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Abstract—A low-latency asynchronous interface for use in 
globally-asynchronous locally-synchronous (GALS) integrated 
circuits is presented.  The interface is compact and does not alter 
the local clocks of the interfaced local clock domains in any way 
(unlike many existing GALS interfaces).  Two applications of the 
interface to GALS systems are shown.  The first is a single-chip 
shared-memory multiprocessor for generic supercomputing use.  
The second is an application-specific coprocessor for hardware 
acceleration of the Smith-Waterman algorithm.  This is a 
bioinformatics algorithm used for sequence alignment (similarity 
searching) between DNA or amino acid (protein) sequences and 
sequence databases such as the recently completed human 
genome database. 

Keywords-interface; multiprocessor; globally-asynchronous 
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I.  INTRODUCTION 
The idea of globally-asynchronous locally-synchronous 

(GALS) systems was first proposed by Chapiro [1].  One very 
attractive feature of this design paradigm for systems on a chip 
(SoC) is that it greatly reduces the amount of design effort that 
goes into designing a clock distribution network for large high-
speed integrated circuits.  The idea is that clock skew within a 
local clock domain will be highly controlled, but minimal effort 
will be employed to reduce clock skew between state-holding 
elements in different local clock domains.  Synchronous 
intellectual property (IP) blocks may be “shrunk” to a smaller 
CMOS feature size along with their associated clock 
distribution network and then this shrunk IP reused in many 
SoC designs.  By using the GALS design methodology, the 
design effort involved in connecting the local clock distribution 
networks together in such a way as to obtain timing closure is 
greatly reduced. 

A major drawback to the GALS methodology is that it 
introduces latency into signal propagation across clock domain 
boundaries.  The purpose of this paper is to introduce a clock-
domain interface for GALS systems with low latency and 
which does not require the interface to alter the local clock 
signals in any way.  The interface must address the issue of 
metastability and one way to do this is to have the interface 
take control of the two local clock signals at the clock-domain 
boundary.  Having the interface stop or stretch local clock 
signals to avoid metastability was deemed unacceptable since 
this can potentially cause some logic gate styles to fail (namely 
some types of dynamic logic gates).  The GALS interface is 
then applied to the design of a single-chip shared-memory 
multiprocessor.  It is shown that the extra latency of the GALS 

multiprocessor causes very little performance penalty for a 
bioinformatic and a cryptography application running on the 
processor as compared to the equivalent globally-clocked 
multiprocessor.  The GALS interface is then also applied to the 
design of a special-purpose coprocessor for acceleration of the 
Smith-Waterman sequence alignment algorithm used in 
bioinformatics. 

The GALS interface design is discussed in Section II.  The 
first application of the interface is a single-chip shared-memory 
multiprocessor which is presented in Section III.  Section IV 
introduces a coprocessor to accelerate the Smith-Waterman 
dynamic-programming-based sequence alignment algorithm.  
The results are summarized in Section V. 

II. GALS INTERFACE 
The GALS interface is based on asynchronous FIFOs from 

the GasP family introduced by Sutherland and Fairbanks [2].  
Two minor modifications were made to the FIFOs themselves.  
The first was to replace NMOS pass transistors with full 
transmission gates in the datapath to allow low voltage 
operation (whereas the original GasP paper focused on a 3.3V 
technology).  The second was to replace a self-reset circuit 
driving the datapath with a string of asymmetric inverters such 
that a very wide datapath could be driven without distortion of 
control pulse shape.  The major innovation is the circuitry 
surrounding the GasP asynchronous FIFO which allows it to be 
used as a clock-domain interface with selectable synchronizer 
mean time between failures (MTBFs).  It is theoretically 
impossible to make the probability of synchronizer failure zero 
in this type of circuit [3], but MTBFs of millions of years are 
easily achievable with interface latencies on the order of 
nanoseconds. 

This is not the first GALS interface to have been designed.  
Examples of others are found in [4] and [5].  The most 
important difference between the interface presented here and 
others in the literature is that this one does not require the 
interface to control the local clock signals, whereas the others 
require a “stoppable clock”.  While having a stoppable clock 
does make it possible to have zero probability of synchronizer 
failure, it is not compatible with all logic design styles.  The 
probability of synchronizer failure for the interface described 
here can be made as small as desired (but never zero) by 
increasing the latency of the interface.  Normally, the 
probability of synchronizer failure can be made insignificant by 
introducing additional latency which is a fraction of a clock 
period in duration. 
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A high-level depiction of the interface is shown in Fig. 1.  
Details of the inner workings of the two blocks in this figure 
can be found in [6].  The two local clocks signals are given as 
sclk (send clock) and rclk (receive clock).  The sending clock 
domain first checks that there is at least one space available in 
the synchronous buffer by observing the bfull signal.  If there is 
space in the buffer then the sending circuit can assert the send 
signal and is guaranteed that either the synchronous buffer or 
the asynchronous interface will absorb the sent data.  If the 
relative phases of the local clock domains happen to align well 
and there is no pending data in the synchronous buffer, the 
buffer will be completely bypassed and the data immediately 
entered into the asynchronous interface.  The datapath is 
labeled with sdata, Din, and Dout.  This datapath may be an 
arbitrary number of bits wide.  The receiving clock domain 
circuit signals that it is ready for new data by asserting rreq* 
and is in turn signaled if new data is available with rack*.  The 
synchronous buffer signals the asynchronous interface that it 
has new data available (either in the buffer or on the buffer 
input) by asserting sreq.  When new data is actually absorbed 
by the asynchronous interface this is signaled with sack. 

The interface was simulated in SPICE using parameters for 
a 180 nm CMOS process from the Taiwan Semiconductor 
Manufacturing Company (TSMC) which is available through 
the MOS Implementation Service (MOSIS).  In this process a 
MTBF in the millions of years can be achieved with a base 
latency of less than 2 ns plus a clock signal phase differential 
delay.  With circuits that can recover from synchronizer error, a 
base latency about 1 ns can be achieved with synchronizer error 
recovery required every few seconds. 

Layout area for the asynchronous interface and 
synchronous buffer are dominated by datapath area for wide 
datapaths.  Table I shows the layout areas in the same 180 nm 
CMOS process discussed above.  The areas are for the 
applications in Sections III and IV below.  The multiprocessor 
interface datapath is about 100 bits wide.  The bioinformatics 
coprocessor uses two interfaces, the one for constants is 8 bits 
wide and the one for calculations is 85 bits wide.  The areas 
given are for a unidirectional interface, so the area in Table I 
must be doubled for the multiprocessor case that requires 
bidirectional communication across clock domain boundaries.  
For the 8-bit coprocessor constants interface, the layout area is 
about evenly divided between datapath and control.  For the 
100-bit multiprocessor and 85-bit coprocessor interfaces, the 
layout area is dominated by the datapath.  For these area 
calculations, the depth of the synchronous buffer was taken to 
be one.  Allowing for deeper synchronous buffers will increase 
interface layout area significantly. 

 

 

Figure 1.  The asynchronous interface with buffer 

TABLE I.  LAYOUT AREAS FOR INTERFACE AND BUFFER 

Layout area (mm2) 
Application 

Synchronous buffer Asynchronous Interface 

Multiprocessor 0.07 0.14 

Coproc. - Const. 0.01 0.02 

Coproc. - Calc 0.06 0.12 

a. Based on TSMC 180 nm CMOS process. 

 

III. SINGLE-CHIP MULTIPROCESSOR 
The single-chip shared-memory multiprocessor is based on 

a binary tree bus structure with a single ARM 922T CPU core 
(32-bit RISC processor with separate instruction and data 
caches) at each local-clock node [7].  The local bus segments 
within each node are standard AMBA buses.  Layout of the 
interfaces and layout area data from ARM Ltd. shows that such 
a multiprocessor with over 100 processors can be built using 
180 nm technology.  Fig. 2 shows a single clock domain of the 
multiprocessor.  Each of the “Asynchronous Interface Pair” 
blocks in Fig. 2 contains two copies of the asynchronous 
interface with buffer shown in Fig. 1. 

The Smith-Waterman sequence alignment algorithm and 
the Advanced Encryption Standard (AES) were hand coded in 
32-bit ARM assembly language and cache block replacement 
frequencies determined from this code.  A VHDL model of the 
multiprocessor system and another of its globally-clocked 
analog were constructed that allow for different numbers of 
processors.  Simulation using the VHDL models shows that the 
performance penalty for both the bioinformatics and 
cryptography applications is small when compared to the 
globally-clocked system [8][9]. 

The efficiency of the multiprocessor has been quantified in 
terms of the fraction of time that processors spend computing 
rather than waiting for a data cache block replacement.  
Algorithms which require a high number of computations per 
data element have higher efficiencies.  For both the Smith-
Waterman algorithm and AES these efficiencies are usually 
0.95 or above. 

 

 

Figure 2.  A single clock domain of the multiprocessor. 
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Data cache block replacement latency depends on where 
the processor is located within the bus tree, the relative phases 
of all the local clock signals of clock domains between the 
processor and the shared memory, and contention with bus 
traffic for other processors.  The memory read request for a 
cache block replacement contends with other memory read 
requests and with memory writes.  The memory read data 
contends with memory read data for other processors.  The 
local bus segment in Fig. 2 is really two independent bus 
segments, one for traffic toward shared memory in the tree root 
and one for traffic away from shared memory.  The mean data-
cache block-replacement latency over all processors is less than 
100 clock periods when the number of processors is less than 
128.  

IV. BIOINFORMATICS COPROCESSOR 
Sequence alignment is the basis for many tasks in the field 

of bioinformatics.  Good sequence alignments are very 
computationally demanding and the amount of data available 
for processing is increasing at an exponential rate.  Often 
poorer quality alignments are used because the best quality 
alignments simply take too long to compute.  The best quality 
alignments come from linear programming methods such as 
those of Smith and Waterman [10].  Sequence alignment is the 
process of introducing gaps into the two sequences such that 
the character pairs at each sequence position give a maximum 
score. 

In order to allow the Smith-Waterman algorithm to be used 
more extensively, application-specific integrated circuits 
(ASICs) may be designed with hardware coprocessors specific 
to the Smith-Waterman algorithm.  It is desirable that these 
ASICs be easily scalable since growing molecular biology 
databases and decreasing CMOS feature sizes will 
continuously spur demand to place increasingly powerful 
coprocessors on a single integrated circuit. 

The Smith-Waterman algorithm is given in equations 1-4.  
The algorithm proceeds from the upper-left to the lower-right 
of a two-dimensional matrix.  The row and column indices are 
given by i and j respectively and three scores are calculated at 
every position in the matrix.  These values are I (the score if we 
insert), D (the score if we delete), and M (the score if we match 
or mutate).  The initialization of the algorithm starts by setting 
all of the boundary variables on the left and top to zero as given 
by 

 Ii,j = Di,j = Mi,j = 0, ∀ i and j s.t. i = 0 or j = 0. (1) 

The algorithm is symmetric, so insertions in one string are 
equivalent to deletions in the other string.  There is a penalty 
for starting a new insertion or deletion and a (usually smaller) 
penalty for continuing an insertion or deletion.  The start 
penalty is given as g and the continuation penalty as c.  The 
insertion score at a position is the previous insertion score 
minus c if the insertion is to be continued.  The insertion score 
is the previous match/mutation score minus g if a new insertion 
is to be made.  The optimum choice at this position for an 
insertion score is the maximum of the two as given by 

 Ii,j = max{Ii-1,j - c, Mi-1,j - g}. (2) 

A similar method is used to find the optimum deletion score 
at a given matrix position.  The maximum score over the 
possibilities of continuing a new deletion or starting a new 
deletion is given by 

 Di,j = max{Di,j-1 - c, Mi,j-1 - g}. (3) 

The score for the possibility that the current matrix location 
represents a match or mutation is complicated by the fact that 
different degrees of matching are allowed.  A substitution 
matrix d(ai,bj) is specified which gives a different weight for 
every possible pair of characters ai and bj that can appear at the 
matrix position.  The three possible conditions are that this 
match/mutation ends an insertion, ends a deletion, or continues 
a string of match/mutation.  A maximum over these three 
conditions finds the optimum choice.  In order to do a local 
alignment where distant misalignments do not penalize finding 
a matching substring locally, the score is not allowed to fall 
below zero.  The resulting equation is 

 Mi,j = max{Ii-1,j-1 + d(ai,bj), Di-1,j-1 + d(ai,bj), 
 Mi-1,j-1 + d(ai,bj), 0}. (4) 

A Smith-Waterman ASIC coprocessor has previously been 
designed [11].  However, this coprocessor was not designed 
using a GALS methodology and therefore designing a new 
clock tree every time the design is ported to a CMOS process 
with smaller feature size may be time consuming.  Fig. 3 shows 
a design that is amenable to being divided into independent 
computing elements that can reside in individual local clock 
domains, thus allowing for the GALS design approach. 

The two major parts of the compute element are the 
constants section (left) and the calculations section (right).  The 
flow of information into and out of the constants section is 
independent of information flow for the calculation section as 
evidenced by distinct pairs of request/acknowledge signals for 
each section.  This requires two copies of the asynchronous 
interface with buffer of Fig. 1 to be placed between each 
compute element and the compute element that follows it in the 
chain.  The datapath for the constants interface is 8 bits wide 
and that of the calculations interface is 85 bits wide. 

 
Figure 3.  A compute element of the Smith-Waterman coprocessor. 
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Each compute element holds the data associated with one 
character of one of the sequences of the alignment.  If there are 
not enough compute elements to hold the entire sequence, 
multiple passes through the chain of compute elements will be 
required. 

The characters of the sequence which is not assigned to the 
compute elements flow through the chain of elements.  The 
characters are given as a 21-bit one-hot code in vector Char.  A 
one-hot code is used to allow easy access to the portion of the 
substitution matrix stored in the constants section.  There are 
21 possible values allowing for each of the 20 possible amino 
acids plus a character for “unknown.” 

Only a single column of the substitution matrix is stored in 
the constants section since one character of the pair is always 
the same for all calculations.  Six bits are required for each 
value to allow for the range of values in the commonly used 
substitution matrices.  For example, the very commonly used 
PAM250 matrix [12] has minimum value of -7 and maximum 
value of 17.  These matrices all contain integer values.  The gap 
start and continuation penalties can easily be stored as 8-bit 
values since these are integers with magnitude normally less 
than 100.  The valid bit allows a compute element to be 
bypassed if there are more compute elements than sequence 
characters for a given pass. 

Some of the comparisons need to do the match/mutate 
maximum calculation can be done before the current Char 
value arrives.  The auxiliary variable X is introduced to allow 
this pre-calculation.  Most of the operations done for Smith-
Waterman are comparisons.  These would be done in the adder 
unit of a microprocessor, but can be implemented more 
efficiently in hardware specifically built to do value 
comparisons.  The output of the value comparator controls a 
multiplexer which passes the larger value. 

V. CONCLUSION 
Use of the GALS design methodology can greatly reduce 

the design effort required  to create clock trees for large high-
frequency integrated circuits.  The use of multiple clock 
domains requires attention to the possibility of metastability 
and possible resulting synchronizer failure.  It also generally 
increases signaling latency across clock domain boundaries. 

The GALS interface presented here has the advantage of 
not requiring the interface to be allowed to pause the local 
clock signals of the attached local clock domains.  The cost of 
removing the pausing requirement is that the probability of 
synchronizer failure can never be made zero, although it can be 
made arbitrarily close to zero. 

Potential applications of the interface and associated GALS 
design methodology are single-chip multiprocessors and 
special-purpose coprocessors which are easily scalable to more 
processors or more coprocessor units as CMOS feature sizes 
decrease. 
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