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Finite-Difference Time Domain Method for
Nonorthogonal Unit-Cell Two-Dimensional

Photonic Crystals
Wan Kuang, Member, IEEE, Woo Jun Kim, and John D. O’Brien, Senior Member, IEEE

Abstract—A finite-difference time-domain (FDTD) method
based on a regular Cartesian Yee’s lattice is developed for calculat-
ing the dispersion band diagram of a 2-D photonic crystal. Unlike
methods that require auxiliary difference equations or nonorthog-
onal grid schemes, our method uses the standard central-
difference equations and can be easily implemented in a parallel
computing environment. The application of the periodic boundary
condition on an angled boundary involves a split-field formulation
of Maxwell’s equations. We show that the method can be applied
for photonic crystals of both orthogonal and nonorthogonal unit
cells. Complete and accurate bandgap information is obtained
by using this FDTD approach. Numerical results for 2-D TE/TM
modes in triangular lattice photonic crystals are in excellent agree-
ment with the results from 2-D plane wave expansion method. For
a triangular lattice photonic crystal slab, the dispersion relation
is calculated by a 3-D FDTD method similarly formulated. The
result agrees well with the 3-D finite-element method solution. The
calculations also show that the 2-D simulation using an effective
index approximation can result in considerable error for higher
bands.

Index Terms—Band diagram, finite-difference time domain
(FDTD), photonic crystals, triangular lattice.

NOMENCLATURE

FDTD Finite-difference time domain.
PWE Plane wave expansion.
FEM Finite-element method.
PML Perfectly matched layer.
ABC Absorbing boundary condition.

I. INTRODUCTION

THE periodic spatial modulation of the refractive index in
photonic crystals has proven to be an effective way to

modify the flow of light [1]–[3]. Strong diffraction and multiple
scattering in periodic structures generally require Maxwell’s
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equations to be numerically solved. FDTD method has been
widely used in modeling photonic crystal devices. It linearly
scales with the simulation dimension and can be implemented
in a parallel computing environment very efficiently.

However, the application of the FDTD method in a band
structure calculation has been limited to photonic crystals
with orthogonal unit cells. This is mainly because the general
second-order accurate FDTD method in the Cartesian coordi-
nate presents a discrete approximation for fields based on a
uniform orthogonal grid. Except for the photonic crystals in a
rectangular lattice, the physical boundary of the unit cell does
not directly conform to the FDTD grid. The desired periodic
boundary condition cannot be directly enforced on the physical
boundary but rather on an auxiliary boundary, which is a stair-
cased approximation of the physical boundary. Unfortunately,
this leads to instability, regardless of how fine the mesh is made
to resolve the boundary contour, as the electromagnetic field at
the boundary carries important phase information.

Several matrix-based methods, for example, PWE and FEM,
have been used for calculating the band structures of photonic
crystals. For a full 3-D simulation of a 2-D photonic crys-
tal slab, a supercell approach is commonly employed. Since
the calculation burden quadratically scales with the simula-
tion dimension, most of the calculations have been limited to
two dimensions using an effective index approximation. Two-
dimensional photonic bandgap calculations agree well with full
3-D calculations; however, the calculated group velocity con-
siderably deviates from the 3-D simulations. Three-dimensional
PWE and FEM are computationally intensive. Although the
amount of computation in a 3-D simulation can be reduced
by invoking additional symmetry considerations [4], in many
cases, such procedures may not be enough. For instance, sim-
ulation of the surface plasmon polaritons in metal disk arrays
requires the electromagnetic field to be sampled at a 1-nm
distance or smaller [5]. Parallelization for these matrix-based
methods has been more difficult and less efficient than for the
FDTD [6]. As parallel computing facilities become increasingly
available, it would be desirable to utilize the strength of the
FDTD in parallelization for band structure calculation.

In this paper, an FDTD method is presented for calculating
the dispersion relation of general 2-D photonic crystals. Un-
like methods that require auxiliary difference equations [7] or
nonorthogonal grid schemes [8], our method uses the standard
central-difference equations in an orthogonal grid scheme and
can be easily implemented in a parallel computing environment.

0733-8724/$25.00 © 2007 IEEE
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The band diagram of a triangular lattice photonic crystal slab
is calculated by a 2-D FDTD using an effective index approx-
imation and a full 3-D FDTD simulation. The results agree
extremely well with those given by the 2-D PWE and 3-D FEM
approaches, respectively.

II. METHOD AND IMPLEMENTATION

The FDTD method, which was introduced by Yee in 1966, is
a marching-in-time procedure that simulates continuous actual
electromagnetic waves by volumetric sampling of unknown
fields [9], [10]. For photonic crystals with a spatially periodic
dielectric constant ε(r + R) = ε(r), where R is the primitive
lattice vector, the electromagnetic fields E(r) and H(r) are
characterized by a wave vector k in the reduced Brillouin zone
and band index n according to Bloch’s theorem

E(r) =En,k(r) = un,k(r) exp(ik · r) (1)

H(r) =Hn,k(r) = vn,k(r) exp(ik · r) (2)

in which un,k(r) and vn,k(r) are periodic functions that
satisfy

un,k(r + R) = un,k(r) (3)

vn,k(r + R) = vn,k(r). (4)

From (3) and (4), it shows that the eigenvalue solutions
in a periodic structure can be found in the unit cell for a
given periodic boundary condition, as shown in (1) and (2).
Because of the structural complexity, it is often solved with
a variety of numerical methods that include the PWE [3],
[11]–[14], the FEM [6], and the FDTD method. Reviews of
those numerical methods and their pros and cons can be found
in [6].

For the FDTD, a simulation starts from a random initial
condition to not exclude any possible modes and propagates
for an adequate amount of time to give sufficient precision. The
eigenmodes are then given by the peaks of the Fourier transform
of the complex field components in the time domain recorded
at various low-symmetry locations for a given propagation
constant. The choice of initial condition and the locations of
probes are very important. An initial condition that is not
random enough will not be able to excite all possible modes
in the structure. Probes at the high-symmetry locations of the
structure are incapable of detecting all eigensolutions, as some
modes are likely to have nodes at those locations.

This approach is different from the PWE, FEM, and other
frequency domain methods where the eigenvalues are directly
solved. In the following, we will describe the FDTD algorithm
for a general nonorthogonal unit cell. Without losing generality,
it will be explained for a triangular lattice.

A. Unit Cell

Fig. 1 shows the real and reciprocal spaces in the x–y plane
of a triangular lattice photonic crystal. Assuming a lattice
constant of a, the primitive vectors a1 and a2 are given by
ax̂ and [(a/2)x̂] + [(

√
3a/2)ŷ], respectively. The correspond-

Fig. 1. (a) Real space and (b) reciprocal space representation of a triangular
lattice where a1, a2 and b1, b2 are the unit vectors for the real space and
reciprocal space, respectively.

ing reciprocal lattice vectors b1 and b2 are [−(2π/a)k̂x] +
[(2π/

√
3a)k̂y] and −(4π/

√
3a)k̂y , respectively. The high-

lighted triangle in Fig. 1(b) indicates the reduced Brillouin
zone, where high-symmetry locations and their corresponding
coordinates Γ (0,0), M(π/a, π/a

√
3), and K (4π/3a, 0) are

labeled. For M and K points, other choices of coordinates exist,
as shown in the figure.

Although the hexagonal Wigner–Seitz unit cell, as shown in
Fig. 1(b), is generally explained in the literature as an example
of a unit cell for the triangular lattice, it is, nevertheless, difficult
to numerically handle. Among the three pairs of parallel peri-
odic boundaries that are labeled as e′1 − e′′1, e′2 − e′′2, and e′3 −
e′′3 in Fig. 1(a), only two of them are completely independent.
The redundant Bloch equations lead to numerical instability.
Additionally, the nonorthogonal unit cell does not natively
conform to the Cartesian FDTD space grid. The periodic
boundary condition cannot be directly enforced on the physical
boundary.

We will show that a nonorthogonal FDTD grid scheme is
unnecessary if the parallelogram unit cell, as shown in Fig. 2, is
chosen instead. In this case, exactly two sets of periodic bound-
ary conditions are enforced at the edges, i.e., f ′

1 − f ′′
1 and f ′

2 −
f ′′
2 , of the unit cell. The electromagnetic field is periodically

wrapped with appropriate phase conditions given by exp(−ik ·
r), where k is the propagation constant of interest, and r is any
of the primitive lattice vectors a1 or a2, depending on the as-
sociated periodic boundary. Taking the Γ−M direction, for ex-
ample, the propagation constant k is given by (−2πξ/a

√
3)ŷ,

as shown in Fig. 1(b), in which ξ ∈ [0, 1] is a fraction; there-
fore, k covers the whole range of the Γ−M vector. The
calculation requires a phase delay or advance of exp(−2πξi)
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Fig. 2. Wigner–Seitz unit cell for a triangular lattice in the real space shown
in blue lines and its equivalent rhombus unit cell in solid green lines employed
in the numerical calculations. The light-green-shaded area indicates the period-
icity of the lattice by applying rhombus unit cell.

Fig. 3. (a) Uniform Cartesian grids that cannot completely sample the bound-
ary (marked in red) at the grid points and (b) nonuniform Cartesian grid scheme
by scaling the spatial step for ŷ by

√
3 with respect to ∆x, which enables

the periodic boundary completely sampled at the grid points (marked as blue
points).

and exp(−i2πξ/3) for the f ′
2 − f ′′

2 and f ′
1 − f ′′

1 peri-
odic boundaries, respectively. Another choice of propagation
constant for the Γ−M direction is [(π/a)x̂] + [(π/a

√
3)ŷ],

which is also shown in Fig. 1(b). The phase constants for
both periodic boundaries will accordingly change. In theory,
the photonic band diagrams are identical, regardless of the
choice of propagation constant as long as they are translational
invariant with respect to the reciprocal lattice vectors. However,
the numerical results suffer a small difference due to a slight
circular asymmetry. Circles formed in an x–y grid do not
possess an exact 60◦ rotational symmetry. Even so, it is found
[15] that the margin of error is well below 1% when an order-N
method [16] is applied.

As shown in Fig. 3(a), the rhombus unit cell forms a 60◦/120◦

angle between neighboring boundaries. If it were to be directly

mapped to a uniform isotropic Cartesian grid, two of its periodic
boundaries f ′

1 − f ′′
1 cannot be completely sampled at the grid

points. This is because the desired boundary conditions cannot
be directly enforced on the physical boundary but, rather, on an
auxiliary boundary, which is a staircased approximation of the
physical boundary. In general, those values that are not directly
given at the grid points can only be calculated from their nearest
neighbors. Unfortunately, this leads to instability because the
electromagnetic field at the boundary carries important phase
information. A slight error in the phase will cause the calcula-
tion to be extremely unstable. As isotropic grid on a Cartesian
coordinate only natively describes a 45◦ straight line; a 60◦ line
would require a scaling of axes by

√
3, as schematically shown

in Fig. 3(b).
Increasing the spatial step ∆y for the ŷ-axis also increases

the numerical dispersion error [10]. When the numerical ac-
curacy is a concern for long iterations, it is more desirable
to reduce ∆x by a factor of

√
3. The time step ∆t will be

accordingly adjusted to ensure that the FDTD simulation still
satisfies the stability condition given by the Courant constant
[10]. It is clear that for any general nonorthogonal 2-D unit
cell, ∆x and ∆y can always be scaled so that the parallel-
ogram unit cell will be precisely mapped onto the Cartesian
FDTD grid.

It is worth noting that the triangular lattice photonic crystals
can also be periodically extended with the rectangle as the unit
cell [17] (marked with dotted lines in Fig. 2). It is straightfor-
ward to implement a rectangle unit cell in the Cartesian FDTD
method. However, as the rectangular lattice has a primitive
lattice of a1 and a2 − a1/2 and two air holes per unit cell,
the photonic band structure represents a “folded version” of a
real band diagram—one which would have “extra” bands that
would need to be identified and unfolded. One way to overcome
this unit-cell problem with the standard FDTD is to place a
dipole source in the same spot of every copy of the primitive
cell represented within the larger rectangular grid that is being
simulated and to then adjust the phase of the waveform that
is applied to satisfy each particular propagation constant k
[7]. This can be adapted to the simple one-time-step “ping”
by having the second impulse, at point r′ relative to the first,
appear on both layers of the FDTD grid, weighted by cos(k · r′)
and sin(k · r′), respectively.

However, not all 2-D periodic structures can be described
with a rectangular unit cell. As more primitive unit cells are
included in the rectangular unit cell for the purpose of calcula-
tion, more bands will be folded into the reduced Brillouin zone,
which becomes increasingly difficult to unfold. In contrast, our
choice of parallelogram unit cell and scaled spatial step can
handle general 2-D photonic crystals on a Cartesian FDTD grid
scheme.

B. Split-Field Formulation

Fig. 4 shows the grid scheme for applying the general peri-
odic boundary condition. For the sake of clarity, the algorithm
will be explained for the electromagnetic field in a 2-D case.
The situation with the full 3-D case can be similarly applied.
In the 2-D case, Maxwell’s equations are simplified into two
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Fig. 4. Noncollocated grid scheme for the FDTD method. The bold line
delineates the boundary for the nonorthogonal unit cell. The Ex, Ey , and Hz

components are sampled and shown as the left arrows, up arrows, and circles,
respectively, in the figure. The open symbols indicate that those elements are to
be calculated by the periodic boundary condition.

independent sets of equations whose solutions are classified as
transverse electric (TEz) modes, i.e.,

∂Hz(ρ)
∂y

=
∂ε(ρ)Ex(ρ)

∂t
(5)

∂Hz(ρ)
∂x

= − ∂ε(ρ)Ey(ρ)
∂t

(6)

∂Ey(ρ)
∂x

− ∂Ex(ρ)
∂y

= − ∂µ0(ρ)Hz(ρ)
∂t

(7)

and transverse magnetic TMz waves. For TEz waves, there
exist three nonzero Ex, Ey , and Hz field components. The
locations of the Ex, Ey , and Hz components are shown in Fig. 4
as left arrows, up arrows, and circles, respectively.

The grid scheme is developed from the original Yee’s inter-
laced space lattice. It is extended by half a unit cell so that
all electromagnetic field components will border the domain
boundary for all three directions. This extension leads to an
equal dimension of electromagnetic field components. When
the algorithm is implemented in the parallel environment, this
modified grid scheme has an added benefit that the synchro-
nization between processors is balanced between E and H
components.

The bold line in Fig. 4 delineates the parallelogram unit
cell that is represented in the Cartesian FDTD grid, assuming
it has a dimension of 5 × 4. Using the central difference
approximation, the explicit time-stepping relations can be de-
rived from (5)–(7). E

i,j+1/2
x,n+1/2 is a shorthand expression for

Ex(i∆x, (j + 1/2)∆y, (n + 1/2)∆t), i.e.,

E
i,j+1/2
x,n+1/2 =

1− σi,j+1/2∆t
2εi,j+1/2

1+ σi,j+1/2∆t
2εi,j+1/2

E
i,j+1/2
x,n−1/2

+
1 − ∆t

2εi,j+1/2

1 + σi,j+1/2∆t
2εi,j+1/2

(
Hi,j+1

z,n − Hi,j
z,n

∆y

)
(8)

E
i+1/2,j+1
y,n+1/2 =

1− σi+1/2,j+1∆t
2εi+1/2,j+1

1+ σi+1/2,j+1∆t
2εi+1/2,j+1

E
i+1/2,j+1
y,n−1/2

+
1− ∆t

2εi+1/2,j+1

1+ σi+1/2,j+1∆t
2εi+1/2,j+1

(
Hi,j+1

z,n −Hi+1,j+1
z,n

∆x

)
(9)

Hi,j+1
z,n+1 =

1− σi,j+1
m ∆t
2µi,j+1

1+ σi,j+1
m ∆t
2µi,j+1

Hi,j+1
z,n

+
1− ∆t

2µi,j+1

1+ ∆t
2µi,j+1


E

i,j+3/2
x,n+1/2−E

i,j+1/2
x,n+1/2

∆y

+
E

i−1/2,j+1
y,n+1/2 − E

i+1/2,j+1
y,n+1/2

∆x


.

(10)

From (8)–(10), it shows that some field elements in the unit
cell cannot be calculated with the central difference equations
because they require the knowledge of field values outside the
unit cell. They are identified as open symbols in Fig. 4. These
elements need to be calculated by the periodic boundary condi-
tion. However, as can be seen in Fig. 4, the field component Hz

at both the left-hand side and the right-hand side of the unit cell
are unknown. This is because, according to (10), calculating
Hz requires known Ey values to its left and right, as well as Ex

values to its top and bottom. As the jagged left–right boundary
put Hz as the last component on both the left and the bottom of
the simulation domain, none of these boundary values can be
determined by (10).

To resolve this dilemma, we employ a split-field formulation
of Maxwell’s equations, where the magnetic field component
Hz is split into two orthogonal components Hzx and Hzy . The
differential equations are then given by

Hi,j+1
zx,n+1 =

1 − σi,j+1
m ∆t
2µi,j+1

1 + σi,j+1
m ∆t
2µi,j+1

Hi,j+1
zx,n

+
1 − ∆t

2µi,j+1

1 + ∆t
2µi,j+1


E

i−1/2,j+1
y,n+1/2 − E

i+1/2,j+1
y,n+1/2

∆x




(11)

Hi,j+1
zy,n+1 =

1 − σi,j+1
m ∆t
2µi,j+1

1 + σi,j+1
m ∆t
2µi,j+1

Hi,j+1
zy,n

+
1 − ∆t

2µi,j+1

1 + ∆t
2µi,j+1


E

i,j+3/2
x,n+1/2 − E

i,j+1/2
x,n+1/2

∆y


 . (12)

By splitting the Hz field, Hzx is only dependent on Ey , and
therefore, its value on the right boundary can be calculated. The
same is true for Hzy on the left-hand-side boundary. As a result,
the Bloch condition is then given by

Hj,j
zx = Hj+a,j

zx exp(ik · ax̂) (13)

Hj+a,j
zy = Hj,j

zy exp(−ik · ax̂) (14)

in which a is the length of the unit cell in the x̂ direction, and
k is the wave vector that is normalized by the unit cell. For the
unit cell shown in Fig. 4, a = 5.

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 10:41 from IEEE Xplore.  Restrictions apply.



2616 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 25, NO. 9, SEPTEMBER 2007

Fig. 5. Photonic band diagram of (a) the TEz and (b) the TMz modes for
2-D triangular lattice photonic crystals using the 2-D FDTD method and a 2-D
PWE method. The dielectric slab has an effective index of 2.76 and a triangular
lattice of air holes r/a of 0.3.

III. TRIANGULAR LATTICE PHOTONIC CRYSTALS

In Section II, we have described the FDTD algorithm for
calculating the dispersion relations of photonic crystals with a
nonorthogonal unit cell. In this section, the numerical method
will be applied for a 2-D triangular lattice photonic crystal
slab. The dielectric slab, which is assumed to be suspended
in the air, has a refractive index n of 3.4 and a normalized
thickness d/a of 0.6. Air holes with a normalized radius r/a
of 0.3 perforate the dielectric membrane. The calculation will
be performed with both 2-D and 3-D FDTD methods. For 2-D
calculations, the dielectric constant of the slab is approximated
by the effective index for the zeroth-order mode that is confined
in the dielectric slab. The dispersion relation will be compared
with the 2-D PWE method using the same effective index. We
also perform a fully 3-D FDTD calculation with a PML ABC
[18]–[20] that terminates the vertical ẑ direction. The result
will be compared with the 3-D FEM. Note that the choice of
triangular lattice for the comparison has simply been because
of the wealth of existing results. However, as discussed earlier,
the method can be applied to any general 2-D lattice.

Fig. 5 shows the photonic band diagram of the TEz and TMz

modes for 2-D triangular lattice photonic crystals. It plots the
frequency-versus-propagation-constant relations for the modes
along the high-symmetry directions Γ−M , M−K, and K−Γ

Fig. 6. Photonic band structure for a suspended membrane photonic crystals,
which is calculated with the 3-D FDTD method. The dielectric membrane has
a refractive index of 3.4 and normalized thickness of 0.6. Triangular lattice air
holes that perforate the membrane have a normalized radius of 0.3.

of the lattice. Those high-symmetry locations are defined in
Fig. 1. The triangular lattice creates a bandgap for in-plane TEz

modes. In the calculation, the dielectric assumes a refractive
index of 2.76 given by the effective index of the fundamental
TE mode for an infinite slab, whose refractive index is 3.4, and
the normalized thickness is 0.6. The FDTD and PWE results
are shown in Fig. 5 as the open circles and the solid lines,
respectively. The first bandgap of the TEz mode is formed by
the first and second bands; however, an in-plane bandgap for
the TMz modes does not exist. The difference in normalized
frequencies from the two approaches is less than 1%.

We also extend the algorithm into the 3-D FDTD and calcu-
late the photonic band structure for the even modes (TE like)
in a triangular lattice photonic crystal membrane. Fig. 6 shows
the 3-D FDTD result as open circles as well as the FEM results
as solid lines for comparison. The shaded area is the light cone
of the air cladding that is mapped on the respective propagation
directions. The existence of a high-index substrate will allow
the field to evanescently couple to the radiation modes of the
substrate, which leads to a significant power loss. The photonic
crystal modes in the shaded region are not strictly guided by the
dielectric slab. Hence, the calculation of frequencies for those
modes is less accurate with the FDTD, as they have a relatively
short lifetime and a broad spectral response. The agreement
between the two numerical approaches can be clearly identified
in the figure, particularly for the below-light-line region where
the difference is less than 2%.

Comparing the results from the 3-D FDTD and the effective
index 2-D FDTD, as shown in Fig. 5, the first band shares
a strong semblance. However, the discrepancy becomes more
drastic for higher bands. That is because higher transverse
modes are less localized in plane and more localized in the
slab vertically. Hence, 2-D effective index underestimates the
vertical confinement and leads to a higher eigenfrequency.
Additionally, the z dependence of photonic crystal modes is
also a function of the propagation constant. As a result, the
discrepancy in the dispersion relation from a full 3-D calcula-
tion and 2-D effective index approximation is also propagation
constant dependent. Because of this, the group velocity and
dispersion properties of a photonic crystal mode, which is given

Authorized licensed use limited to: Boise State University. Downloaded on April 24, 2009 at 10:41 from IEEE Xplore.  Restrictions apply.



KUANG et al.: FDTD METHOD FOR NONORTHOGONAL UNIT-CELL TWO-DIMENSIONAL PHOTONIC CRYSTALS 2617

by the higher order derivative of the band, can be significantly
different from that of the 2-D result. It is an important issue
in such applications as superprisms, where the higher order
dispersion relation of the photonic crystals is the key to the
device design.

Additional band structures for triangular lattice photonic
crystals on oxides and high-index substrates can be found in
[21] and [22]. The flexibility of the FDTD method is that a
general epitaxial structure can be easily incorporated. As a final
comment, this Cartesian FDTD method can also be similarly
extended to calculate the band structure for 3-D photonic
crystals.

IV. DISCUSSION AND CONCLUSION

In summary, a fully 3-D FDTD method is presented for
calculating the dispersion relation of 2-D photonic crystals.
The choice of a parallelogram primitive cell and split-field
formulation of Maxwell’s equation enables the Cartesian FDTD
to handle the general 2-D space lattice. The photonic band
diagram for the 2-D TE/TM modes in triangular lattice photonic
crystals that is calculated by the 2-D FDTD method is in
excellent agreement with the results from the PWE method.
We also show that the fully 3-D FDTD calculation of the
triangular lattice photonic crystal in a dielectric slab agrees well
with the 3-D FEM solution. However, being a fully explicit
computation, the FDTD is more desirable for a calculation that
requires a large simulation domain because the computation
time o(N) is linearly proportional to the mesh density. A
comparison of the 2-D and 3-D band diagrams indicates that
the 2-D calculation using an effective index approximation can
result in a considerable error for higher order modes. It is an
important issue in such applications as superprisms, where the
group velocity dispersion of the photonic crystals is the key to
the device design.
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