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Abstract
A new generation of mobile applications requires reduced
energy consumption without sacrificin execution perfor-
mance. In this paper, we propose to respond to these con-
flictin demands with an innovative statically pipelined
processor supported by an optimizing compiler. The cen-
tral idea of the approach is that the control during each
cycle for each portion of the processor is explicitly repre-
sented in each instruction. Thus the pipelining is in effect
statically determined by the compiler. The benefit of this
approach include simpler hardware and that it allows the
compiler to perform optimizations that are not possible on
traditional architectures. The initial results indicate that
static pipelining can significantl reduce power consump-
tion without adversely affecting performance.

1 Introduction
With the proliferation of embedded systems, energy con-
sumption has become an important design constraint. As
these embedded systems become more sophisticated, they
also need a greater degree of performance. The task of
satisfying the energy consumption and performance re-
quirements of these embedded systems is a daunting task.
One of the most widely used techniques for increasing
processor performance is instruction pipelining. Instruc-
tion pipelining allows for increased clock frequency by
reducing the amount of work that needs to be performed
for an instruction in each clock cycle. The way pipelining
is traditionally implemented, however, results in several
areas of inefficien y with respect to energy consumption.

These inefficiencie include unnecessary accesses to the
register fil when the values will come from forwarding,
checking for forwarding and hazards when they cannot
possibly occur, latching values between pipeline registers
that are often not used and repeatedly calculating invariant
values such as branch targets.

In this paper, we introduce a technique called static
pipelining which aims to provide the performance bene-
fit of pipelining in a more energy-efficien manner. With
static pipelining, the control for each portion of the pro-
cessor is explicitly represented in each instruction. In-
stead of pipelining instructions dynamically in hardware,
it is done statically by the optimizing compiler. There are
several benefit to this approach. First, energy consump-
tion is reduced by avoiding unnecessary actions found
in traditional pipelines. Secondly, static pipelining gives
more control to the compiler which allows for more fine
grained optimizations for both performance and power.
Lastly, statically pipelined processors have simpler hard-
ware than traditional processors which should provide a
lower production cost.

This paper is structured as follows: Section 2 intro-
duces static pipelining at both the micro-architectural and
architectural level. Section 3 discusses compilation issues
with regards to static pipelining and gives a detailed ex-
ample. Section 4 gives preliminary results. Section 5
reviews related work. Section 6 discusses future work.
Lastly, Section 7 draws conclusions.

1

elizabethwalker
Text Box
© 2011 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.DOI: 10.1109/INTERACT.2011.7



2 Statically Pipelined Architecture
One of the most common techniques for improving pro-
cessor performance is instruction pipelining. Pipelin-
ing allows for increased clock frequency by reducing the
amount of work that needs to be performed for an instruc-
tion in each clock cycle. Figure 1 depicts a classical f ve
stage pipeline. Instructions spend one cycle in each stage
of the pipeline which are separated by pipeline registers.
Along with increasing performance, pipelining intro-

duces a few inefficiencie into a processor. First of all is
the need to latch information between pipeline stages. All
of the possible control signals and data values needed for
an instruction are passed through the pipeline registers to
the stage that uses them. For many instructions, much of
this information is not used. For example, the program
counter (PC) is typically passed from stage to stage for all
instructions, but is only used for branches.
Pipelining also introduces branch and data hazards.

Branch hazards result from the fact that, when fetching
a branch instruction, we won’t know for several cycles
what the next instruction will be. This results in either
stalls for every branch, or the need for branch predictors
and delays when branches are mis-predicted. Data haz-
ards are the result of values being needed before a previ-
ous instruction has written them back to the register file
Data hazards result in the need for forwarding logic which
leads to unnecessary register fil accesses. Experiments
with SimpleScalar [1] running the MiBench benchmark
suite [6] indicate that 27.9% of register reads are unnec-
essary because the values will be replaced from forward-
ing. Additionally 11.1% of register writes are not needed
due to their only consumers getting the values from for-
warding instead. Additional inefficiencie found in tradi-
tional pipelines include repeatedly calculating branch tar-
gets when they do not change, reading registers whether
or not they are used for the given type of instruction, and
adding an offset to a register to form a memory address
even when that offset is zero.
Given these inefficiencie in traditional pipelining, it

would be desirable to develop a processor that avoided
them, but does not sacrific the performance gains associ-
ated with pipelining. In this paper, we introduce an archi-
tecture to meet this goal.
Figure 2 illustrates the basic idea of our approach. With

traditional pipelining, instructions spend several cycles in

the pipeline. For example, the sub instruction in Figure
2(b) requires one cycle for each stage and remains in the
pipeline from cycles four through seven. Each instruction
is fetched and decoded and information about the instruc-
tion fl ws through the pipeline, via the pipeline registers,
to control each portion of the processor that will take a
specifi action during each cycle.
Figure 2(c) illustrates how a statically pipelined pro-

cessor operates. Data still passes through the processor
in multiple cycles. But how each portion of the processor
is controlled during each cycle is explicitly represented in
each instruction. Thus instructions are encoded to simul-
taneously perform actions normally associated with sepa-
rate pipeline stages. For example, at cycle 5, all portions
of the processor, are controlled by a single instruction (de-
picted with the shaded box) that was fetched the previous
cycle. In effect the pipelining is determined statically by
the compiler as opposed to dynamically by the hardware.
Thus we refer to such a processor as statically pipelined.

2.1 Micro-Architecture
Figure 3 depicts one possible datapath of a statically pipe-
lined processor. 1 The fetch portion of the processor is es-
sentially unchanged from the conventional processor. In-
structions are still fetched from the instruction cache and
branches are predicted by a branch predictor.
The rest of the processor, however, is quite different.

Because statically pipelined processors do not need to
break instructions into multiple stages, there is no need
for pipeline registers. In their place are a number of in-
ternal registers. Unlike pipeline registers, these are ex-
plicitly read and written by the instructions, and can hold
their values across multiple cycles.
There are ten internal registers. The RS1 and RS2 (reg-

ister source) registers are used to hold values read from
the register file The LV (load value) register is used to
hold values loaded from the data cache. The SEQ (sequen-
tial address) register is used to hold the address of the next
sequential instruction at the time it is written. This regis-

1In order to make the figur simpler, the multiplexer in the lower
right hand corner has been used for three purposes. It supplies the value
written to the data cache on a store operation, the value written to the
register fil and the value written to one of the copy registers. In actuality
there may be three such multiplexers, allowing for different values to be
used for each purpose.
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Figure 1: Simplifie Datapath of a Traditional Five Stage Pipeline

IF RF EX MEM WBIF RF EX MEM WBxor ...

add R2,#1,R3

sub R2,R3,R4

and R5,#7,R3

clock cycle

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

IF RF EX MEM WB

1 2 3 4 5 6 7 8 9

(c) Static Pipelining

clock cycle

IF RF EX MEM WB

IF RF EX MEM WB

IF EX MEM WB

IF RF EX MEM WB

1 2 3 4 5 6 7 8 9

RFor  ...

(b) Traditional Pipelining(a) Traditional Insts

Figure 2: Traditionally Pipelined vs. Statically Pipelined Instructions

ter is used to store the target of a branch in order to avoid
calculating the target. The SE (sign extend) register is
used to hold a sign-extended immediate value. The ALUR
(ALU result) and TARG (target address) registers are used
to hold values calculated in the ALU. The FPUR (FPU re-
sult) register is used to hold results calculated in the FPU,
which is used for multi-cycle operations. If the PC is used
as an input to the ALU (as in a PC-relative address com-
putation), then the result is placed in the TARG register,
otherwise it is placed in the ALUR register. The CP1 and
CP2 (copy) registers are used to hold values copied from
one of the other internal registers. These copy registers
are used to hold loop-invariant values and support simple
register renaming for instruction scheduling.

Because these internal registers are part of the machine
state, they must be saved and restored with the register fil
upon context switches. Since these internal registers are
small, and can be placed near the portion of the proces-
sor that access it, each internal register is accessible at a
lower energy cost than the centralized register file Note

that while the pipeline registers are read and written ev-
ery cycle, the internal registers are only accessed when
needed. Because these registers are exposed at the archi-
tectural level, a new level of compiler optimizations can
be exploited as we will demonstrate in Section 3.
A static pipeline can be viewed as a two-stage proces-

sor with the two stages being fetch and everything af-
ter fetch. As discussed in the next sub-section, the stat-
ically pipelined instructions are already partially decoded
as compared to traditional instructions. Because every-
thing after fetch happens in parallel, the clock frequency
for a static pipeline can be just as high as for a traditional
pipeline. Therefore if the number of instructions executed
does not increase as compared to a traditional pipeline,
there will be no performance loss associated with static
pipelining. Section 3 will discuss compiler optimizations
for keeping the number of instructions executed as low as,
or lower than, those of traditional pipelines.
Hazards due to multi-cycle operations can easily be de-

tected without special logic to compare register numbers
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Figure 3: Possible Datapath of a Statically Pipelined Processor

from instructions obtained from pipeline registers. If dur-
ing a given cycle the FPUR register is to be used as a
source and the corresponding functional unit has not com-
pleted a multi-cycle operation, then the current instruction
is aborted and the instruction will be reattempted on the
next cycle. This process continues until the FPU has com-
pleted the operation. Misses in the data cache can be han-
dled in a similar fashion with the LV register.
One benefi of static pipelining is that the branch

penalty is reduced to one cycle. This is because branches
are resolved only one cycle after the following instruc-
tion is fetched. Interestingly, if a delay slot were em-
ployed with a static pipeline, then there would be no mis-
prediction penalty, nor any need for branch prediction at
all. In this paper, however, we do not use a delay slot and
use the same fetch mechanism for the baseline MIPS and
the static pipeline.

2.2 Instruction Set
The instruction set architecture for a statically pipelined
architecture is quite different than one for a conventional
processor. Each instruction consists of a set of effects,
each of which updates some portion of the processor. The
effects that are allowed in each cycle mostly correspond to
what the baseline f ve-stage pipeline can do in one cycle,
which include one ALU or FPU operation, one memory

operation, two register reads, one register write and one
sign extension. In addition, one copy can be made from
an internal register to one of the two copy registers and
the next sequential instruction address can optionally be
saved in the SEQ register. Lastly, the next PC can be as-
signed the value of one of the internal registers. If the
ALU operation is a branch operation, then the next PC
will only be set according to the outcome of the branch,
otherwise, the branch is unconditionally taken.
In order to evaluate the architecture, we currently allow

any combination of these effects to be specifie in any in-
struction. To specify all of these effects at one time would
require 64-bit instructions, which are too wide for most
low power embedded systems. In an actual implemen-
tation, only the commonly used combinations of effects
would be able to be able to be specifie at a time, with
a fiel in the instruction specifying which combination is
used. Our preliminary analysis shows that it is practical
to use 32-bit instructions with minimal loss in efficien y.
All of the effects specifie in a single instruction are

independent and are performed in parallel. The values in
the internal registers are read at the beginning of the cycle
and written at the end of the cycle. Note that except for
the effects that solely read or write a register fil value, all
of the effects operate solely on the internal registers. This
is analogous to how RISC architectures only allow load
or store instructions to reference memory locations.
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In a traditional architecture, when reading a value from
the register file it is clear from the opcode whether that
value will be used as an integer or floatin point value.
This allows the instructions to “double up” on the num-
ber of available registers by having separate integer and
floating-poin register files In a statically pipelined ar-
chitecture, however, a register is not read in the same in-
struction as the arithmetic operation that uses it. There-
fore to have both integer and floatin point register files
we would need one extra bit for each register field To
avoid this problem, we use a single register fil to hold
both integer and floatin point values. Another reason for
traditional architectures to use distinct register file is to
simplify forwarding logic which is not an issue for this ar-
chitecture. While this may increase register pressure for
programs using both integer and floatin point registers,
we will show in Section 3 that static pipelining reduces
the number of references to the centralized register file

3 Compilation
A statically pipelined architecture exposes more details
of the datapath to the compiler. This allows the compiler
to perform optimizations that would not be possible on a
conventional machine.
This section gives an overview of compiling for a stat-

ically pipelined architecture with a simple running exam-
ple, the source code for which can be seen in Figure 4(a).
The baseline we use for comparison is the MIPS archi-
tecture. The code above was compiled with the VPO
[2] MIPS port, with all optimizations except instruction
scheduling applied, and the main loop is shown in Figure
4(b). In this example, r[9] is used as a pointer to the
current array element, r[5] is a pointer to the end of the
array, and r[6] holds the value m. The requirements for
each iteration of the loop are shown in Figure 4(c). 2
We ported the VPO compiler to the statically pipelined

processor. In this chapter, we will explain its function and
show how this example can be compiled efficientl for a
statically pipelined machine.
The process begins by firs compiling the code for the

MIPS architecture with many optimizations turned on.
2There are f ve ALU operations because, on the MIPS, the displace-

ment is added to the base register to form a memory address even if that
displacement is 0.

This is done because it was found that certain optimiza-
tions, such as register allocation, were much easier to ap-
ply for the MIPS architecture than for the static pipeline.
This is similar to the way in which many compilers have
a platform independent and then platform dependent op-
timization stages.
VPO works with an intermediate representation, shown

in the code listings, called “RTLs”. Each generated RTL
maps to one assembly language instruction on the target
machine. The RTLs generated by the MIPS compiler are
legal for the MIPS, but not for a static pipeline. The next
step in compilation, therefore, is to break these RTLs into
ones that are legal for a static pipeline.
Next, the modifie intermediate code is given as in-

put to the compiler which produces the assembly. Figure
4(d) shows the output of the compiler run on the exam-
ple above with no optimizations applied. As can be seen,
the MIPS instructions are broken into the effects needed
to accomplish that instruction. The dashed lines separate
effects corresponding to different MIPS instructions. It’s
interesting to note that the instruction effects in Figure
4(d) actually correspond to what happens in a conven-
tional pipeline, though they use field in the pipeline reg-
isters rather than internal registers. As it stands now, how-
ever, the code is much less efficien than the MIPS code,
taking 15 instructions in place of 5. The next step then,
is to apply traditional compiler optimizations on the ini-
tial statically pipelined code. While these optimizations
have already been applied in the platform independent
optimization phase, they can provide additional benefit
when applied to statically pipelined instructions.
Figure 4(e) shows the result of applying copy prop-

agation. 3 Copy propagation is an optimization which,
for an assignment x = y, the compiler replaces later uses
of x with y as long as intervening instructions have not
changed the value of x or y. The values that were replaced
by copy propagation appear in bold face in Figure 4(d).
This optimization doesn’t provide any benefit on its

own, but it results in assignments to registers that are
never used. The next step, therefore, is to apply dead
assignment elimination, the result of which can be seen
in Figure 4(f). Dead assignment elimination removes as-

3In actuality, VPO performs copy propagation, dead assignment
elimination, redundant assignment elimination and common sub-
expression elimination together. They are separated here for illustrative
purposes.
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for (i = 0; i < 100; i++)

  a[i] += m;

L6:

 r[3] = M[r[9]];

 r[2] = r[3] + r[6];

 M[r[9]] = r[2];

 r[9] = r[9] + 4;

 PC = r[9] != r[5], L6

L6:

(a) Source Code

(b) MIPS Code

(d) Initial Statically
    Pipelined Code

5 instructions
8 RF reads
1 branch calcs.

(c) MIPS requirements for
      each array element

RS1 = r[3];

RS1 = r[2];

RS1 = r[9];

RS1 = r[9];

RS1 = r[9];

LV = M[RS1];

r[3] = LV;

r[2] = ALUR;

RS2 = r[6];

ALUR =

RS2 = r[9];

M[RS2] = 

r[9] = ALUR;

SE = 4;

ALUR = RS1 + SE;

PC =

RS2 = r[5];

SE = offset(L6);

TARG = PC + SE;

+ RS2;RS1

;RS1

!= RS2, TARG;RS1

L6:

RS1 = r[3];

RS1 = r[2];

RS1 = r[9];

RS1 = r[9];

RS1 = r[9];

LV = M[RS1];

r[3] = LV;

r[2] = ALUR;

RS2 = r[6];

ALUR = LV + RS2;

RS2 = r[9];

M[RS2] = ALUR;

r[9] = ALUR;

SE = 4;

ALUR = RS1 + SE;

PC = ALUR != RS2, TARG;

RS2 = r[5];

SE = offset(L6);

TARG = PC + SE;

(e) After Copy Propogation

(f) After Dead Assignment
         Elimination

L6:

RS1 = r[9];

RS1 = r[9];

LV = M[RS1];

RS2 = r[6];

ALUR = LV + RS2;

RS2 = r[9];

M[   ] = ALUR;

r[9] = ALUR;

SE = 4;

ALUR = RS1 + SE;

PC = ALUR != RS2, TARG;

RS2 = r[5];

SE = offset(L6);

TARG = PC + SE;

RS2

 5 ALU ops
3 RF writes
2 sign extends

Figure 4: Example of Compiling for a Statically Pipelined Processor

signments to registers when the value is never read. The
assignments that fulfil this property are shown in bold
face in Figure 4(e).
The next optimization we apply is common sub-

expression elimination, the results of which appear in Fig-
ure 5(a). This optimization looks for instances when val-
ues are produced more than once and replaces subsequent
productions of the value with the firs one. In this case,
loading r[9] is done twice, so the compiler ruses the
value in RS1 rather than re-load the value into RS2. Be-
cause an internal register access is cheaper than a register
fil access, the compiler will prefer the former. This is
similar to the way in which compilers prefer register fil
accesses to memory accesses.
We also apply redundant assignment elimination at

this point. This optimization removes assignments that
have been made previously so long as neither value has
changed since the last assignment. In this case the assign-
ment RS1 = r[9]; has become redundant after dead
assignment elimination, so can be removed. The RTLs
affected are shown in bold face in Figure 4(f).
Because the effects that were removed have to remain

in a traditional pipeline, removing them saves energy con-
sumption over the baseline. By making these effects ex-

plicit, static pipelining gives the compiler the ability to
target them. Some of these optimizations may not affect
the performance after scheduling is performed, but it will
affect the energy consumption. Our compiler also cur-
rently performs control fl w optimizations and strength
reduction, but these did not affect the loop body in this
example.

While the code generation and optimizations described
so far have been implemented and are automatically per-
formed by the compiler, the remaining optimizations dis-
cussed in this section are performed by hand, though we
will automate them. The firs one we perform is loop-
invariant code motion. Loop-invariant code motion is an
optimization that moves instructions out of a loop when
doing so does not change the program behavior. Figure
5(b) shows the result of applying this transformation. The
effects that were moved outside the loop are shown in bold
face in Figure 5(a). As can be seen, loop-invariant code
motion also can be applied to statically pipelined code
in ways that it can’t for traditional architectures. We are
able to move out the calculation of the branch target and
also the sign extension. Traditional machines are unable
to break these effects out of the instructions that utilize
them so the values are needlessly calculated each itera-
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RS1 = r[9];

LV = M[RS1];

ALUR = LV + CP2;

M[RS1] = ALUR;

ALUR = RS1 + SE;

r[9] = ALUR;

RS2 = r[5];

PC = ALUR != RS2, TARG;

  SE = 4;                 RS2 = r[6];

  CP2 = RS2;              RS1 = r[9];

  LV = M[RS1];            RS2 = r[5];    SEQ = PC + 4;

     (a) Code after Common Sub-     
      Expression Elimination and      
Redundant Assignment Elimination (b) Code after Loop Invariant

          Code Motion

(c) Code after Scheduling

(d) Static Pipeline requirements for each array element

3 instructions                               3 ALU operations
1 register file read                        1 register file write
0 branch address calculations      0 sign extensions

SE = offset(L6);

TARG = PC + SE;

SE = 4;

RS2 = r[6];

CP2 = RS2;
  ALUR = LV + CP2;        RS1 = r[9];

  ALUR = RS1 + SE;        M[RS1] = ALUR;

  PC = ALUR != RS2, SEQ;  LV = M[ALUR];  r[9] = ALUR;

  ALUR = LV + CP2;        RS1 = r[9];

  M[RS1] = ALUR;

L6:

RS1 = r[9];
LV = M[RS1];

RS2 = r[6];
ALUR = LV +

M[RS1] = ALUR;

r[9] = ALUR;

SE = 4;
ALUR = RS1 + SE;

PC = ALUR != RS2, TARG;

RS2 = r[5];

SE = offset(L6);

TARG = PC + SE;

RS2 ;

L6:

L6:

Figure 5: Example of Optimizing Code for a Statically Pipelined Processor

tion. Also, by taking advantage of the copy register we are
able to move the read of r[6] outside the loop as well.
The compiler is now able to create a more efficien loop
due to its fine-graine control of the instruction effects.
While the code in Figure 5(b) is an improvement, and

has fewer register fil accesses than the baseline, it still re-
quires more instructions. This increase in execution time
may offset any energy savings we achieve. In order to re-
duce the number of instructions in the loop, we need to
schedule multiple effects together. For this example, and
the benchmark used in the results section, the scheduling
was done by hand.
Figure 5(c) shows the loop after scheduling. The itera-

tions of the loop are overlapped using software pipelining
[3]. With the MIPS baseline, there is no need to do soft-
ware pipelining because there are no long latency opera-
tions. For a statically pipelined machine, however, it al-
lows for a tighter main loop. We also pack together effects
that can be executed in parallel, obeying data and struc-
tural dependencies. Additionally, we remove the compu-
tation of the branch target by storing it in the SEQ register
before entering the loop.
The pipeline requirements for the statically pipelined

code are shown in Figure 5(d). In the main loop, we had
two fewer instructions and ALU operations than the base-
line. We also had seven fewer register fil reads and two
fewer register fil writes, and removed a sign extension

and branch address calculation. For this example, the loop
body will execute in fewer instructions and with less en-
ergy consumption.
The baseline we are comparing against was already op-

timized MIPS code. By allowing the compiler access to
the details of the pipeline, it can remove instruction effects
that cannot be removed on traditional machines. This ex-
ample, while somewhat trivial, does demonstrate the ways
in which a compiler for a statically pipelined architecture
can improve program efficien y.

4 Evaluation
This section will present a preliminary evaluation us-
ing benchmarks compiled with our compiler and then
hand-scheduled as described in the previous section. The
benchmarks used are the simple vector addition example
from the previous section, and the convolution benchmark
from Dspstone [12]. Convolution was chosen because it
is a real benchmark that has a short enough main loop to
make scheduling by hand feasible.
We extended the GNU assembler to assemble stati-

cally pipe-lined instructions and implemented a simula-
tor based on the SimpleScalar suite. In order to avoid
having to compile the standard C library, we allow stati-
cally pipelined code to call functions compiled for MIPS.
There is a bit in the instruction that indicates whether it
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is a MIPS or statically pipelined instruction. After fetch-
ing an instruction, the simulator checks this bit and han-
dles the instruction accordingly. On a mode change, the
simulator will also drain the pipeline. In order to make
for a fair comparison, we set the number of iterations to
100,000. For both benchmarks, when compiled for the
static pipeline, over 98% of the instructions executed are
statically pipelined ones, with the remaining MIPS in-
structions coming from calls to printf. For the MIPS base-
line, the programs were compiled with the VPO MIPS
port with full optimizations enabled.
Table 1 gives the results of our experiments. We report

the number of instructions committed, register fil reads
and writes and “internal” reads and writes. For the MIPS
programs, these internal accesses are the number of ac-
cesses to the pipeline registers. Because there are four
such registers, and they are read and written every cycle,
this figur is simply the number of cycles multiplied by
four. For the static pipeline, the internal accesses refer to
the internal registers.
As can be seen, the statically pipelined versions of

these programs executed significantl fewer instructions.
This is done by applying traditional compiler optimiza-
tions at a lower level and by carefully scheduling the loop
as discussed in Section 3. The static pipeline also ac-
cessed the register fil significantl less, because it is able
to retain values in internal registers with the help of the
compiler.
Instead of accessing the register file the statically

pipelined code accesses the internal registers often, as
shown in the table. It may appear that the only benefi
of static pipelining is that the registers accessed are single
registers instead part of a larger register file However,
the static pipeline uses the internal registers in lieu of the
pipeline registers. As can be seen in the table, the pipeline
registers are accessed significantl more often than the
internal registers. Additionally the pipeline registers are
usually much larger than the internal registers.
While accurate energy consumption values have yet to

be assessed, it should be clear that the energy reduction
in these benchmarks would be significant While the re-
sults for larger benchmarks may not be quite so dramatic
as these, this experiment shows that static pipelining, with
appropriate compiler optimizations has the potential to be
a viable technique for significantl reducing processor en-
ergy consumption.

5 Related Work
Statically pipelined instructions are most similar to hori-
zontal micro-instructions [11], however, there are signifi
cant differences. Firstly, the effects in statically pipelined
instructions specify how to pipeline instructions across
multiple cycles. While horizontal micro-instructions also
specify computation at a low level, they do not expose
pipelining at the architectural level. Also, in a micro-
programmed processor, each machine instruction causes
the execution of micro-instructions within a micro-routine
stored in ROM. Furthermore compiler optimizations can-
not be performed across these micro-routines since this
level is not generally exposed to the compiler. Static
pipelining also bares some resemblance to VLIW [5] in
that the compiler determines which operations are inde-
pendent. However, most VLIW instructions represent
multiple RISC operations that can be performed in par-
allel. In contrast, the static pipelining approach encodes
individual instruction effects that can be issued in paral-
lel, where each effect corresponds to an action taken by a
single pipeline stage of a traditional instruction.
Another architecture that exposes more details of the

datapath to the compiler is the Transport-Triggered Ar-
chitecture (TTA) [4]. TTAs are similar to VLIWs in that
there are a large number of parallel computations speci-
fie in each instruction. TTAs, however, can move val-
ues directly to and from functional unit ports, to avoid
the need for large, multi-ported register files Similar to
TTAs are Coarse-Grained Reconfigurabl Architectures
(CGRAs) [7]. CGRAs consist of a grid of functional units
and register files Programs are mapped onto the grid
by the compiler, which has a great deal of fl xibility in
scheduling. Another architecture that gives the compiler
direct control of the micro-architecture is the No Instruc-
tion Set Computer (NISC) [8]. Unlike other architectures,
there is no fi ed ISA that bridges the compiler with the
hardware. Instead, the compiler generates control signals
for the datapath directly. All of these architectures rely on
multiple functional units and register file to improve per-
formance at the expense of a significan increase in code
size. In contrast, static pipelining focuses on improving
energy consumption without adversely affecting perfor-
mance or code size.
There have also been many studies that focused on in-

creasing the energy-efficien y of pipelines by avoiding
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Benchmark Architecture Instructions Register Reads Register Writes Internal Reads Internal Writes
MIPS 507512 1216884 303047 2034536 2034536

Vector Add Static 307584 116808 103028 1000073 500069
reduction 39.4% 90.4% 66.0% 50.8% 75.4%
MIPS 1309656 2621928 804529 5244432 5244432

Convolution Static 708824 418880 403634 2200416 1500335
reduction 45.9% 84.0% 49.8% 58.0% 71.4%

Table 1: Results of the Experimental Evaluation

unnecessary computations. One work presented many
methods for reducing the energy consumption of regis-
ter fil accesses [10]. One method, bypass skip, avoids
reading operands from the register fil when the result
would come from forwarding anyway. Another method
they present is read caching, which is based on the ob-
servation that subsequent instructions will often read the
same registers. Another technique that avoids unneces-
sary register accesses is static strands [9]. A strand is a
sequence of instructions that has some number of inputs
and only one output. The key idea here is that if a strand
is treated as one instruction, then the intermediate results
do not need to be written to the register file Strands are
dispatched as a single instruction where they are executed
on a multi-cycle ALU which cycles its outputs back to
its inputs. All of these techniques attempt to make pro-
cessors running traditional instruction sets more efficient
A statically pipelined processor can avoid all unnecessary
register fil accesses without the need for special logic,
which can negate the energy savings.

6 Future Work

The most important piece of future work is to improve
the optimizing compiler. The automation of the schedul-
ing and software-pipelining we performed by hand will
allow for the evaluation of larger benchmarks. In addi-
tion we will develop and evaluate other compiler opti-
mizations for this machine, including allocating internal
registers to variables. There are also several possibilities
for encoding the instructions efficientl . These options in-
clude using different formats for different sets of effects to
perform, code compression and programmable decoders.
Additionally, we will experiment with other architectural

features such as delay slots. Another big area of future
work is the development of a Verilog model. This will al-
low for accurate measurement of energy consumption, as
well as area and timing.

7 Conclusion

In this paper, we have introduced the technique of static
pipelining to improve processor efficien y. By statically
specifying how instructions are broken into stages, we
have simpler hardware and allow the compiler more con-
trol in producing efficien code. Statically pipelined pro-
cessors provide the performance benefit of pipelining
without the inefficiencie of dynamic pipelining.
We have shown how efficien code can be generated for

simple benchmarks for a statically pipelined processor to
target both performance and power. Preliminary experi-
ments show that static pipelining can significantl reduce
energy consumption by reducing the number of register
fil accesses, while also improving performance. With
the continuing expansion of high-performance mobile de-
vices, static pipelining can be a viable technique for sat-
isfying next-generation performance and power require-
ments.
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