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Abstract

The introduction and rise of General Purpose Graphics Computing has significantly
impacted parallel and high-performance computing. It has introduced challenges when it
comes to distributed computing with GPUs. Current solutions target specifics: specific
hardware, specific network topology, a specific level of processing. Those restrictions on GPU
computing limit scientists and researchers in various ways. The goal of OpenCUDA+MPI
project is to develop a framework that allows researchers and scientists to write a general
algorithm without the overhead of worrying about the specifics of the hardware and the
cluster it will run against while taking full advantage of parallel and distributed computing
on GPUs. As work toward the solution continues to progress, we have proven the need for
the framework and expect to find the framework enables scientists to focus on their research.

Keywords: Parallel Computing, Distributed Computing, General Purpose Graphics Process-
ing, High-Performance Computing, Scientific Computing, Frameworks, Software Libraries
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1 Introduction

Increasingly, Graphics Processing Units (GPUs) are being used for general purpose computation
(General Purpose GPU (GP-GPU)). They have significantly altered the way high-performance
computing tasks can be performed today. To accelerate general-purpose scientific applications,
computationally intensive portions of the application are passed to GPUs. Once the GPU has
completed its task it sends the result back to the Centeral Processing Unit (CPU) where the
application code is running. This process can make applications run noticeably faster.

Scientific applications require a large number of floating point number operations, CPUs
are not sufficient to carry out such computationally intensive tasks. CPUs are responsible for
prioritization and execution of every instruction. Generally, a processor is described by the
number of execution cores it owns. Modern CPUs have eight cores while GPUs have hundreds
or more cores. More cores grant GPUs the ability to perform more tasks at the same time.

In computer architecture there are two main ways of processing: serial and parallel. CPUs
consist of a small number of cores that are best at processing serial data. On the other hand,
GPUs consist of thousands of cores that are designed for processing data in parallel. Given a
program, we can run the parallel portions of the code on GPUs while the serial portions run
on the CPU. The programmable GPU has evolved into a highly parallel, multithreaded, many
core processor with tremendous computational power. Compute Unified Device Architecture
(CUDA) is an architecture for utilizing and distributing computational tasks onto a computer’s
GPUs. As a parallel computing platform and programming model, CUDA utilizes the power of
a GPU to achieve dramatic increases in computing performance [6]. This fact is well illustrated
in figure 1.

Figure 1: Theoretical Floating-Point Operations per Second for the CPU and GPU [6]

Today, more than one million CUDA-enabled GPUs are used by software developers, scien-
tists and researchers in order to obtain a large performance gain in wide-ranging applications
[6]. A major challenge remains in being able to seamlessly integrate multiple workstations to
further parallelize the computational tasks [18] [20]. Current approaches provide the ability
to parallelize tasks, but they are less focused on optimally utilizing the varied capabilities of
heterogeneous graphics cards in a cluster of workstations (across many computer nodes).



We propose to create a framework for using both Message Passing Interface (MPI) and
CUDA on a cluster of computers to dynamically and easily assign computationally intensive
tasks to the machines participating in the cluster. MPI is a popularly used standardized interface
for communication among a group of computers. It facilitates the passing of messages between
the nodes in the cluster.

Our framework will be easy to use on a heterogeneous cluster of computers, each containing
a CUDA-capable GPU. The framework shall abstract away the difficulties of creating dis-
tributed and parallel code against a cluster. The framework shall expose certain debugging and
profiling mechanisms as well. Further, we also wish to develop and package together code and
configuration to facilitate system administrators with cluster management.

We plan to evaluate the efficacy of our framework using several problems: the N-Body
problem and the process of vessel extraction from CT angiography scans, to name a few. Both
are computationally intensive and have unique requirements of inter-node communication during
execution [17].

2 Significance

To gain a better understanding of the significance of the problem let’s examine some pseudo
code for computing element-wise vector summation.

2.1 CUDA and MPI Vector Summation

First, let’s look at the pseudo code of the vector summation without the framework. Notice,
this code is executed on each node, rank is the current node we are using. This simplifies on
the MPI side; but we can just as easily do this differently.

Algorithm 1 Algorithm of CUDA and MPI Element-wise Vector Summation
function add(slice a, slice b) . Actual addition is done on GPU

slice c← slice a + slice b
return slice c

end function
function Compute(card max, world size, N, a, b) . Split Data and Compute Sum . Ran
on all nodes part of the mpi world

c← empty like(a)
M ← floor((N + card max− 1)/card max)
m← floor((M + world size− 1)/world size)
for i < m do

slice low ← (rank ∗ 2 + i) ∗ card max
slice high← (rank ∗ 2 + (i + 1)) ∗ card max
c[slice low : slice high]← add(a[slice low : slice high], b[slice low : slice high])

end for
return c

end function

The ADD function is uninteresting but defined for completeness. The COMPUTE function, on
the other hand, has some complexities and other difficulties. Namely, the setting of M and
m, the integer number of groups to be computed and the integer number of slices per node to
be computed, respectively. You can notice our algorithm (element-wise vector summation) is
tightly coupled with the slicing/ division code. Even in such a simple computational problem,



setting M and m can be complicated and difficult to get correct, distracting the researcher/
developer from the real problem.

2.2 OpenCUDA+MPI Vector Summation

The user code will be run on all minion nodes of the MPI job. Further, because the user code
doesn’t have to deal with splitting the data or sending the data to other nodes, it is incredibly
simple.

Algorithm 2 User code of the framework
function vector add(data) . Element-Wise Vector Summation

slice c← data[0] + data[1]
return slice c

end function

The framework algorithm can be found in the appendix algorithm 3.
Once the user code is put together with the framework using algorithm 4 we will be given the

same result as the first example (that doesn’t use the framework). The benefit of the separation
is that the user function is easier to manage and isn’t coupled to other confounding code. Both
of these niceties should grant the benefit of better and easier to understand distributed and
parallel code.

3 Related Works

Current approaches to accelerating research computations and engineering applications include
parallel computing and distributed computing. A parallel system is when several processing
elements work simultaneously to solve a problem faster. The primary consideration is elapsed
time, not throughput or sharing of resources at remote locations. A distributed system is a
collection of independent computers that appears to its users as a single coherent system. In
distributed computing the data is split into smaller parts and subsequently spread across the
system. The result is then collected and outputted. Summary of current solutions are listed in
table 1 below followed by detailed description of every entry.

Project Description

Hadoop Distributed computation framework [7] [4] [26]

BOINC Volunteer and grid computing project distributed [12]

GPUDirect GPU-to-GPU framework for parallel computing [3]

MPI Message-passing system for parallel computations [28] [23]

PVM Distributed environment and message passing system [5]

Table 1: Summary of Current Approaches and Projects



3.1 Hadoop

Hadoop provides a distributed file system and a framework for the analysis and transformation of
very large data sets using the MapReduce paradigm [4] [21] [16] [15]. An important characteristic
of Hadoop is the partitioning of data and computation across many (thousands) of hosts (nodes),
and executing application computations in parallel close to their data [26]. The MapReduce
[24] [8] paradigm which Hadoop implements is characterized by dividing the application into
many small fragments of work, each of which may be executed or re-executed on any node
in the cluster. The worker node processes the smaller problem, and passes the answer back
to its master node. The answers to the subproblems are then combined to form the output.
Hadoop is popular model for distributed computations, however, it is does not integrate with
CUDA-enabled GPUs.

3.2 BOINC

The Berkeley Open Infrastructure for Network Computputing (BOINC) is an open source mid-
dleware system for volunteer and grid computing. The general public can contribute to today’s
computing power by donating their personal computer’s disk space and some percentage of
CPU and GPU processing. In other words, BOINC is software that can use the unused CPU
and GPU cycles on a computer to do scientific computing [12]. The BOINC project allows
for distributed computing using hundreds of millions of personal computers and game consoles
belonging to the general public. This paradigm enables previously in-feasible research and
scientific super-computing. The framework requires that individuals are connected to the In-
ternet and is supported by various operating systems, including Microsoft Windows, Mac OS
X and various Unix-like systems. Although BOINC may not seem relevant to our framework,
it represents a different paradigm in the realm of parallel and distributed computing that our
framework could use as an example for certain problems.

3.3 GPUDirect

Currently GPU based clusters are becoming more popular. GPUDirect is a GPU Remote Direct
Memory Access (RDMA) communication specification using Infiniband. GPUDirect allows for
multiple GPUs to communicate with each other directly by giving GPUs the ability to directly
copy memory to another GPU [3]. Prior to GPUDirect, GPU-to-GPU communication involved
the CPU. GPUDirect performance gain exceed CPU solutions. Direct GPU-to-GPU communi-
cation is less computationally expensive since less messages will be sent and received via the
host server. An issue with GPUDirect is that it requires specific hardware.

3.4 MPI

MPI is the dominant message passing programming paradigm for clusters [1] [2]. MPI is a
standardized and portable message-passing system that functions on a wide variety of parallel
computers. Although the standard MPI defines the syntax and semantics of a core of library
routines in the C programming language, many other languages offer Application Programmable
Interface (API) call into MPI. OpenCUDA+MPI builds upon this model due to the fact that MPI
is the dominant model used in high-performance computing [27]. MPI has been implemented
for almost every distributed memory architecture and is optimized for the hardware on which
it runs.



3.5 PVM

Parallel Virtual Machine (PVM) is a software tool for parallel networking of computers. It
is designed to allow a network of heterogeneous Unix and/or Windows machines to be used
as a single distributed parallel processor. Thus, large computational problems can be solved
more cost effectively by using the aggregate power and memory of many computers. PVM
enables users to exploit their existing computer hardware to solve much larger problems at less
additional cost [5]. PVM was a step towards modern trends in distributed processing and grid
computing but has, since the mid-1990s, largely been supplanted by the much more successful
MPI standard for message passing on parallel machines.

3.6 OpenCUDA+MPI

The proposed OpenCUDA+MPI framework will take advantage of both MPI and CUDA to perform
computations on GPU cards of computers participating in the cluster. OpenCUDA+MPI’s goal is
to allow a collection of heterogeneous computers each containing a CUDA-capable GPU to be
used as a coherent and flexible concurrent computational resource.

4 Methodology

Our framework will be developed using a number of tools and will also build upon a few already
developed and mature software libraries. Overall, we plan to use the Python programming
language, MPI for cross process communication, and CUDA for graphics computing.

4.1 Python

We will use Python programming language because of its ease of development and plethora of
existing libraries such as mpi4py and pyCUDA. Python also adds some advantages when it comes
to usability when needing more performance. For example, if we discover a need for certain
aspects of the project to be tuned or otherwise run faster, we can easily switch to C or C++
and write sections of the program in a (more performant) native language.

4.2 MPI

Currently our cluster consists of 16 computers provided to our research lab by the Computer
Science department of Boise State University. We will use MPI because it has established
itself as the de-facto interface for cross process communication [28]. To allow for interfacing
with Python [23], we will use mpi4py because of the library’s maturity and implementation
completeness.

4.3 CUDA

We will be using CUDA, and in particular, pyCUDA, because of existing knowledge of the library/
framework and also because it is a well established library for GPU computing.

4.4 OpenCUDA+MPI

Our frameworks’ goal is to make accessible the power of cluster computing without necessarily
possessing in-depth knowledge of the complexities of inter-computer related communication.
Further, in doing so, we would like to expose functionality that may not be available even in
more established cluster libraries and frameworks. Namely, facilities for debugging and profiling.



4.5 Testing

To evaluate the efficacy and accuracy of our framework several tests will be executed. As previ-
ously mentioned one of the first algorithms to be tested will be the problem of vessel extraction.
Accurately extracting vascular structures from a Computerized Tomographic angiography–also
called CT angiography scans–is important for creating oncologic surgery planning tools as well
as medical visualization applications [17]. Currently, we use a single GPU to extract vascular
structures from a CT angiography scan, which is computationally intensive.

The following test programs will be developed as time allows:

• N-Body Simulation

• Prime Number Searching

Every test program will be evaluated in three categories: CPU-only, CUDA-only, CUDA
and MPI and OpenCUDA+MPI. Having all of the prior solutions that do not use the framework
provides a baseline time comparison and provide immense insights into the pains and difficulties
we are actually attempting to solve.

5 Results

5.1 Vector Summation

Our first developed test program was a 1 billion element wise vector summation problem. This
is a simple and, as we will see, a bad example of using a cluster to speed up the computational
time required. Although we did see an increase in performance, the cost of Input/ Output (I/O)
far out weighs the benefit. Specifically, to do the computation on one machine (one CPU), it
took a wall time of 254 seconds (about 4 minutes) and a CPU time of 13.7 seconds. Further,
to do the computation using a single GPU took about 4172 seconds (wall time) or about 70
minutes, 13.83 seconds (CPU time) while the computing the summation of the cluster took
about 3177 seconds (wall time) or about 50 minutes, 10.51 seconds (CPU time). Our CPU only
implementation took the least amount of elapsed time, it took the second longest CPU time.
Our CUDA only implementation took the longest in both wall time and CPU time and our
cluster implementation was shortest CPU time but seconds longest elapsed time. The benefit
of saving an upwards of 3.3 seconds is not worth the extra incurred cost of 2923 seconds. Not
so surprisingly though, running the vector summation problem over the cluster without using
CUDA does increase the overall elapsed time of the problem; namely, it took 226 seconds wall
time (currently the correct CPU time is unable to be collected). Further, increasing the number
of nodes part of the program’s pool, decreases the wall time for each node.

5.2 N-Body Problem

The N-Body problem is a simulation of a system of N bodies and their gravitational (or other
force) interaction with each other calculated over a set of time steps. Each time step will
calculate and update positions and other attributes of each body in the system.

We have several sizes of the N-Body problem that we tested with: 2, 001 particles, 20, 000
particles, 200, 000 particles, 2, 000, 000, and 20, 000, 000 particles.

The computational times are for a single time step. The method for computing the gravi-
tational potential is an adaptation of the Particle-Particle, Particle-Mesh (P3M) method. The
benefit of using this method is we are able to nicely distribute the problem over the cluster and



Method Time (s) Total Time (s)

CPU Only 13.7 254.13

CUDA (Single Node) 13.83 4172

MPI + CUDA (7 nodes) 10.51 (average) 3177

MPI (7 nodes) (average) 226

MPI (16 slots) (average) 149

Table 2: Computational Timing Comparison of 109 element wise vector summation

/ or over a GPU (because of memory limitations) while maintaining a respectable accuracy for
close body interactions. Further, if a grid contains more bodies than a specified threshold (in
our case 200, 000), we can further sub-divide the grid to improve performance and maintain
accuracy still.

There are other algorithms for computing N-Body problems on the CPU that are quite
efficient, notably, the Barnes-Hut Tree algorithm[14]; however, using it would distort and con-
found the comparisons between CPU, GPU, and cluster implementations, not to mention the
complexities of implementing such an algorithm on GPUs and over a cluster.

5.2.1 N-Body — CPU

In CPU tests, we were only able to complete several of the problem sizes; the larger sizes are
infeasible. Notably, the smaller sizes were computed in a relatively respectable amount of time.
While the bigger sizes were time consuming, not even attempted, or aborted. For example, the
2 million body problem was aborted after running for about 2 weeks.

Size User (seconds) Sys (seconds) Real (seconds)

2001 28.81 0.02 30.77

20000 2382.40 2.27 2393

200000 113983 34.45 114349

2 million aborted aborted aborted

20 million N/A N/A N/A

Table 3: CPU N-Body simulation using particle-particle method

5.2.2 N-Body — GPU

As noted above, the GPU (CUDA) implementation uses the same computational method (P3M).
Using the GPU, we were able to compute the 20, 000, 000 size problem and may be able to
compute larger sets within a reasonable amount of time. See table 4 for a breakdown of the
running times.



Size User (seconds) Sys (seconds) Real (seconds)

2001 10.08 1.52 14.14

20000 22.30 2.46 26.82

200000 44.63 4.84 52.86

2 million 186.59 21.23 217.60

20 million 1289.24 159.29 1510

Table 4: Single GPU (CUDA) N-Body simulation using P3M method

5.2.3 N-Body — 16 Node Cluster

Similar to the other solutions, we are still using the P3M method for computing a single time
step of the N-Body problem. Over 16 nodes, we were able to see drastic improvements over
CPU and CUDA implementations. Notably, in the 20, 000 problem size, the cluster did nearly
19044% better than the CPU and about 115% better than a single GPU. Further, in the 200, 000
problem size, we see the cluster did about 535, 743% better versus CPU and about 148% better
versus GPU. See table 5 for times of each problem size.

Size User (seconds) Sys (seconds) Real (seconds)

2001 N/A N/A N/A

20000 0.17 0.032 12.50

200000 0.147 0.028 21.34

2 million 0.15 0.025 97.76

20 million 0.15 0.06 950.045

Table 5: 16 node cluster N-Body simulation using P3M method

6 Conclusions

We have developed some baseline test solutions to a few problems. From the baseline solutions,
we can easily tell there are significant performance increases from parallelizing code. However,
there is still a complexity cost. The goal of OpenCUDA+MPI is to limit this complexity cost and
from our really early versions of the framework, the outlook of being able to do just that looks
very good.

6.1 Future Work

Work is continuing to progress on the development of the framework, but an early alpha version
is nearly complete. As we continue to develop the framework, there are a few objectives we would
like to achieve. Namely, we would like to add better debugging and profiling functionality, expose
CUDA device initialization to the user, add automatic and/ or configurable checkpointing, and
finish node configuration and administrative tasks.



A Appendix

A.1 Algorithms

Algorithm 3 OpenCUDA+MPI Framework Pseudo Code
function Master(size, world size) . Split data as appropriate and send to nodes

card max← query max mem()
M ← floor((N + card max− 1)/card max)
m← floor((M + world size− 1)/world size)
for all r < world size do

slice low ← (r ∗ 2 + i) ∗ card max
slice high← (r ∗ 2 + m) ∗ card max
Send indices from low to high to node of rank r

end for
end function
function Minion(data, user fn) . Receive Indices and Compute Results using user
function

slice low ← recv()
slice high← recv()
results← user fn(data[slice low : slice high])
Send back results or write them to disk

end function

Algorithm 4 Combining the framework with user code
function main(rank)

if rank == 0 then
master(. . . )

else
minion(. . . )

end if
end function
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Glossary

CPU time time (typically in seconds) spent executing the process. 7

API Application Programmable Interface. 5

BOINC Berkeley Open Infrastructure for Network Computputing. 5

cluster A collection of computers networked together, typically with the goal of combining
computational power. 3, 6–9

CPU Centeral Processing Unit. 2, 5, 7–9

CUDA Compute Unified Device Architecture. 2, 3, 5–9

GP-GPU General Purpose GPU. 2

GPU Graphics Processing Unit. 2–9

I/O Input/ Output. 7

Infiniband a networking fabric specification that defines a connection between compute nodes.
5

MPI Message Passing Interface. 3–7

node a computer, member of a cluster. 8

P3M Particle-Particle, Particle-Mesh. 7–9

PVM Parallel Virtual Machine. 6

RDMA Remote Direct Memory Access. 5

slot process space on a node, typically equal to the number of logical CPU cores on the node.
8

wall time all elapsed time (typically in seconds) that passes from start to finish of a program.
7
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