with the radiometric
constraint from the Urals.

Geochemistry
Geophysics
Geosystems G3G3

davydov et al.: u-pb age of the carboniferous and cyclicity 10.1029/2009GC002736

15 of 22



duce aspects of their compiled lithostratigraphic
logs and interpreted transgressive-regressive cycles
of the Donets Basin, annotated with the stratigraph-
ic position and age of our dated tonsteins projected
onto a linear time axis. Izart et al. [1996] divided
the Moscovian succession into eighteen fourth-
order sequences defined by bundles of one major
and several minor marine transgressions recorded
as limestone bands with or without underlying
coals (for example, Figure 5). Five ash bed ages
from the k3 through n1 coals span a total of sixteen
fourth-order sequences; ashes are separated by <1,
2, 4, 6, 8 and 16 cycles. For each pair of radio-
metric ages, regardless of position, the calculated
cycle duration is �400 ka (ten total constraints).
We interpret this reproducible cycle duration as
robust evidence for long-period eccentricity forc-
ing via glacioeustasy of the major marine trangres-
sions defining these fourth-order sequences.
Perhaps the most remarkable demonstration of
the resolving power of our improved radiometric
methods comes from the 200 ka age difference
between the l1 and l3 coals, by which we are able to
parse time within the long-period eccentricity cy-
cle. This resolution has important implications as it
strongly suggests that at least some of the high-
frequency sequences of Izart et al. [1996] record
short-period (�100 ka) eccentricity cycle forcing,
which are in turn modulated to give the fourth-
order major transgressive cycles at the �400 ka
beat frequency. A corollary to this conclusion is
that the amount of time contained in a single
cyclothemic transgressive-regressive sedimentary
packet is �100 ka or less, as has been previously
suggested by Rasbury et al. [1998].

[35] We have tuned the Moscovian fourth-order
sequences to the long eccentricity cycle in order
to provide a high-resolution (�100 ka) calibration
of the biostratigraphic record of the Donets Basin
(Figure 6), and by aforementioned correlation the
zonations of the Russian Platform and western
Europe. Only a few high-frequency cycles in the
lowermost Moscovian must be reinterpreted as
fourth-order major transgressions to maintain con-
sistency with the model. In this way new absolute
age constraints on the base and duration of the
Moscovian and its constituent regional substages
and biozones have been derived (Figure 2). The
implications of these new age constraints are
described in section 5.2 on global time scale
calibration.

[36] In Figure 7, the long eccentricity cycle tuning
of fourth-order sequences derived for the Mosco-

vian succession is extrapolated upward to the
Carboniferous-Permian boundary, which is con-
strained at 298.7 Ma [Ramezani et al., 2007] in
the Usolka auxiliary parastratotype section of the
Urals. High-frequency and fourth-order sequences
of the Kasimovian and early Gzhelian are well
developed, lending confidence to our extrapolated
cyclostratigraphic calibration. In this way the bases
and durations of the Kasimovian and Gzhelian
Stages are derived. Although the order of cyclic
sequences becomes more ambiguous in the increas-
ingly continental upper Gzhelian succession, only
modest reinterpretation of Izart et al.’s [2006]
fourth-order sequences as higher-frequency cycles
is necessary to align the base of the Asselian in the
Donets Basin with the radiometric constraint from
the Urals. These minor modifications have been
made taking into account lithostratigraphic, bio-
stratigraphic and magnetostratigraphic characteris-
tics of the more complete marine Gzhelian
succession studied in boreholes of the eastern
Pre–Donets Trough. The implication of this agree-
ment in radiometric (Urals) and paleomagnetic
(Donets) versus tuned cyclostratigraphic (Donets)
model fits to the base of the Asselian is that the
first appearance of the conodont index Streptogna-
thodus isolatus is truly synchronous at the �100 ka
resolution of the age model. The remarkable fidel-
ity of the fourth-order sequences in the Donets
Basin and their tuning to the 400 ka long eccen-
tricity cycle provide a powerful chronostratigraphic
tool, which we use below to provide absolute age
constraints on the global time scale.

5.2. Application of New Ages to the Global
Time Scale

[37] The new radiometric ages obtained in our
study require significant revisions to the absolute
age calibration of the global Carboniferous time
scale. Our new ages meet the necessary prerequi-
sites for global time scale calibration: all radiomet-
ric samples were collected and documented within
the well-established local lithostratigraphic frame-
work of the Donets Basin [Aisenverg et al., 1963,
1975], and the collected samples are therefore
precisely constrained within the exceptionally
complete biostratigraphic framework of the basin
[Aizenverg et al., 1979; Davydov, 1992; Davydov et
al., 2008; Fohrer et al., 2007; Nemyrovska et al.,
1999; Poletaev et al., 1991]. As we have empha-
sized in our description of the Donets Basin
succession, its multitaxa biostratigraphy may be
straightforwardly correlated with the Tournaisian
and Visean type sections in western Europe, and
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the Serpukhovian, Bashkirian, Moscovian, Kasi-
movian, Gzhelian and Asselian type sections in the
Moscow Basin and Urals (Figure 2).

[38] Our new age constraints from the lower Mok-
rovolnovakhskaya [C1

1 (A)] Series go some way
toward remedying the dearth of radiometric (and
particularly ID-TIMS U-Pb zircon) ages for the
global Mississippian subperiod [Davydov et al.,
2004; Menning et al., 2006]. The age of 357.26
± 0.08 Ma obtained from an ash near the base of
the C1

t b2 biostratigraphic zone is consistent with an
age for the Devono-Carboniferous boundary of
359.2 Ma, and supports the proposition of a much
shorter duration of the Hastarian Substage of the
Tournaisian in western Europe [Davydov et al.,
2004; Haq and Schutter, 2008; Menning et al.,
2006]. Two samples collected within and at the top
of the C1

vc zone—which reliably correlates with the
lower Moliniacian (Late Chadian) of the lowermost
Visean in western Europe—provide a minimum
age of 346.3 Ma for the base of the global Visean
Stage, i.e., one million years older than proposed in
the most recent global time scale compilations
[Davydov et al., 2004; Menning et al., 2006]. An
age of 342.01 ± 0.10 Ma from a bentonite in the
lower Styl’skaya Formation extends the duration of
the Tulian and consequently the Holkerian Sub-
stage up to 6 Ma.

[39] A very dramatic change in the global time
scale is provided by the new age of 328.14 ± 0.11
Ma obtained from the c11 coal sample, in the C1

vg2
biozone. According to foraminifera (Betpakodiscus
cornuspiroides) and ammonoids (Eumorphoceras)
this coal correlates with the lower Steshevian
Horizon of the Serpukhovian in the Russian Plat-
form, and the Pendleian (Eumorphoceras 1 Zone)
of western Europe. This age pushes the lower
boundary of the Serpukhovian down to approxi-
mately 330 Ma, i.e., about 4 Ma older than in
previous global time scale compilations. Similar
ages were recently obtained from the aforemen-
tioned tonsteins in the Upper Silesian Basin
[Gastaldo et al., 2009]. Their host strata correlate
with the lower and middle Pendleian Substage of
western Europe, thus the age estimate of 330 Ma
for the base of Serpukhovian proposed here is in
excellent agreement with the extrapolated age of
329.7 Ma suggested from the Silesian Basin.

[40] Prior radiometric calibrations of the Pennsyl-
vanian time scale relied mainly upon a series of
40Ar/39Ar sanidine ages from the Donets Basin
[Hess et al., 1999], the Upper Silesian Basin and
several central European (Sahr, Ruhr, Bohemian,

IntraSudetic) basins [Burger et al., 1997; Hess and
Lippolt, 1986]. Our radiometric date for the l3 coal
of the Donets basin of 312.01 ± 0.08 Ma may be
directly compared to the result of Hess et al. [1999]
for the l3 coal of 305.5 ± 1.5 Ma. Beyond the
obvious contrast in precision, the accuracy of the
significantly younger 40Ar/39Ar sanidine age is
clearly called into question. Even taking into ac-
count systematic errors associated with decay con-
stants and monitor standards [Kuiper et al., 2008;
Min et al., 2000; Renne et al., 1998; Villeneuve et
al., 2000] this sanidine age is anomalously young.
Although this phenomenon was noted and inter-
preted as indicating systematic problems with bio-
stratigraphic correlation [Hess et al., 1999], it is
apparent from our results that instead this age
suffers from a systematic analytical or geological
bias. The fidelity of 40Ar/39Ar sanidine ages from
other European basins is similarly suspect, although
the large errors on these ages make it generally
difficult to assess the degree of bias [Davydov et al.,
2004]. In summary, these imprecise Carboniferous
sanidine ages appear to be plagued by one or a
combination of systematic analytical errors and
open system behavior, and are thus superseded by
our new accurate and precise U-Pb ages for Penn-
sylvanian time scale calibration.

[41] Our most extensive dating of tonsteins has
been from the Moscovian Stage, as many shafts are
actively mining coal of this age. Seven ages were
obtained from coals k3, k7, l1, l3 (two samples from
different shafts), m3, and n1 (Tables 1 and 2). These
samples and their associated cyclostratigraphic
calibration of the Late Pennsylvanian dramatically
change our understanding of the distribution of
time in the Moscovian Stage. The base of the stage
shifts down to 314.6 Ma (one fourth-order cycle
below coal k3 from which the oldest Moscovian
age was obtained). The top of the Moscovian (e.g.,
the base of the traditional Kasimovian in the N3

limestone) is calibrated as 306.7 Ma, thus the
duration of the Moscovian Stage increases up to
7.9 Ma as oppose to 6–7 Ma in most recent global
time scale compilations [Davydov et al., 2004;
Menning et al., 2006].

[42] We note that both the traditional and alternative
definitions for the base of the Kasimovian Stage can
be assigned numerical ages based upon our tuned
cyclostratigraphic model for the Late Pennsylva-
nian. The traditional base of the Kasimovian (at the
FADs of fusilinid Protriticites pseudomontiparus
and the conodont Streptognathodus subexcelsus) in
the N3 limestone is calibrated as 306.7 Ma. On the
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other hand the FAD of the conodont Idiognatho-
dus sagittalis in the O1 limestone is calibrated at
305.6 Ma. In the latter case the durations of the
Moscovian and Kasimovian Stages change to 9.0
and 2.4 Ma, respectively.

[43] The base of the Gzhelian Stage, taken as the
FAD of the conodont Streptognathodus simulator,
is calibrated via the extension of our tuned cyclo-
stratigraphic model at 303.2 Ma, thus constraining
the durations of the traditional Kasimovian
(3.5 Ma) and the Gzhelian Stages (4.5 Ma). This
age of the base of the Gzhelian Stage in the Donets
Basin is in good agreement with independent
geochronological data for the same FAD in the
Usolka section of the southern Urals [Schmitz et
al., 2005]. Similarly, although cyclicity becomes
more ambiguous in the increasingly continental
upper Gzhelian succession, only modest reinterpre-
tation of Izart et al.’s [2006] fourth-order sequen-
ces as higher-frequency cycles is necessary to align
the base of the Asselian in the Donets Basin with
the radiometric constraint of 298.7 Ma from the
Urals [Ramezani et al., 2007].

6. Conclusions

[44] We have provided a robust demonstration via
high-precision U-Pb CA-TIMS zircon geochronol-
ogy that the classical Pennsylvanian cyclothems
preserved in the Donets Basin are the record of
Milankovitch orbital eccentricity forcing of sea
level. Given the established similarities in sedi-
mentology and stratal architectures between cyclo-
thems of the Donets Basin and those of the
midcontinent United States [Heckel, 2002; Heckel
et al., 2007] we tentatively extend this model to the
latter, in support of prior inferences of eccentricity
forcing [Chesnut, 1996; Heckel, 1994, 2002, 2008].
Variation in glacioeustatic response is inherent to
short- versus long-period eccentricity cycle modu-
lation, and is consistent with the three existing
radiometric cycle period calibrations in diachro-
nous and globally distributed basins [Gastaldo et
al., 2009; Rasbury et al., 1998]. Further biostrati-
graphic correlation studies and radiometric dating
will provide additional tests of this model extension
to other cyclic sedimentary succession of the Car-
boniferous and Early Permian [Barrick et al., 2004;
Heckel et al., 2007; Ritter, 1995]. A reexamination
of the Donets Basin cyclostratigraphy using more
detailed sedimentological criteria and quantitative
frequency domain analysis is also necessary to
refine and identify the Milankovitch parameters

responsible for the higher-frequency cycles of the
basin.

[45] The radiometrically calibrated cyclostratigra-
phy of the Donets Basin provides a Pennsylvanian
chronostratigraphic framework of unprecedented
resolution (�100 ka), which directly constrains
numerous regional biostratigraphic zonations and
the global time scale. In addition, new ages in the
Mississippian succession of the Donets Basin also
significantly change our understanding of the dis-
tribution of time in the global scale, with implica-
tions for the correlation of emerging near- and far-
field records of climate change during the early
stages of the late Paleozoic Ice Age.
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