
Boise State University
ScholarWorks
Electrical and Computer Engineering Faculty
Publications and Presentations

Department of Electrical and Computer
Engineering

1-1-2004

An Asynchronous GALS Interface with
Applications
Jennifer A. Smith
Boise State University

This document was originally published by IEEE in 2004 IEEE Workshop on Microelectronics and Electron Devices. Copyright restrictions may apply.
DOI: 10.1109/WMED.2004.1297347

http://scholarworks.boisestate.edu
http://scholarworks.boisestate.edu/electrical_facpubs
http://scholarworks.boisestate.edu/electrical_facpubs
http://scholarworks.boisestate.edu/electrical
http://scholarworks.boisestate.edu/electrical
http://dx.doi.org/10.1109/WMED.2004.1297347

An Asynchronous GALS Interface with Applications

Scott F. Smith
Department of Electrical and Computer Engineering

Boise State University
Boise, Idaho, U.S.A.

SFSmith@BoiseState.edu

Abstract—A low-latency asynchronous interface for use in
globally-asynchronous locally-synchronous (GALS) integrated
circuits is presented. The interface is compact and does not alter
the local clocks of the interfaced local clock domains in any way
(unlike many existing GALS interfaces). Two applications of the
interface to GALS systems are shown. The first is a single-chip
shared-memory multiprocessor for generic supercomputing use.
The second is an application-specific coprocessor for hardware
acceleration of the Smith-Waterman algorithm. This is a
bioinformatics algorithm used for sequence alignment (similarity
searching) between DNA or amino acid (protein) sequences and
sequence databases such as the recently completed human
genome database.

Keywords-interface; multiprocessor; globally-asynchronous
locally-synchronous; bioinformatics; coprocessor

I. INTRODUCTION
The idea of globally-asynchronous locally-synchronous

(GALS) systems was first proposed by Chapiro [1]. One very
attractive feature of this design paradigm for systems on a chip
(SoC) is that it greatly reduces the amount of design effort that
goes into designing a clock distribution network for large high-
speed integrated circuits. The idea is that clock skew within a
local clock domain will be highly controlled, but minimal effort
will be employed to reduce clock skew between state-holding
elements in different local clock domains. Synchronous
intellectual property (IP) blocks may be “shrunk” to a smaller
CMOS feature size along with their associated clock
distribution network and then this shrunk IP reused in many
SoC designs. By using the GALS design methodology, the
design effort involved in connecting the local clock distribution
networks together in such a way as to obtain timing closure is
greatly reduced.

A major drawback to the GALS methodology is that it
introduces latency into signal propagation across clock domain
boundaries. The purpose of this paper is to introduce a clock-
domain interface for GALS systems with low latency and
which does not require the interface to alter the local clock
signals in any way. The interface must address the issue of
metastability and one way to do this is to have the interface
take control of the two local clock signals at the clock-domain
boundary. Having the interface stop or stretch local clock
signals to avoid metastability was deemed unacceptable since
this can potentially cause some logic gate styles to fail (namely
some types of dynamic logic gates). The GALS interface is
then applied to the design of a single-chip shared-memory
multiprocessor. It is shown that the extra latency of the GALS

multiprocessor causes very little performance penalty for a
bioinformatic and a cryptography application running on the
processor as compared to the equivalent globally-clocked
multiprocessor. The GALS interface is then also applied to the
design of a special-purpose coprocessor for acceleration of the
Smith-Waterman sequence alignment algorithm used in
bioinformatics.

The GALS interface design is discussed in Section II. The
first application of the interface is a single-chip shared-memory
multiprocessor which is presented in Section III. Section IV
introduces a coprocessor to accelerate the Smith-Waterman
dynamic-programming-based sequence alignment algorithm.
The results are summarized in Section V.

II. GALS INTERFACE
The GALS interface is based on asynchronous FIFOs from

the GasP family introduced by Sutherland and Fairbanks [2].
Two minor modifications were made to the FIFOs themselves.
The first was to replace NMOS pass transistors with full
transmission gates in the datapath to allow low voltage
operation (whereas the original GasP paper focused on a 3.3V
technology). The second was to replace a self-reset circuit
driving the datapath with a string of asymmetric inverters such
that a very wide datapath could be driven without distortion of
control pulse shape. The major innovation is the circuitry
surrounding the GasP asynchronous FIFO which allows it to be
used as a clock-domain interface with selectable synchronizer
mean time between failures (MTBFs). It is theoretically
impossible to make the probability of synchronizer failure zero
in this type of circuit [3], but MTBFs of millions of years are
easily achievable with interface latencies on the order of
nanoseconds.

This is not the first GALS interface to have been designed.
Examples of others are found in [4] and [5]. The most
important difference between the interface presented here and
others in the literature is that this one does not require the
interface to control the local clock signals, whereas the others
require a “stoppable clock”. While having a stoppable clock
does make it possible to have zero probability of synchronizer
failure, it is not compatible with all logic design styles. The
probability of synchronizer failure for the interface described
here can be made as small as desired (but never zero) by
increasing the latency of the interface. Normally, the
probability of synchronizer failure can be made insignificant by
introducing additional latency which is a fraction of a clock
period in duration.

0-7803-8369-9/04/$20.00 ©2004 IEEE. 41

Authorized licensed use limited to: Boise State University. Downloaded on April 28, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

A high-level depiction of the interface is shown in Fig. 1.
Details of the inner workings of the two blocks in this figure
can be found in [6]. The two local clocks signals are given as
sclk (send clock) and rclk (receive clock). The sending clock
domain first checks that there is at least one space available in
the synchronous buffer by observing the bfull signal. If there is
space in the buffer then the sending circuit can assert the send
signal and is guaranteed that either the synchronous buffer or
the asynchronous interface will absorb the sent data. If the
relative phases of the local clock domains happen to align well
and there is no pending data in the synchronous buffer, the
buffer will be completely bypassed and the data immediately
entered into the asynchronous interface. The datapath is
labeled with sdata, Din, and Dout. This datapath may be an
arbitrary number of bits wide. The receiving clock domain
circuit signals that it is ready for new data by asserting rreq*
and is in turn signaled if new data is available with rack*. The
synchronous buffer signals the asynchronous interface that it
has new data available (either in the buffer or on the buffer
input) by asserting sreq. When new data is actually absorbed
by the asynchronous interface this is signaled with sack.

The interface was simulated in SPICE using parameters for
a 180 nm CMOS process from the Taiwan Semiconductor
Manufacturing Company (TSMC) which is available through
the MOS Implementation Service (MOSIS). In this process a
MTBF in the millions of years can be achieved with a base
latency of less than 2 ns plus a clock signal phase differential
delay. With circuits that can recover from synchronizer error, a
base latency about 1 ns can be achieved with synchronizer error
recovery required every few seconds.

Layout area for the asynchronous interface and
synchronous buffer are dominated by datapath area for wide
datapaths. Table I shows the layout areas in the same 180 nm
CMOS process discussed above. The areas are for the
applications in Sections III and IV below. The multiprocessor
interface datapath is about 100 bits wide. The bioinformatics
coprocessor uses two interfaces, the one for constants is 8 bits
wide and the one for calculations is 85 bits wide. The areas
given are for a unidirectional interface, so the area in Table I
must be doubled for the multiprocessor case that requires
bidirectional communication across clock domain boundaries.
For the 8-bit coprocessor constants interface, the layout area is
about evenly divided between datapath and control. For the
100-bit multiprocessor and 85-bit coprocessor interfaces, the
layout area is dominated by the datapath. For these area
calculations, the depth of the synchronous buffer was taken to
be one. Allowing for deeper synchronous buffers will increase
interface layout area significantly.

Figure 1. The asynchronous interface with buffer

TABLE I. LAYOUT AREAS FOR INTERFACE AND BUFFER

Layout area (mm2)
Application

Synchronous buffer Asynchronous Interface

Multiprocessor 0.07 0.14

Coproc. - Const. 0.01 0.02

Coproc. - Calc 0.06 0.12

a. Based on TSMC 180 nm CMOS process.

III. SINGLE-CHIP MULTIPROCESSOR
The single-chip shared-memory multiprocessor is based on

a binary tree bus structure with a single ARM 922T CPU core
(32-bit RISC processor with separate instruction and data
caches) at each local-clock node [7]. The local bus segments
within each node are standard AMBA buses. Layout of the
interfaces and layout area data from ARM Ltd. shows that such
a multiprocessor with over 100 processors can be built using
180 nm technology. Fig. 2 shows a single clock domain of the
multiprocessor. Each of the “Asynchronous Interface Pair”
blocks in Fig. 2 contains two copies of the asynchronous
interface with buffer shown in Fig. 1.

The Smith-Waterman sequence alignment algorithm and
the Advanced Encryption Standard (AES) were hand coded in
32-bit ARM assembly language and cache block replacement
frequencies determined from this code. A VHDL model of the
multiprocessor system and another of its globally-clocked
analog were constructed that allow for different numbers of
processors. Simulation using the VHDL models shows that the
performance penalty for both the bioinformatics and
cryptography applications is small when compared to the
globally-clocked system [8][9].

The efficiency of the multiprocessor has been quantified in
terms of the fraction of time that processors spend computing
rather than waiting for a data cache block replacement.
Algorithms which require a high number of computations per
data element have higher efficiencies. For both the Smith-
Waterman algorithm and AES these efficiencies are usually
0.95 or above.

Figure 2. A single clock domain of the multiprocessor.

0-7803-8369-9/04/$20.00 ©2004 IEEE. 42

Authorized licensed use limited to: Boise State University. Downloaded on April 28, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

Data cache block replacement latency depends on where
the processor is located within the bus tree, the relative phases
of all the local clock signals of clock domains between the
processor and the shared memory, and contention with bus
traffic for other processors. The memory read request for a
cache block replacement contends with other memory read
requests and with memory writes. The memory read data
contends with memory read data for other processors. The
local bus segment in Fig. 2 is really two independent bus
segments, one for traffic toward shared memory in the tree root
and one for traffic away from shared memory. The mean data-
cache block-replacement latency over all processors is less than
100 clock periods when the number of processors is less than
128.

IV. BIOINFORMATICS COPROCESSOR
Sequence alignment is the basis for many tasks in the field

of bioinformatics. Good sequence alignments are very
computationally demanding and the amount of data available
for processing is increasing at an exponential rate. Often
poorer quality alignments are used because the best quality
alignments simply take too long to compute. The best quality
alignments come from linear programming methods such as
those of Smith and Waterman [10]. Sequence alignment is the
process of introducing gaps into the two sequences such that
the character pairs at each sequence position give a maximum
score.

In order to allow the Smith-Waterman algorithm to be used
more extensively, application-specific integrated circuits
(ASICs) may be designed with hardware coprocessors specific
to the Smith-Waterman algorithm. It is desirable that these
ASICs be easily scalable since growing molecular biology
databases and decreasing CMOS feature sizes will
continuously spur demand to place increasingly powerful
coprocessors on a single integrated circuit.

The Smith-Waterman algorithm is given in equations 1-4.
The algorithm proceeds from the upper-left to the lower-right
of a two-dimensional matrix. The row and column indices are
given by i and j respectively and three scores are calculated at
every position in the matrix. These values are I (the score if we
insert), D (the score if we delete), and M (the score if we match
or mutate). The initialization of the algorithm starts by setting
all of the boundary variables on the left and top to zero as given
by

 Ii,j = Di,j = Mi,j = 0, ∀ i and j s.t. i = 0 or j = 0. (1)

The algorithm is symmetric, so insertions in one string are
equivalent to deletions in the other string. There is a penalty
for starting a new insertion or deletion and a (usually smaller)
penalty for continuing an insertion or deletion. The start
penalty is given as g and the continuation penalty as c. The
insertion score at a position is the previous insertion score
minus c if the insertion is to be continued. The insertion score
is the previous match/mutation score minus g if a new insertion
is to be made. The optimum choice at this position for an
insertion score is the maximum of the two as given by

 Ii,j = max{Ii-1,j - c, Mi-1,j - g}. (2)

A similar method is used to find the optimum deletion score
at a given matrix position. The maximum score over the
possibilities of continuing a new deletion or starting a new
deletion is given by

 Di,j = max{Di,j-1 - c, Mi,j-1 - g}. (3)

The score for the possibility that the current matrix location
represents a match or mutation is complicated by the fact that
different degrees of matching are allowed. A substitution
matrix d(ai,bj) is specified which gives a different weight for
every possible pair of characters ai and bj that can appear at the
matrix position. The three possible conditions are that this
match/mutation ends an insertion, ends a deletion, or continues
a string of match/mutation. A maximum over these three
conditions finds the optimum choice. In order to do a local
alignment where distant misalignments do not penalize finding
a matching substring locally, the score is not allowed to fall
below zero. The resulting equation is

 Mi,j = max{Ii-1,j-1 + d(ai,bj), Di-1,j-1 + d(ai,bj),
 Mi-1,j-1 + d(ai,bj), 0}. (4)

A Smith-Waterman ASIC coprocessor has previously been
designed [11]. However, this coprocessor was not designed
using a GALS methodology and therefore designing a new
clock tree every time the design is ported to a CMOS process
with smaller feature size may be time consuming. Fig. 3 shows
a design that is amenable to being divided into independent
computing elements that can reside in individual local clock
domains, thus allowing for the GALS design approach.

The two major parts of the compute element are the
constants section (left) and the calculations section (right). The
flow of information into and out of the constants section is
independent of information flow for the calculation section as
evidenced by distinct pairs of request/acknowledge signals for
each section. This requires two copies of the asynchronous
interface with buffer of Fig. 1 to be placed between each
compute element and the compute element that follows it in the
chain. The datapath for the constants interface is 8 bits wide
and that of the calculations interface is 85 bits wide.

Figure 3. A compute element of the Smith-Waterman coprocessor.

0-7803-8369-9/04/$20.00 ©2004 IEEE. 43

Authorized licensed use limited to: Boise State University. Downloaded on April 28, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

Each compute element holds the data associated with one
character of one of the sequences of the alignment. If there are
not enough compute elements to hold the entire sequence,
multiple passes through the chain of compute elements will be
required.

The characters of the sequence which is not assigned to the
compute elements flow through the chain of elements. The
characters are given as a 21-bit one-hot code in vector Char. A
one-hot code is used to allow easy access to the portion of the
substitution matrix stored in the constants section. There are
21 possible values allowing for each of the 20 possible amino
acids plus a character for “unknown.”

Only a single column of the substitution matrix is stored in
the constants section since one character of the pair is always
the same for all calculations. Six bits are required for each
value to allow for the range of values in the commonly used
substitution matrices. For example, the very commonly used
PAM250 matrix [12] has minimum value of -7 and maximum
value of 17. These matrices all contain integer values. The gap
start and continuation penalties can easily be stored as 8-bit
values since these are integers with magnitude normally less
than 100. The valid bit allows a compute element to be
bypassed if there are more compute elements than sequence
characters for a given pass.

Some of the comparisons need to do the match/mutate
maximum calculation can be done before the current Char
value arrives. The auxiliary variable X is introduced to allow
this pre-calculation. Most of the operations done for Smith-
Waterman are comparisons. These would be done in the adder
unit of a microprocessor, but can be implemented more
efficiently in hardware specifically built to do value
comparisons. The output of the value comparator controls a
multiplexer which passes the larger value.

V. CONCLUSION
Use of the GALS design methodology can greatly reduce

the design effort required to create clock trees for large high-
frequency integrated circuits. The use of multiple clock
domains requires attention to the possibility of metastability
and possible resulting synchronizer failure. It also generally
increases signaling latency across clock domain boundaries.

The GALS interface presented here has the advantage of
not requiring the interface to be allowed to pause the local
clock signals of the attached local clock domains. The cost of
removing the pausing requirement is that the probability of
synchronizer failure can never be made zero, although it can be
made arbitrarily close to zero.

Potential applications of the interface and associated GALS
design methodology are single-chip multiprocessors and
special-purpose coprocessors which are easily scalable to more
processors or more coprocessor units as CMOS feature sizes
decrease.

REFERENCES
[1] D. Chapiro, Globally-Asynchronous Locally-Synchronous Systems, Ph.

D. Thesis, Stanford University, 1984.
[2] I. Sutherland and S. Fairbanks, “GasP: A Minimal FIFO Control,” IEEE

Inter. Symp. on Asynchronous Circuits and Systems, pp. 46-53, 2001.
[3] H. Veendrick, “The Behavior of Flip-Flops Used as Synchronizers and

Perdiction of Their Failure Rate,” IEEE J. of Solid State Circuits, vol.
15, pp. 169-176, 1980.

[4] J. Muttersbach, T. Villiger, H. Kaeslin, N. Felber, and W. Fichtner,
“Globally-Asynchronous Locally-Synchronous Architectures to
Simplify the Design of On-Chip Systems,” IEEE Inter. ASIC/SOC Conf.,
pp. 317-321, 1999.

[5] K. Yun and A. Dooply, “Pausible Clocking-Based Heterogeneous
Systems,” IEEE Trans. on Computers, vol. 45, pp. 482-488, 1999.

[6] S. Smith, A Multiple-Clock-Domain Bus Architecture Using
Asynchronous FIFOs as Elastic Elements, Ph. D. Thesis, University of
Idaho, 2003.

[7] S. Furber, ARM System-on-Chip Architecture, 2nd Ed., New York:
Addison-Wesley, 2000.

[8] S. Smith, “The Advanced Encryption Standard on an Asynchronous
Shared-Memory Multiprocessor,” Inter. Conf. on VLSI, pp. 379-381,
2003.

[9] S. Smith and J. Frenzel, “Bioinformatics Application of a Scalable
Supercomputer-on-Chip Architecture,” Inter. Conf. on Parallel and
Distributed Processing Techniques and Applications, vol. 1, pp. 385-
391, 2003.

[10] T. Smith and M. Waterman, “Identification of Common Molecular
Sequences,” J. of Molecular Biology, vol. 147, pp. 195-197, 1981.

[11] L. Grate, M. Diekhans, D. Dahle, and R. Hughey, “Sequence Analysis
with the Kestrel SIMD Parallel Processor,” Pacific Symp. on
Biocomputing, pp. 263-274, 2001.

[12] D. Mount, Bioinformatics: Sequence and Genome Analysis, New York:
Cold Spring Hardor Laboratory Press, 2001.

0-7803-8369-9/04/$20.00 ©2004 IEEE. 44

Authorized licensed use limited to: Boise State University. Downloaded on April 28, 2009 at 10:57 from IEEE Xplore. Restrictions apply.

	Boise State University
	ScholarWorks
	1-1-2004

	An Asynchronous GALS Interface with Applications
	Jennifer A. Smith

	An asynchronous GALS interface with applications - Microelectronics and
Electron Devices, 2004 IEEE Workshop on

